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Abstract

For any class C closed under TC0 reductions, and for any measure
u of uniformity containing Dlogtime, it is shown that all sets complete
for C under u-uniform AC0 reductions are isomorphic under u-uniform
AC0-computable isomorphisms.

1 Introduction

One of the long-standing conjectures about the structure of complete sets is the
isomorphism conjecture (proposed in [BH77]) stating that all sets complete for
NP under polynomial-time reductions are polynomial time isomorphic. As the
conjecture cannot be resolved either way unless we discover non-relativizable
techniques (see [KMR88, KMR95, FFK96] for more details), efforts have been
made to prove the conjecture in restricted settings by restricting the power of
reductions (see for example [Agr96, AAR98]). One of the most natural defini-
tions of restricted reductions is that of functions computed by constant-depth (or
AC0) circuits (first studied in [CSV84]). These reductions provide the right no-
tion of completeness for small complexity classes (logspace and below). Also, it
has been observed that natural complete problems for various complexity classes
remain complete under such reductions [IL95, Imm87]. Although the class of
AC0 functions is much smaller than the class of polynomial-time functions, it is
interesting to note that there are very few known examples of an NP-complete
set that is not complete under uniform AC0 reductions ([AAI+01] provides one
such example).

The notion of uniformity to be used with AC0 circuits is widely accepted
to be that of Dlogtime-uniformity (see Section 3 for a definition). Under this
uniformity condition, these circuits admit a number of different characteriza-
tions [BIS90, AG91]: functions computed by first-order logic formulae [Lin92],
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O(1)-alternating log-time TMs [Sip83], logspace rudimentary predicates [Jon75]
etc.

The isomorphism conjecture for complete sets for NP under AC0 reductions
has been studied before. Allender et. al. [ABI97] showed that all sets complete
under first-order projections (these are very simple functions computed by uni-
form circuits with no gates [IL95]) are Dlogtime-uniform AC0-isomorphic (i.e.,
the isomorphism between any two such sets is computable in both directions by
Dlogtime-uniform AC0 circuits). This was improved, at the cost of losing unifor-
mity, in [AAR98] where it is shown that all sets complete under u-uniform (for
any u) AC0 reductions are non-uniform AC0-isomorphic. Notice that this re-
sult proves the isomorphism conjecture for non-uniform AC0 reductions but not
for Dlogtime-uniform reductions. The uniformity condition for isomorphisms
was improved in [AAI+01] to P-uniform. This still leaves open the conjecture
for Dlogtime-uniform AC0 reductions, which is, as observed above, the correct
formulation of the isomorphism conjecture for constant depth reductions.

In this paper, we prove that all complete sets for NP under u-uniform AC0

reductions are u-uniform AC0-isomorphic for any uniformity u containing Dlog-
time, thus proving the isomorphism conjecture for uniform constant depth re-
ductions.1 Since there are a number of alternative characterizations of Dlogtime-
uniform AC0 circuits, this theorem can be viewed in many interesting ways, e.g.,
all sets complete under first-order reductions are first-order isomorphic (first-
order functions are computed by first-order formulae). The result, in fact, holds
for any class closed under TC0 reductions.

The next section provides an outline of our proof. Section 3 contains defini-
tions, and the subsequent sections are devoted to proving the result.

2 Proof Outline

The overall structure of the proof remains as given in [AAR98]. The proof
in [AAR98] proceeds in three steps:

Step 1 (Gap Theorem): This shows that all complete sets under u-uniform
AC0 reductions are also complete under non-uniform NC0 reductions.
This step is non-uniform.

Step 2 (Superprojection Theorem): This proves that all complete sets un-
der u-uniform NC0 reductions are also complete under (u+P)-uniform
superprojections, where superprojections are functions similar to projec-
tions. This step is P-uniform.

Step 3 (Isomorphism Construction): This proves that all complete sets
under u-uniform superprojections are isomorphic under (u+Dlogtime)-
uniform AC0 isomorphisms. This step is Dlogtime-uniform: starting with
Dlogtime-uniform superprojections, one gets Dlogtime-uniform AC0 iso-
morphisms.

1The results in this paper first appeared in [Agr01b] and [Agr01a].



The proof of the Gap Theorem uses the Switching Lemma of [FSS84] in
the construction of NC0 reductions and is the reason for its non-uniformity.
In [AAI+01] the lemma was derandomized using method of conditional proba-
bilities making the stage P-uniform. The Superprojection Theorem of [AAR98]
uses the Sunflower Lemma of [ER60] which is P-uniform.

Clearly, the uniformity of both these stages needs to be improved to ob-
tain Dlogtime-uniformity. It is useful to note here that it is sufficient to make
both the stages AC0-uniform instead of Dlogtime-uniform as that makes the iso-
morphism constructed by Stage 3 also AC0-uniform and then the AC0 circuit
used in uniformity can be incorporated in the AC0 circuit for the isomorphism
making the resulting AC0 circuit Dlogtime-uniform. In fact this is the best
that we can hope to do as it is known that the Gap Theorem cannot be made
Dlogtime-uniform [AAR98].

We first consider the Gap Theorem. The method of conditional probabil-
ity used to derandomize the Switching Lemma in [AAI+01] appears inherently
sequential. So to improve the uniformity, we need to find a different way of
derandomizing the lemma. There does exist a different derandomization of the
lemma in the literature [CSS97]: they obtain a pseudorandom generator against
the Switching Lemma of [H̊as86] that stretches a seed of length (log n)O(d) to
n bits and “fools” the lemma for depth d circuits. However, it does not serve
our purpose since derandomizing the lemma using this generator would require
superpolynomial sized circuits.

We construct a new pseudorandom generator against the Switching Lemma
of [FSS84]. This generator stretches a seed of length O(log n) to n bits. We
can thus derandomize the lemma by cycling through all the seed values. We
show that the generator construction, and other related computations, can be
performed by Dlogtime-uniform AC0 circuits thus making the Gap Theorem
AC0-uniform.

Next, we consider the Superprojection Construction of [AAR98]. This uses
the Sunflower Lemma which again appears inherently sequential. So we need a
different construction here as well. We adopt the approach of the Gap Theorem
and define a random construction that succeeds with high probability and then
derandomize it using an appropriate pseudorandom generator. All the compu-
tations is this construction can also be performed by Dlogtime-uniform AC0

circuits.
Combining the above constructions together with the Isomorphism Con-

struction, we get Dlogtime-uniform AC0-isomorphisms.

3 Basic Definitions and Preliminaries

We assume familiarity with the basic notions of many-one reducibility as pre-
sented, for example, in [BDG88].

A circuit family is a set {Cn : n ∈ N} where each Cn is an acyclic circuit
with n Boolean inputs x1, . . . , xn (as well as the constants 0 and 1 allowed as
inputs) and some number of output gates y1, . . . , yr. {Cn} has size s(n) if each



circuit Cn has at most s(n) gates; it has depth d(n) if the length of the longest
path from input to output in Cn is at most d(n).

For a circuit family {Cn}, the connection set of the family is defined as:

ConnC = {〈n, t, i, j〉 | gate i in Cn is of type t and takes input from gate j}.

The connection set can be used to give a binary encoding of circuit Cn: bit
〈t, i, j〉 of the encoding is 1 iff (n, t, i, j) ∈ ConnC .

A family {Cn} is u-uniform if the connection set can be computed by a
machine (or circuit) with a resource bound of u. In this paper, we will primarily
use two notions of uniformity: Dlogtime-uniformity [BIS90] and AC0-uniformity.
In the first, the connection set is computed by a TM with random access tapes
working in O(log n) time (which is linear time as a function of input size), and in
the second, the connection set is computed by an AC0 circuit of polynomial size
(which is exponential size in terms of input size). We will follow the standard
convention that whenever the connection set is computed by a circuit family,
the circuit family is assumed to be Dlogtime-uniform. So, for example, AC0-
uniform means that the set can be computed by a Dlogtime-uniform AC0 family
of circuits.

A function f is said to be in AC0 if there is a circuit family {Cn} of size
nO(1) and depth O(1) consisting of unbounded fan-in AND and OR and NOT
gates such that for each input x of length n, the output of Cn on input x is f(x).
We will adopt the following specific convention for interpreting the output of
such a circuit: each Cn will have nk + k log(n) output bits (for some k). The
last k log n output bits will be viewed as a binary number r, and the output
produced by the circuit will be binary string contained in the first r output
bits. It is easy to verify that this convention is AC0-equivalent to any other
reasonable convention that allows for variable sized output, and for us it has
the advantage that only O(log n) output bits are used to encode the length.

With this definition, the class of Dlogtime-uniform AC0-computable func-
tions admits many alternative characterizations, including expressibility in first-
order with {+,×,≤}, [Lin92, BIS90] the logspace-rudimentary reductions of
Jones [Jon75, AG91], logarithmic-time alternating Turing machines with O(1)
alternations [BIS90] and others. This lends additional weight to our choice of
this definition.

NC0 is the class of functions computed in this way by circuit families of size
nO(1) and depth O(1), consisting of fan-in two AND and OR and NOT gates.
Note that for any NC0 circuit family, there is some constant c such that each
output bit depends on at most c different input bits. An NC0 function is a
projection if its circuit family contains no AND or OR gates. For the sake of
simplicity, we assume that NC0 and projection functions do not have variable
sized output. This restricts the class of these functions, however, all NC0 and
projection functions that we use will be of this kind.

For a complexity class C, a C-isomorphism is a bijection f such that both f
and f−1 are in C. Since only many-one reductions are considered in this paper,
a “C-reduction” is simply a function in C.



A language is in a complexity class C if its characteristic function is in C.
This convention allows us to avoid introducing additional notation such as FAC0,
FNC1, etc. to distinguish between classes of languages and classes of functions.

4 Derandomizing the Switching Lemma

A derandomization of the Switching Lemma of [FSS84] gives a deterministic
way of assigning values to certain input bits in a manner that transforms a
given AC0 circuit to an NC0 circuit. We will obtain a derandomization that
requires a seed of size O(log n) and is independent of the given AC0 circuit.
We first go through the proof of the Switching Lemma as in [FSS84] and then
show how each randomized step of the construction can be derandomized2. We
will follow a simplification of the original proof of [FSS84]. This proof has been
sketched at several places (see, e.g., [AAI+01]), we will sketch it once more with
the required parameter values.

Let C be a circuit with n input bits. A random restriction of the inputs to
C is a random assignment of values to a random subset of inputs.

In this section, we will denote, by AC(d, s, n) the class of circuits with AND,
OR, and NOT gates (AND and OR gates having unbounded fanin) of depth d
and size s on n input bits. We now state the lemma in the form that we need:

Lemma 4.1 There exists a constant γ (depending on d and k only) such that
for large enough n and for any circuit C in AC(d, nk, n), when a sequence of
random restrictions is applied to C with appropriate parameters, C reduces, with
probability at least 1− 1

n2 , to a depth two circuit having at least n1/γ unset bits,
with the property that the output of the circuit depends on at most γ of the unset
bits.

Proof Sketch. Let C ∈ AC(d, nk, n) be an AC0 circuit of depth d and size nk

on n input bits. We can assume, without loss of generality, that C is arranged
into d alternating levels of ANDs and ORs on nδ0 = n unset bits with its leaves
being depth c0 = 1 decision trees. The proof proceeds in d stages. After stage i,
the circuit reduces to a depth d−i circuit of size nk on nδi unset bits with leaves
being decision trees of depth at most ci. Stage i has at most ci−1 substages.
After substage j of stage i, the circuit reduces to a depth d − i + 1 circuit of
size nk on nδi−1/2

j

unset bits whose bottom layer is made up of decision trees
of depth at most ci,j (with ci,0 = 0) with leaves that are ANDs (or ORs) of
decision trees of depth at most ci−1 − j. We now describe a single substage j
of stage i.

After the substage j − 1 of stage i, the bottom layer of the circuit consists
of decision trees of depth at most ci,j−1 with leaves that are ANDs (or ORs) of
decision trees of depth at most ci−1− j+1. Assume it is ANDs of decision trees
(the proof for ORs is identical). Therefore, each AND gate of the bottom layer

2It is interesting to note that the stronger Switching Lemma of [H̊as86] does not admit
such a construction.



can be expressed as an AND of ORs of fanin at most ci−1− j+ 1. Denote these
ANDs by Q1, Q2, . . ., Q2ci,j−1nk (there will be at most 2ci,j−1nk such ANDs
since the size is nk and each decision tree above the AND gates in the bottom
later has depth at most ci,j−1). Represent the unset input bits in the circuit as
distinct boolean variables. For each Qm, define set Maxset(Qm) to be the lex-
first maximal set of clauses in Qm that are variable disjoint. If these are more
than α log n for α = (k+5)2ci−1−j+1, then redefine Qm to be the lex-first α log n
of these clauses. So each Qm contains at most (ci−1 − j + 1)α log n variables.

We now use a random restriction that first picks a random subset of size
nδi−1/2

j

from the nδi−1/2
j−1

unset variables and then sets the remaining variables
to 0 and 1 with equal probability. A simple calculation (based on Chernoff
bounds on tail distribution) shows that the probability that a Qm has more
than c′ unset variables is less than ( eci−1α logn

c′nδi−1/2
j )c

′
. Choosing c′ = 2j(k+5)

δi−1
, this

probability becomes less than 1
nk+4 for large enough n. Summing over all m’s,

the probability that any Maxset(Qm) has more than c′ unset variables is less
than 1

n3 for large enough n.
Consider those Qm’s for which |Maxset(Qm)| = α log n. By the above cal-

culation, most of the restrictions will leave at most c′ unset variables in it. We
consider such restrictions only. Drop the (at most) c′ ORs that have an unset
variable from the set Maxset(Qm). Because those input input variables that
are set take the values 0 and 1 with equal probability, the probability that a
particular OR in Maxset(Qm) will have the value 1 is at most 1 − 1

2ci−1−j+1 .
And since the ORs in the set are disjoint, the probability that all of them will
have value 1 is at most (1 − 1

2ci−1−j+1 )α logn−c′ ≤ 1
nk+4 (substituting the value

of α) for large enough n. Summing over all Qm’s, the probability that some
Qm with |Maxset(Qm)| = α log n survives the random restriction (i.e., does not
become zero) is less than 1

n3 for large enough n.
Consider now those Qm’s for which |Maxset(Qm)| < α log n. Replace every

such Qm with a decision tree of depth at most c′ by querying the c′ unset
variables in Maxset(Qm). Since variables in Maxset(Qm) intersect every clause
of Qm, the leaves of this decision tree will be ANDs of ORs of fanin at most
ci−1 − j. Thus the bottom layer becomes a decision tree of depth at most
ci,j = ci,j−1 + c′ whose leaves are ANDs of decision trees of depth at most
ci−1 − j. This finishes substage j of stage i. Repeating this at most ci−1 times
will result in a depth d − i circuit of the kind mentioned above with suitable
values of ci and δi. Further, this will happen with probability at least 1−O( 1

n3 )
for large enough n. After d steps, the circuit will be simply a decision tree
of depth at most cd thus depending on at most 2cd unset variables out of nδd
for large enough n. Moreover, this event will occur with probability at least
1− O( 1

n3 ) ≥ 1− 1
n2 for large enough n. Choosing γ = max{2cd , 1

δd
} completes

the proof.

We now proceed with the derandomization. It will be convenient to assume
that n = 22t for some t ≥ 0 for the subsequent arguments.

Notice the following three crucial points about any particular substage of



the above proof:

1. In any substage, we have argued about properties of sets of input variables
of size at most ĉ log n where ĉ = cd(k + 5)2cd−1 .

2. We use two properties of the random restriction. The first one is: given
any subset of size at most ĉ log n of a set of m ≥ n1/γ variables, the
probability that a random subset of size m1/2 intersects the given subset
with cardinality more than c′ ≤ k+5

δd
is at most 1

nk+4 .

3. The second property we use is: given any AND of disjoint ORs, with AND
of fanin at least α log n− cd and ORs of fanin at most cd, the probability
that a random assignment to the input variables makes the AND output
a 1 is at most 1

nk+4 .

Therefore, for any random restriction satisfying the above two properties,
the proof will remain valid. We can easily derandomize the construction of
such random restrictions using known constructions. We now describe these
derandomizations.

4.1 Setting input variables

This is straightforward: we can use any (ĉ log n)-wise independent source. How-
ever, such sources have seed size of Ω(log2 n) which does not give a com-
plete derandomization. So, instead, we use a (ĉ log n)-wise independent 1

nk+4 -
biased source [NN93]. Efficient constructions of such sources are known [NN93,
AGHP92]. We describe one of these (given in [AGHP92]).

Let Fp be the field of p elements for some prime p = nO(1). The seed for the
source is a random element r of the field Fp. Given r, the ith bit of the source,
i ≤ n, is 1 iff the number r + i is a quadratic non-residue in Fp. Let GI denote
this source.

4.2 Choosing subsets of variables

Here we use a source based on designs defined in [NW94]:
Let m = logn

2 and ĉ = k+5
δd

. Let ā = (a0, . . . , aĉ−1) with ai ∈ F2m , the field
of 2m elements. For polynomial Pā(x) =

∑
i=0,ĉ−1 ai · xi let

Sā = {xPā(x) | x ∈ F2m}.

Our source will have seed ā, and will output the set Sā. This source provides
nĉ/2 subsets of size n1/2. Let GD,n denote this source.

The following lemma shows that this source satisfies the required property
of subsets:

Lemma 4.2 Let X be any subset of {1, 2, . . . , n} such that |X| = O(log n).
Then for large enough n,

Pr
ā

[|GD,n(ā) ∩X| ≥ ĉ] ≤ 1
nĉ−1

.



Proof. Fix any subset Y of X of size ĉ. Imposing the condition that GD,n(ā)
contains all of Y gives rise to a system of ĉ linearly independent equations in a0,
. . ., aĉ−1, and hence has exactly one solution. Therefore, for exactly one seed,
Y ⊆ GD,n(ā). Since there are

(|X|
ĉ

)
ways of choosing Y , the number of seeds

for which |GD,n(ā) ∩X| ≥ ĉ is at most
(|X|
ĉ

)
. The lemma follows.

4.3 Constructing a hybrid source

It is now clear how to derandomize the Switching Lemma: The proof of the
lemma has a constant number of substages, and each substage uses a random
restriction on nδ unset input bits to leave nδ/2 bits unset for some δ. For this
substage, we use GD,nδ to pick the subset and set the remaining bits using the
source GI .

So, the derandomization of the Switching Lemma for circuits in AC(d, nk, n)
is obtained by a hybrid source H that uses τ ≤ log γ pairs of sources—one for
each substage—with the ith pair being (GD,n1/2i−1 , GI).

Given a seed ((ā0, r0), . . . , (āτ−1, rτ−1)) of the hybrid source H, bit j of the
output can be calculated as follows:

Let j = j0j1 · · · jτ−1jτ where |ji| = 2t−i−1 for 0 ≤ i < τ and
|jτ | = 2t−τ (recall that we have assumed n = 22t). Let i be the
smallest index for which GD,n1/2i (āi) does not contain the number
k = jiji+1 · · · jτ−1jτ . Set bit j of the source to the bit k of GI(ri).
If there is no such i, bit j remains unset.

By the arguments above, the derandomization of the Switching Lemma fol-
lows:

Lemma 4.3 There exists a constant γ ≥ 2 (depending on d and k only) such
that for large enough n, and for any circuit C in AC(d, nk, n), when the input to
C is set using the restriction output by the source H, C reduces, with probability
at least 1 − 1

n2 , to a depth two circuit having at least n1/γ unset bits, with the
property that the output of the circuit depends on at most γ of the unset bits.

An interesting feature of the source H is that every restriction output by the
source has exactly one unset bit in every block of n1− 1

2τ bits:

Lemma 4.4 For any seed ((ā0, r0), . . . , (āτ−1, rτ−1)), the restriction H((ā0, r0), . . . , (āτ−1, rτ−1))
has exactly one unset bit in every block of n1− 1

2τ bits.

Proof. The locations of unset bits are determined by GD,n1/2i (āi) for 0 ≤ i < τ .
For index j, 0 ≤ j < n, let j = j0j1 · · · jτ−1jτ where |ji| = 2t−i−1 for 0 ≤ i < τ
and |jτ | = 2t−τ . Bit j remains unset if for every i, 0 ≤ i < τ , the number
jiji+1 · · · jτ−1jτ occurs in the set GD,n1/2i . Recall that

GD,n1/2i = {xPāi(x) | x ∈ F2t−i−1}



with |Pāi(x)| = |x| = 2t−i−1. Since |ji| = |ji+1 · · · jτ | = 2t−i−1, we get that
for every possible value of ji, there is exactly one value of ji+1 · · · jτ such that
jiji+1 · · · jτ is in GD,n1/2i .

Therefore, for every possible value of j0j1 · · · jτ−1, there is exactly one value
of jτ for which the bit j0j1 · · · jτ−1jτ remains unset. The lemma follows.

This feature will be useful in our uniform construction later.

4.4 The complexity of derandomization

We now calculate the resources required to achieve the derandomization in
Lemma 4.3. First observe that:

Lemma 4.5 The function H can be computed by a Dlogtime-uniform AC0 cir-
cuit of size nO(1).

Proof. The source H uses several copies of GI and GD,nδ . We consider
computation of these two sources first. For GI , the computations required are:

• compute a prime p = nO(1),

• test if there exists an s ∈ Fp such that s2 = r + i in Fp.

Both can be done in Dlogtime-uniform AC0 as the field size is small (see [BIS90]).
For GD,nδ , the computations required are:

• compute field F2m where m = δ
2 log n,

• test if i =
∑ĉ−1
j=0 ajk

j in F2m .

Again, since the field size is small, both the computations can be done by a
Dlogtime-uniform AC0 circuit [BIS90].

Computing bit j of H, j = j0j1 · · · jτ−1jτ , requires finding the smallest i
for which k = jiji+1 · · · jτ−1jτ is not in GD,n1/2i and then using the output bit
number k of the (i+ 1)st copy of GI . This is clearly a Dlogtime-uniform AC0

computation.

Now we show that finding a seed of H that works in Lemma 4.3 can also be
done in Dlogtime-uniform AC0.

Lemma 4.6 There is a Dlogtime-uniform AC0 circuit that, given as input a
seed s of H and a binary encoding of circuit C in AC(d, nk, n), tests if C reduces,
on input H(s), to a depth-2 circuit depending on at most γ unset bits (the
constant γ is the same as in Lemma 4.3) and outputs the binary encoding of the
reduced circuit if the test is positive.



Proof. The AC0 circuit that we desire is constructed in substages, one for
each substage in the proof of Lemma 4.1. The substage j of stage i will take
as input the part of the seed of H meant for this substage, and the binary
encoding of the circuit resulting after the restrictions of previous substages have
been applied. Assuming that all the previous restrictions have been good, the
bottom layer of the input circuit to this substage consists of decision trees of
depth at most ci,j−1 with leaves that are ANDs (or ORs) of decision trees of
depth at most ci−1 − j + 1. Assuming it is ANDs of decision trees without loss
of generality, each AND gate of the bottom layer is an AND of ORs of fanin at
most ci−1− j+ 1. The restriction of substage j is good if, after applying it, the
resulting circuit has bottom layer consisting of decision trees of depth at most
ci,j with leaves that are ANDs of ORs of fanin at most ci−1 − j.

The proof above (of Lemma 4.1) uses Maxset(Qm) for each AND Qm of
bottom layer. It is not clear how to construct Maxset(Qm) in AC0, hence we
adopt a different strategy: the AC0 circuit directly checks the desired property
of the resulting circuit. This requires checking, for each AND gate Qm that one
of the following two conditions hold:

• One of the OR gates gets all the inputs set to 0 under the restriction.

• There is a subset of at most c′ inputs that remain unset by the restriction
and every OR gate has at least one of these inputs.

The first condition can be easily checked by a Dlogtime-uniform AC0 circuit:
using the binary encoding of the input circuit to the substage, identify the
bottom layer of AND gates and for each such gate first transform its leaves
from decision trees to ANDs of ORs (these are constant sized and so can be
done trivially); then check if there is an OR whose inputs are all set to 0. For
the second condition, the circuit we construct tries out all possible subsets of size
≤ c′ of the inputs and checks if (1) it remains unset, and (2) it intersects with
the input set of every OR gate. Therefore, this is also done in Dlogtime-uniform
AC0. After making these checks, our circuit outputs the binary encoding of the
resulting circuit in which all except the bottom layers are copied from the input
circuit and for the last layer, each AND gate is replaced either by 0 or by a
decision tree of depth at most c′ whose leaves are ANDs of ORs of fanin at most
ci−1 − j depending on which of the two conditions hold.

Putting all the substages one on top of other, we get a Dlogtime-uniform AC0

circuit that checks the goodness of the restriction given by H(s) and outputs
the reduced depth-2 circuit.

5 AC0-Uniform Gap Theorem

In this section, we prove the AC0-uniform version of the Gap Theorem of [AAR98]:

Theorem 5.1 For any class C closed under TC0 reductions, all complete sets
for C under u-uniform AC0 reductions are also complete under (u + AC0)-
uniform NC0 reductions.



Proof. We begin by outlining the proof in [AAR98].
Fix a set A in C that is complete under u-uniform AC0 reductions and let

B ∈ C be an arbitrary set. We need to show that B reduces to A via a (u+AC0)-
uniform NC0 reduction. We first define a set B̂, which is a highly redundant
version of B, as accepted by the following procedure:

On input y, reject if y contains no zeros. Otherwise, let y = 1k0z.
Reject if k = 0, or |z| = 0, or k does not divide |z|. Otherwise, break
z into q blocks of k consecutive bits each, |z| = kq. Let these blocks
be u1u2u3 · · ·uq. For each i, 1 ≤ i ≤ q, let vi be the parity of the
bits in ui. Reject if every vi is 1. Otherwise, let v1v2 · · · vq = 1`0v.
Accept iff v ∈ B.

As one can readily observe, corresponding to each string in B there are
infinitely many strings in B̂. Also, B̂ reduces to B via a TC0 reduction and so
B̂ ∈ C. Fix a reduction of B̂ to A given by u-uniform AC0 circuit family {Cn}
of depth d and size nk. Now define a reduction of B to B̂ as follows (it would be
useful to keep the above definition of B̂ in mind while reading this definition):

Given an input v, let x = 1`0v such that |x| = n = 22t ≥ c for an
appropriate constant c to be fixed later. Let m = ns for s = 2γ.
Consider the circuit Cm

n +1+m with the first m
n + 1 bits set to 1

m
n 0

resulting in circuit C ′m, say. Apply the derandomized Switching
Lemma 4.3 on C ′m to obtain a setting of all but n2 input bits such
that the circuit reduces to an NC0 circuit and in addition, all the
n blocks of m

n = ns−1 consecutive bits in the input have exactly n
unset bits (follows from Lemma 4.4). Now set to 0 all those unset
bits that influence at least one of the last O(log n) bits of the output
that encode the length of the output as per our convention. This
sets O(log n) additional unset bits. Since each block has n unset bits
to begin with, each block would still have at least two unset bits for
large enough n (ensured by appropriate choice of constant c). Now
for each of the n blocks, set all but one bit of the block to ensure that
the number of ones in the block is 0 modulo 2 (this can always be
done using one of the two unset bits available in each block). This
sets all the m bits of input to C ′m except for n bits and on these n
unset bits the circuit C ′m becomes an NC0 circuit. Now map x to a
string of length m

n + 1 +m whose first m
n + 1 bits are set to 1

m
n 0 and

the remaining bits are set according to the above procedure and the
ith remaining unset bit is given the value of ith bit of x.

It is easy to verify that the mapping constructed above is indeed a reduction
of B to B̂. Notice that this reduction is simply a projection: each input bit
is mapped to some output bit directly and there are no gates in the circuit
computing the reduction. It is also clear that a composition of this reduction
with the reduction of B̂ to A is a reduction of B to A that can be computed by
an NC0 circuit family. The uniformity machine (or circuit) for this NC0 circuit



family is required to do the following tasks, apart from generating the circuit
C ′m itself:

1. Identity the settings of input bits to circuit C ′m that make the circuit an
NC0 circuit,

2. Given such a setting, transform the circuit C ′m to the equivalent NC0

circuit, and

3. Set some of the unset bits as outlined above to leave only one unset bit in
each block (in which string x would be placed).

The first two tasks can be done by a Dlogtime-uniform AC0 circuit as shown in
Lemma 4.6 and by observing that a good setting can be identified by checking
all the seeds of source H in parallel.

For the third task, a Dlogtime-uniform AC0 circuit can identify which unset
bits influence the output bits coding length of the output and set them all to
0, however, to set the second-to-last unset bit in a block appropriately (so that
number of ones is 0 modulo 2), one requires computing parity of ns−1 − 2 bits.
This cannot be done by even non-uniform AC0 circuits!

We solve this problem by modifying the source GI in the definition of H
slightly. Each copy of GI in H is required to be a (ĉ log n)-wise independent

1
nk+4 -biased source for an appropriate constant ĉ. Let c̃ > ĉ be a power of two.
Change GI by setting every (c̃ log n)-th bit to be the parity of the previous
c̃ log n− 1 bits. Since c̃ > ĉ, the modified source remains (ĉ log n)-wise indepen-
dent with a similar bias. The modified GI now has the property that, splitting
it into blocks of size c̃ log n bits, the parity of each block is zero.

Observe that during any substage of the transformation of C ′m to an NC0

circuit, the number of unset bits in each block is a power of n. This implies
that the number of bits set during any substage in every block is a multiple of
n. Also, since n = 22t and c̃ is a power of two, c̃ log n divides n for large enough
n (ensured by appropriate choice of constant c). Therefore, the parity of bits
contributed by each copy of GI to every block will always be zero, and the third
task takes care of itself automatically!

This completes the proof of the theorem.

6 AC0-Uniform Superprojection Theorem

We start with the definition of a superprojection [AAR98].

Definition 6.1 An NC0 reduction {Cn} is a superprojection if the circuit that
results by deleting zero or more of the output bits in each Cn is a projection
wherein each input bit (or its negation) is mapped to some output.

Now we prove the AC0-uniform Superprojection Theorem:



Theorem 6.2 For any class C closed under TC0 reductions, all complete sets
for C under u-uniform NC0 reductions are also complete under (u + AC0)-
uniform superprojections.

Proof. Fix a set A in C that is complete under u-uniform NC0 reductions
and let B ∈ C be an arbitrary set. We need to show that B reduces to A via
a (u + AC0)-uniform superprojection. We first define, as before, a set B̂ as
accepted by the following procedure:

On input y, let y = z′11z such that z′ ∈ {00, 01, 10}∗ (reject if y
is not of this form). Break z′ into pairs of bits. Ignoring all the
00 pairs, consider the first dlog |z|e pairs. If there are fewer than
dlog |z|e such pairs, then reject. Define number k by setting the ith

bit of k to 1 if the ith of the above dlog |z|e pairs is 10, to 0 otherwise.
Reject if k = 0, or |z| = 0, or k does not divide |z|. Else, break z
into blocks of k consecutive bits each. Reject if the number of blocks
is not a multiple of four. Else, let z = u1u2u3 · · ·u4q with |ui| = k.
Let vi be the parity of bits in ui. Let wi = v4i−3v4i−2v4i−1v4i for
1 ≤ i ≤ q (so each wi is a four bit string). If wi = 1111 for any
1 ≤ i ≤ q, accept. Else if some wi has exactly three ones, reject.
Else, for each i, 1 ≤ i ≤ q, let bi = 1 if wi has exactly two ones,
bi = 0 if wi has exactly one one, bi = ε otherwise. Reject if no bi is
zero. Otherwise, let b1b2 · · · bq = 1p0v. Accept iff v ∈ B.

The definition of set B̂ is more complicated that the previous one. Even the
block size (= k) is coded in the string in a non-straightforward way. We refer
to the bits of z′ of any instance y of B̂ as length encoder bits and to the bits
of z as string encoder bits. It is easy to see that B̂ reduces to B via a TC0

reduction and so B̂ ∈ C. Fix a reduction of B̂ to A given by a u-uniform NC0

circuit family {Cn}. Let each output bit of any circuit Cn depend on at most c
input bits.

As before, we now define a reduction of B to B̂. The idea is same: for an
appropriate m and `, consider the circuit C`+2+m. Set some of the input bits
of C`+2+m so that the circuit on the remaining unset bits is a superprojection.
Now set some more bits (including all of length encoder bits) to satisfy all the
conditions in the definition of set B̂ and finally map string x to the remaining
unset bit positions.

We first discuss a simple idea that does not work directly. Say that an input
bit influences an output bit if the value of the output bit is a non-trivial function
of the value of the input bit. In other words, there is a setting of all other input
bits under which the output bit value changes on changing the value of the input
bit.

Consider circuit C`+2+m with first `+2 bits set to s11 where s codes
the length m

n for a suitable n (thus, the block size is m
n ). Randomly

set every unset input bit of the circuit to 0 or 1 with probability 1
4

each, and leave it unset with probability 1
2 . Say that an input bit



in the string encoder part is good if it remains unset and there is at
least one output bit that now depends only on this bit. For any input
bit that influences some output bit in C`+2+m, the probability that
this bit is good is at least 1

2 · (
1
4 )c−1 > 1

4c . Therefore, the expected
number of good input bits is Ω(m′) where m′ is the number of input
bits in the string encoder part of C`+2+m that influence at least one
output bit. Identify all the good bits and set all the other unset input
bits appropriately. This makes the circuit C`+2+m on the remaining
unset bits a superprojection.

The above construction yields Ω(m) good bits provided we can ensure that
nearly all the input bits influence the output (part of the complexity in definition
of B̂ is due to this requirement). The construction can easily be derandomized
by using a 2c-wise independent source for selecting unset bits and setting the
remaining bits. However, this does not guarantee that in every block (of mn bits)
at least one good bit is present (because the events that two bits are good are
not independent of each other). This makes the mapping of bits of x difficult
as we need to use threshold gates to find the ith unset bit.

We solve this problem in a similar fashion to the handling of ANDs of
bounded fanin ORs in the proof of Lemma 4.1: either every block will have
a good bit with high probability or we can reduce the number of input bits that
influence an output bit by one with high probability.

We now expand this idea in a way that the entire transformation can be done
by a Dlogtime-uniform AC0 circuit. Let v be an instance of B, and x = 1p0v
such that |x| = n = 22t > c0 for a suitable constant c0. Let m = (4n2)c.
Consider the circuit C2c24c+1 logm+2+m. To begin with, set the bit numbers
2c24c+1 logm+ 1 and 2c24c+1 logm+ 2 of the input to C2c24c+1 logm+2+m to 1
identifying the first 2c24c+1 logm bits as length encoder and the last m bits as
string encoder bits. We will consider length encoder bits in pairs; so there are
c24c+1 logm pairs of such bits. Let C be the resulting circuit.

We use a stagewise construction such that each stage sets some more bits of
input to C and simplifies it. In the last stage of the construction, we obtain a
reduction. At the beginning of the (k + 1)st stage, when the kth stage was not
the final stage, the circuit C has the following properties:

• There are exactly (c − k)24c+1 logm unset pairs of length encoder bits,
and those length encoder bit pairs that have already been set are set to
00.

• The (4n2)c string encoder bits are divided into (4n2)k blocks, each con-
sisting of (4n2)c−k consecutive bits. One of these blocks has all bits unset,
and all other string encoder bits are set to 0.

• Every output bit of circuit C depends on at most c− k unset input bits.

For k = 0, this is trivially true.
In the (k + 1)st stage, split the unset string encoder bits of the input to C

into 4n blocks of equal size (= n · (4n2)c−k−1). Firstly, notice that every bit in



every block must influence some output bit. Suppose not. Let such a bit belong
to the (4i+ j)th block, 0 ≤ i < n, 1 ≤ j ≤ 4. Set all the bits in all the blocks,
except for block numbers 4i + 1 through 4i + 4, to 0. Set bits in blocks 4i + 1
through 4i+ 4 except those in block 4i+ j such that each of these blocks has an
odd number of bits that are set to 1. Set all the bits in the block 4i+ j except
the bit that does not influence any output bit to 0. Set the unset length encoder
bits such that the block size is n · (4n2)c−k−1. This fixes the output of circuit
C. However, the value of the lone unset bit decides whether the input string
belongs to the set B̂ or not, contradicting the fact that family {Cn} computes
a reduction of B̂ to A.

Consider the jth block. Let o1, . . ., op be all the output bits of the circuit
that are influenced by some bit in the block. For output bit oi, let Ii be the
set of input bits that influence oi. Clearly, |Ii| ≤ c − k. Let Maxsetj be any
maximal set of disjoint Iis. Now there are two cases.

Case I. There is a j0 such that |Maxsetj0 | < 4c+1 logm. Set all the unset bits
in all other blocks to 0. Split this block into n subblocks of size (4n2)c−k−1

each. For large enough n, one of these subblocks will not intersect any
of the sets in Maxsetj0 since the total number of bits in Maxsetj0 is at
most (c − k)4c+1 logm < n. Fix this subblock and set bits in all other
subblocks to 0. Set all the length encoder pairs that have one or both of
their bits present in Maxsetj0 to 00. This sets at most (c − k)4c+1 logm
pairs leaving at least (c− k− 1)24c+1 logm unset pairs. Set some more of
these pairs to 00 to leave exactly (c− k − 1)24c+1 logm unset pairs. This
sets all the bits in Maxsetj0 besides setting all other blocks. Hence, every
output bit will now be influenced by at most c− k − 1 bits. Go to Stage
k + 2.

Case II. |Maxsetj | ≥ 4c+1 logm for every 1 ≤ j ≤ 4n. This is the last stage.
For each j, remove those Ii’s from Maxsetj that contain any bit from
the first logm unset length encoder pairs. This will still leave at least
4c+1 logm− 2 logm ≥ 4c logm sets in Maxsetj .

Now apply a random restriction on the input of C in the following way.
Randomly set all but first logm unset pairs of length encoder bits using
a truly random source. Use two 1

2n2 -biased, (c4c logm)-wise independent
sources G0

I and G1
I with independent seeds to generate two sequences of

random bits. Set the ith unset string encoder bit to the ith bit of G0
I if

the ith bit of G1
I is 0; leave the bit unset otherwise. Thus, the ith string

encoder bit is left unset with probability close to 1
2 and is set to 0 or 1 with

probabilities close to 1
4 each. Also observe that settings to any collection

of c4c logm string encoder bits are almost independent: This follows from
the fact that the corresponding c4c logm bits of both the sources, viewed
as a collection of 2c4c logm bits, are independent with a bias of at most
1
n2 .

Consider the set Maxsetj for some j. Drop some Ii’s from Maxsetj to
retain exactly 4c logm sets. Each of these sets contains at least one bit



from the jth block. The probability that this bit becomes good under the
above assignment restriction is at least 1

24c−k−1 − 1
n2 ≥ 1

4c−k
. Hence, by

independence of the source, the probability that none of Ii’s has a good
bit is at most (1 − 1

4c )4c logm + 1
n2 ≤ 1

m + 1
n2 . Therefore, the probability

that for some j, none of the jth block has a good bit is at most 4n
m + 4

n <
1
2 .

So there exists a random restriction that (1) leaves the first logm pairs
of length encoder bits unset, and (2) leaves at least one good bit in each
of the 4n blocks. Now use the length encoder pairs to code the block size
n · (4n2)c−k−1. Set all except the first good bit in each block as well as all
the remaining unset bits to the corresponding bit value of G0

I . Group the
4n blocks into n groups of 4 blocks each. For each group, set the unset
good bit in each of the last two blocks so that the parity of bits in those
blocks is even, and set the unset bit in the second block so that the parity
of that block is odd. This leaves exactly n unset good bits; one in each
group. Map the jth bit of x to the unset bit of the jth group.

This defines a projection reduction of B to B̂, and on this output the cir-
cuit C is a superprojection. Hence their composition is a superprojection
reduction of B to A.

We need to show that (1) Case II eventually occurs, and (2) the entire
construction can be done by a Dlogtime-uniform AC0 circuit. For (1), observe
that after c − 1 stages, the circuit C has 4c+1 logm ≥ logm unset pairs of
length encoder bits, 4n2 string encoder bits, and every output bit of C depends
on at most one unset input bit. Hence, |Maxsetj | = n for every block of size n.
Therefore, after at most c− 1 stages, Case II occurs.

We now look at uniformity of the reduction. Since computing Maxsetj is
difficult, we distinguish the two cases in a different way. The uniformity circuit
will work in stages, and after the kth stage, will output the binary encoding of
the circuit C after the kth stage. In the kth stage, the circuit, given the binary
encoding of C after the (k − 1)st stage, checks if there exists a subblock (there
are 4n2 subblocks each of length (4n2)c−k bits) such that by setting all other
subblocks to 0 and by setting some (c − k)4c+1 logm pairs of length encoder
bits to 00, every output bit of C is influenced by at most c− k unset input bits.
This can be done by checking all 4n2 subblocks and

((c−k)24c+1 logm
(c−k)4c+1 logm

)
= mO(1)

possible choices of length encoder pairs in parallel, and then picking the first
one for which it is true. Once a subblock and length encoder pairs are found,
the circuit makes the appropriate settings and outputs the binary encoding of
the resulting circuit.

If there is no such subblock, then there must exist a random restriction that
leaves the first logm pairs of length encoder bits unset and leaves at least one
good bit in each block. By checking all seeds of the two sources and all random
settings to length encoder bits in parallel (there are at most mO(1) of these),
the uniformity circuit can identify one such restriction. It then sets most of
the remaining unset bits as described above and outputs the binary encoding of
the resulting circuit. However, there is a problem in setting the remaining bits:



these must be set to ensure that the parity of all the set bits in each block is the
desired value, which cannot be ensured in general. So we use the same idea as
before: by modifying the source G0

I , we can ensure that the parity of every block
of suitable size, say 2b̂, in the output of G0

I is zero. However, our problem is still
not fully solved since the number of set bits in a block is exactly (4n2)c−k − 1
(for some k) which is not divisible by 2b̂. We solve this by a simple trick: 2b̂

divides the block size (4n2)c−k; so associate a sign with the bit remaining unset
in each block, its value is given by the corresponding bit of the source G0

I ; when
setting the value of each of these bits (to 0, 1, or a bit of x), apply the sign also
in setting (for example, if the sign is 1 and the value to be set is b, set it to b̄).
This ensures that the parity of all bits in a block has the desired value.

All the above steps can be carried out by a Dlogtime-uniform AC0 circuit,
hence completing the proof.

7 Dlogtime-uniform Isomorphism Theorem

We are now ready to prove the main result of the paper:

Theorem 7.1 For any class C closed under TC0 reductions, all complete sets
for C under u-uniform AC0 reductions are isomorphic to each other under u-
uniform AC0-isomorphisms where u is any measure of uniformity containing
Dlogtime.

Proof. Let A and B be two complete sets for C under u-uniform AC0 reductions.
By the theorems above, A and B reduce to each other via (u + AC0)-uniform
superprojections. It was shown in [AAR98] how to construct (u+AC0)-uniform
AC0-isomorphisms between A and B. Now the AC0 circuit in the uniformity
part can be combined with the AC0 circuit computing the isomorphism to obtain
another AC0 circuit computing the isomorphism. This new AC0 circuit will be
u-uniform since u contains Dlogtime.

Corollary 7.2 Complete sets for classes DLOG, NLOG, NCk (k ≥ 1), P, NP
under first-order reductions are first-order isomorphic to each other.

Acknowledgement. The author wishes to thank the anonymous referee whose
suggestions helped clarify confusing points at several places in an earlier version
of the paper.
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