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1. Introduction. The study of analytic measures on compact 
groups with ordered duals has been the subject of several papers on 
Fourier Analysis in recent years (see W. Rudin [12] for references). 
In their papers [5], [6], H. Helson and D. Lowdenslager have used a 
new method to study the properties of analytic functions on the Bohr 
group. In his subsequent works [3], [4], Helson has emphasized the 
connection of this problem to the Weyl-Von Neumann operator 
equations ([8], [lO]). In the meantime, K. de Leeuw and I. GHCKS-

berg [2] have given an extension of the classical theorem of F. and 
M. Riesz to compact groups. They obtain as its consequence refine­
ments of some theorems of Helson-Lowdenslager [5] and S. Bochner 

[1]. 
Our purpose here is to use Helson's method in [4] to obtain a simple 

proof of the de Leeuw-Glicksberg theorem basing ourselves entirely 
on the Hilbert space geometry. We think that the interest of this 
proof, aside from its simplicity and clarity, lies in unifying the ideas of 
the above two approaches. This unity may eventually lead to a 
deeper knowledge of analytic measures on groups with ordered duals. 
Such a study has been made in the special case of the Bohr group by 
M. G. Nadkarni [9]. A complete study may also give an extension of 
the work of G. Kallianpur and V. Mandrekar [7] to the situation 
considered by Helson-Lowdenslager [ó]. 

Professors K. de Leeuw and I. Glicksberg have brought to our 
notice the yet unpublished work, Analytic and quasi-invariant mea­
sures by Frank Forelli, where he defines analytic measures on an 
arbitrary locally compact Hausdorff space and studies their quasi-
invariance. His work has points of contact with our work; however, 
it being more general, he needs elaborate techniques in the theory of 
Abelian group algebras. 

1 Prepared with the support of a grant from the United States Air Force Office of 
Scientific Research—Office of Aerospace Research, Grant No. AF-AFOSR-885-65. 

2 This paper appeared recently in Acta Mathematica 118 (1967), 33-57. 
3 Presently at Math Research Center, Madison, Wisconsin. 
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2. Quasi-invariance of spectral measures. Let G be a locally com­
pact Abelian group. Let T be the character group of G. Let H be a 
Hubert space. Let {Uy:y&T} be a strongly continuous group of 
unitary operators on H. It is known [ll, p. 392] that there exists a 
hermitian projection valued measure /3 on the Borel subsets of G such 
that 

(2.1) Uy= fxy(g)Kdg) 

where Xy denotes the character on G corresponding to Y £ I \ 
Let ^ be a continuous homomorphism of T into R, the group of real 

numbers with the usual topology. \(/ induces a homomorphism 
<t>\ R—+G of the associated dual groups. In fact, 4> is the unique map­
ping defined by X7(#(0)=exp {i^{y)t). With the above notation we 
obtain the following result of purely geometric nature which will be 
used in §3 to prove the de Leeuw-Glicksberg theorem. 

THEOREM 2.1. Let { Vt; /£i?} be a group of unitary operators satis­
fying 

(2.2) UyVt = Xy(<t>(t))VtUy. 

Then VtP(A) F-*=j3(A+0OO) where /3 is the spectral measure on G cor-
responding to { Uyi 7 £ T } and A is any Borel subset of G. 

PROOF. By (2.1) we have 

(2.3) UyVt= (xy(g)P(dg)Vt. 
J G 

But 

XiMWiUv-XyMWt f XyÜMdg) ~ XyMO) ( Xy(gWS{dg) 
(2.4) J° J° 

= f x 7 ( « + ( * W ) W f c ) ) = f Xy(g)ViP(dg - 4>®)-

Since UyVt^Xyi^ifyVtUy, we can equate (2.3) and (2.4) to obtain 

(2.5) f XyigMdg) V, = f x,(g) Vfi(dg - *(/)) ; 
J G J G 

i.e., for all x, yE.H, 

(2.6) f Xy(g)Wg)VtX, y)= f Xy(g)(Vtp(dg - *(/))*, y). 
J G ^ G 
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By the uniqueness of the Fourier transform it follows that for all 
*, y<EH, (0(A) 7,*, y) = (Vtp(A-4>(t))x, y). Ir* other words, /3(A) Vt 

= 7<0(A-0(/)). Hence 7«0(A)7_«~j8(A+0(0). q.e.d. 

3. Quasi-invariance of analytic measures. Let G be a compact 
Abelian group and V its discrete dual. An "ordering" of T is given by a 
fixed non trivial homomorphism \p of T into the group of real numbers. 
Since T is discrete the mapping ^ is a continuous homomorphism and 
thus induces a continuous homomorphism 0: R—>G of the associated 
dual groups;^ is the unique mapping defined by xy(<j>(t)) =exp(i\{/(y)t)1 

teR, y e r . 
Let ix be a finite complex regular measure on the Borel subsets of G. 

fi is said to be 0-analytic if foXy(g)lJI>(dg)=0 whenever ^(7) <0 . Let 
|ju| denote the total variation measure associated with ix. It is easy 
to see that jx(dg)=e(g)\fx\ (dg) where e(-) is a complex valued mea­
surable function on G of absolute value 1 almost everywhere [|M| ]• M 
is called quasi-invariant under </> if |ju| (A) = 0 implies |/x| (A+#(/)) = 0 
for all / £ i ? . We shall denote by L 2 ( G , | M | ) the space of complex-
valued functions square integrable with respect to |ju|, where func­
tions equal a.e. [ |M| ] a r e identified. We consider the subspaces 9E8 of 
L2(Gt |JU|) generated by {xy(')e('):^(y)^s} for each s. They have 
the following properties: 

(i) 9TC, S Win if s S u, 

(ii) y a m . - L , ( G , I/11), 
(3.1) 

(iii) Q2fll8= {0}. 

(i) and (ii) are obvious; only property (iii) needs a proof. Consider 
fa Xy(g)Xr(g)e(g)\fx\ (dg). If \p(r) â - / , then for 7 satisfying \p(y) <t 
we have fG Xy(g)xÀg)e(g) \fi\ (dg)=0 by <£-analyticity of /*. Since 9TC_e 
is spanned by {xr(-)e(m)' ^(r) ^ — / } , we have for any /£2tfZ_*, 
/öX7(^) / t e )^ te ) |M| (^ )=0 for 7 with M X * . L e t / e ^ - . . Then 
/£9flZ_* for each /. Hence we get Jo Xy(g)f(g)e(g)\A (dg)=0 for all 7. 
This implies ƒ = 0 a.e. [|/x| ] proving (iii). 

Let Uy be the operator in L2(G, | /x| ) such that Uyf=Xyf- Then for 
each 7 G r , t/7 is obviously unitary and { £ / 7 : 7 £ r } is a group of 
unitary operators on Z,2(G, |/x| ). Let E (5) denote the orthogonal pro­
jection from L2(G, | / i | ) onto 9tfl«. Then from (3.1) we have that 
{E(s) : — 00 <5 < 00 } is a resolution of the identity in L2(G, | fx\ ). Fur­
ther, it is easy to check that UyîfKa = SÏÏIH-IKT)- Hence we get UyE(s) U-y 

= £ ( 5 + ^ ( 7 ) ) . Let F,=/roo exp(its)E(ds). Then by Stone's theorem 
{ F*: —oo</<oo} is a (strongly continuous) group of unitary op­
erators. Further 
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ƒ 00 /» oo 

exp(its)E(ds) = I exp(fe) üyE(ds) 
—00 J —00 

ƒ 00 

exp(its)E(ds + yp(y))Uy « e x p ( - i^(y)t)VtUy. 
-00 

Thus F* and Uy satisfy the relation (2.2). We now prove 
THEOREM 3.1 ( M A I N THEOREM [2]). Let fx be a ^-analytic measure 

on G. Then fx is quasi-invariant under <j>. 

PROOF. Observe that if j8 denotes the spectral measure of Uy, then 
08(A)/)(g)«JA(g)/(g), gEG, where 7 A (g )« l or 0 according as g £ A 
or g&à. Therefore /3(A) = 0 if and only if | M | ( A ) ~ 0 . NOW UyVt 

= exp ( — i&(y)t)VtUy — Xy(<t>(t))VtUy. Hence by Theorem 2.1, 
F*jS(A)F_,-/3(A+0(O). Thus 0(A) « 0 implies/3(A+0(0)= 0 for all % 
and therefore ju is quasi-invariant under <j>. q.e.d. 

If F = Rd (the real line with the discrete topology), it is well known 
[12, p. 30] that G is the Bohr compactification B of R and there is 
continuous isomorphism <j> of R onto a (dense) subgroup $(i?) of 5 . 
The following corollary is now obvious. 

COROLLARY 3.1. If \x is an analytic measure on B, then y is quasi-
invariant under R. 

In fact, Theorem 3.1 is not far more general than Corollary 3.1 in 
the sense that it could be obtained essentially using Corollary 3.1. The 
important part is played by the Archimedian order of R. One may 
observe that if </> is a nontrivial continuous homomorphism then the 
kernel of <j> is either 0 or a discrete subgroup of R isomorphic to the 
group of integers. The latter case can be essentially proved by using a 
variation of Theorem 2.1. In the next section, we shall therefore 
restrict our attention to Bohr group. 

4. Quasi-invariant measures and invariant measures. Two posi­
tive regular <j-finite measures on B will be called equivalent if they 
are mutually absolutely continuous. For any measure ju on B we shall 
let \xt denote the measure given by ixt(A) =juC<4+<£(£)), A being a 
Borel subset of B. Let ju be a positive finite regular measure on B 
quasi-invariant under <£. I t is easy to check that the Radon-Nikodym 
derivative g{t, *) = (dfxt/diJ,)(-) satisfies the functional equation for a 
cocycle (cf. [3]), i.e., g(t+s, x)~g(t, x)g(sf x+t), a.e. [ju]. Here the 
set of measure zero, where the equation does not hold, may vary with 
the pair (t, s). 
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THEOREM 4.1. There exists a cr-finite ^-invariant measure v equivalent 
to ix if and only if the cocycle g is a coboundary, i.e., there exists a mea­
surable f unction h such that 

, . h(x + 0(0) r , 
h{x) 

PROOF. Suppose there exists a cr-finite 0-in variant measure v equiva­
lent to \x. Consider 

( \ - dfJLi - dtXt dv t \ - h(' + *®) 
djx dv dfi h(') 

where h(-) = (djx/dv)(-). Hence g is a coboundary. Conversely suppose 
that g is a coboundary. Let v(A)=fA (l/h(x))fx(dx). Since the set 
{x: 0 <h(x) < oo } is also the support of fx it is easy to check that v is a 
cr-finite measure equivalent to \x. To see that v is 0-invariant, we note 
that 

v(A+4>®) = f jTT^dx) « f ————^(dx) 
J A+4>(t) h{x) J A h(x + 0(0) 

X 1 dfxt 
n(dx) 

A h(x + 0(0) dix 

_ 1 Kx + 0(Q) 

A *(* + 0(0) *(*) 
n(dx) = ^(-4). q.e.d. 

A 0-invariant measure v on B need not be the Haar measure on B. 
For example, consider measure v that is Lebesgue measure on 0(2?). 
In view of this the following result, though elementary, is interesting. 

THEOREM 4.2. If a finite nonzero measure ix is invariant under 0(2?) 
then fx is the Haar measure on B. 

PROOF. 

j&(0 » f X«(J)M(<») - f x#(» + *)M(<»), * G * ( * ) , 

= I exj>(its)xt(b)fx(db) = exj>(its)fi(t). 
J B 

Hence jtt(J) = 0 W /?*0 and jtt(0) =/*(£) ?*0. Hence M is the Haar mea­
sure on B (or a constant multiple of it), q.e.d. 
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A NONLINEAR BOUNDARY VALUE PROBLEM 

BY R. WILHELMSEN 

Communicated by H. A. Antosiewicz, May 22, 1967 

1. Introduction. The main result of this paper establishes the 
existence of solutions of certain nonlinear two point boundary value 
problems for a class of nonlinear second order differential equations. 

A corollary to the main theorem includes a boundary value problem 
recently considered by Herbert B. Keller [ l ] and Klaus Schmitt [2]. 

2. Definitions. In the following definitions let S stand for a point 
set in the FZ-plane. 

A = {S: S is an arc}, 
Hx= \S: (Fi, Zi), (F2, Z2)ES=^(Y1^ P « ) ( Z i - Z , ) a 0 } , 
ff2 = {S: (Fx, Zx), (F2, Z , ) e S = » ( F i - Y2)(Z1^Z2) gO} , 
J1={S:W(Y,Z)eS3Z = N}, 
/ 2 = { S : V 3 (Y,Z)eS3Y~Z = N}t 

R~{(X9 Y,Z):Xi£X£X%t\Y\+\z\<«>}9 

J5o = {ƒ (X, F, Z) : ƒ is continuous in R}, 


