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Radiogenic heat production of Late Archaean 
Bundelkhand granite and some Proterozoic 
gneisses and granitoids of central India 
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Abundances of heat-producing elements, K, U and Th, 
in some of the granites and gneisses of the Bundel-
khand and Bastar terrains have been estimated by  
in situ gamma-ray spectrometry. The Bundelkhand 
granite is an I-type, calc-alkaline granite complex 
made up of porphyritic, coarse-to-medium grained 
and fine-grained granites. It carries macro enclaves of 
~ 3.5 Ga-old tonalitic gneisses. These gneisses have a 
low heat production of 1.4 µµWm–3. The mean heat 
production of the dominant porphyritic and medium- 
to-coarse grained Bundelkhand granite is 5.5 µµWm–3. 
The heat production of the Proterozoic Jabalpur 
granite intruding the Mahakhosal greenstone belt is 
3.4 µµWm–3. The Tirodi gneisses resulting from migma-
tization of psammopelites of the Sausar Group, are cha-
racterized by a mean heat production of 3.8 µµWm–3. 
The cataclastic biotite gneisses of the Tattapani geo-
thermal area are the highest heat-producing rocks 
encountered in the Bundelkhand terrain with a mean 
heat production of 7.4 µµWm–3. The tonalitic Amgaon 
gneisses of the Bastar terrain are characterized by  
a heat production of 0.7 µµWm–3, which is about half  
of the mean heat production of the tonalitic gneisses 
occurring as inclusions in the Bundelkhand granite. 
Mean heat production of the Proterozoic Amgaon and 
Dongargarh granites are 2.5 and 2.9 µµWm–3, respec-
tively. Preliminary heat production data presented 
here show that the gneisses and granitoids of the  
Bundelkhand and Bastar terrains may have distinct 
heat production ranges, with the rocks of the Bundel-
khand terrain being more heat-producing. 

RADIOACTIVE decay of long-lived isotopes of potassium, 
uranium and thorium contributes to the bulk of the heat-
produced in the crust. Variation of abundance of these 
radioactive elements in rocks constituting the crustal col-
umn over a large region is reflected in the lateral variation 
of surface heat-flow1–5. Most of the potassium is present 
in K-feldspar and micas, while uranium and thorium are 
largely present in the accessory minerals such as zircon, 
allanite, sphene, monazite, apatite etc.6,7. These minerals 
are more abundant in granitoid rocks, which therefore, 

account for bulk of the heat production in the continental 
crust. The Central Indian shield has been suggested by 
earlier workers to be a region of high heat-flow, although 
both heat-flow and heat production data are scanty com-
pared to the data available on the southern Indian 
shield8,9. Heat production of the basement granitoids in 
this region has largely remained uncharacterized. In this 
article, we present data on radioelemental abundances 
and heat production of some major gneissic and homo-
geneous granitoid rocks in the Central Indian Shield. 

Geological setting 

Geology of the Central Indian Shield has received greater 
attention in recent years by the Geological Survey of India 
under the project CRUMANSONATA10,11. These studies 
have shown that the Precambrian basement rocks of  
Central India form part of two discrete terrains – the 
Bundelkhand terrain in the north and the Bastar terrain in 
the south. 
 Middle to Late Archaean Bundelkhand granite com-
plex constitutes the Bundelkhand craton. Fringing this 
craton and probably overlying the basement granitoids 
are the Proterozoic Mahakhosal, Bijawar and Sausar  
supracrustal sequences that evolved in epi- to peri-crato-
nic mobile belts in the southern part of the Bundelkhand 
terrain. A large part of the mobile belt fringing the Bun-
delkhand craton lies in the Central Indian Tectonic Zone 
(CITZ) that includes the well-known Narmada–Son 
lineament. The supracrustal rocks of the Mahakhosal belt 
have been invaded by the Jabalpur granites, which are 
exposed as small plutons around Jabalpur city. Supra-
crustal rocks of the Sausar sequence have been migmati-
zed and transformed into the Tirodi gneisses. The gneisses 
of the Tattapani area are cataclasites, with large K-feld-
spar porphyoclasts in a quartzo-feldspathic matrix rich in 
biotite. The middle to late Archaean cratonic and the Pro-
terozoic mobile zone rocks of the Bundelkhand terrain 
are characterized by a strong, nearly E-W tectonic fabric. 
 In the Bastar terrain, middle to late Archaean granite–
gneiss basement constitutes the Bastar craton. This is 
overlain by Proterozoic Kotri–Dongargarh and Sakoli 
Group of rocks, which evolved in mobile belts. The *For correspondence. (e-mail: rajeev896@yahoo.com) 
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> 2.3 Ga-old Amgaon gneiss forms a part of the basement 
of the Sakoli Group, whereas the Amgaon and Dongar-
garh granites intrude the Sakoli Group. The rock forma-
tions of the Bastar terrain are characterized by a nearly 
N–S to NE–SW tectonic fabric. 
 The boundary between the Bundelkhand terrain and 
the Bastar terrain has been intensely reworked in the 
CITZ and are juxtaposed along the Central Indian  
suture12,13. A number of large-scale E–W to ENE–WSW 
striking faults such as the Son–Narmada North Fault, 
Son–Narmada South Fault, Balarampur–Tattapani Fault, 
Tan Shear, Central Indian Suture, and Sakoli East Shear 
Zone traverse the CITZ (Figure 1). These faults have got 
reactivated during the late Precambrian controlling the 
development of the Vindhyan basin, and during the Pha-
nerozoic times influencing control in the development of 
Gondwana basins. The region also witnessed Cretaceous 

Deccan Trap magmatism. However, there is no evidence 
of Quaternary magmatism in the CITZ. But some of the 
faults in the CITZ are active at present, as evidenced by 
the occurrence of earthquakes in this region14. 
 The Bundelkhand granite is a complex which consists 
of macro-enclaves of ~ 3.5 Ga tonalitic gneisses in a host 
of ~ 2.5 Ga K-feldspar-rich granitoid rocks15,17. The 
gneiss inclusions were observed near Babina. Porphyritic, 
coarse-to-medium grained, homogeneous and fine-grained, 
textural variants of granite constitute the Bundelkhand 
Granite Complex. Rare instances of occurrence of rapa-
kivi textures have been noticed on the Lalitpur/Mehrauni-
pur road and near Khajuraho. Geochemical studies 
carried out by earlier workers show that the Bundelkhand 
granite is an I-type, metaluminous to weakly peraluminous, 
calc-alkaline granite18,19. The 1.5 Ga-old Tirodi gneiss 
has resulted by migmatization of the supracrustal rocks 
of the Sausar Group20. The Tirodi gneiss is dominantly a 
two-mica gneiss, although in some parts only biotite has 
been observed. The gneisses are strongly banded with 
alternating quartzo-feldspathic and mica-rich bands. At 
places, quartzite beds, which are resistors to migmatiza-
tion, are preserved. The two-mica composition and relict 
metasedimentary rocks suggest that the Tirodi gneisses 
have probably been formed from sedimentary protoliths20. 
However, according to some other workers, they are A-
type granitoids21. The gneisses exposed to the south of 
Tattapani whose age is not known, have calc-silicate bands 
as resistors to migmatization. Both the Tirodi and Tatta-
pani gneisses are mica gneisses, composed of K-feldspar 
megacrysts; sphene, apatite, tourmaline, and zircon are 
the principal non-opaque accessories. Unlike the Tirodi 
and Tattapani gneisses which are strongly foliated, the 
Proterozoic Jabalpur granites are massive, homogeneous, 
K-feldspar-rich granites. Their homogeneous fabric sug-
gests that they may be post-tectonic with reference to the 
Proterozoic deformation that has affected the supracrustal 
rocks of the > 1.8 Ga Mahakhosal belt10,11. 
 The > 2.3 Ga-old Amgaon gneisses of the Bastar ter-
rain22 carry macro inclusions of > 3.3 Ga tonalitic gneis-
ses23. The Amgaon gneiss itself is a hornblende–biotite 
gneiss, which shows evidence of polyphase deformation. 
Inclusions of metabasaltic amphibolites and quartzites, 
probably belonging to the Amgaon Group, occur in the 
Amgaon gneiss. The Amgaon gneiss forms a part of 
basement to the Sakoli Group12. Mafic microgranular 
enclaves provide evidence for the igneous origin of the 
Amgaon granites. These are pinkish-grey in colour due to 
the predominance of K-feldspar. Intruding the metavol-
canic rocks of the Proterozoic Nandgaon Group are the 
Dongargarh granites22. The Dongargarh granites of mon-
zogranite composition exhibit rapakivi texture24. Mafic 
microgranular enclaves in the Dongargarh granite provide 
evidence for their igneous origin. Amphibole and biotite 
are the dominant mafic minerals. Sphene, zircon, apatite 
and allanite are the important accessories. 

 
Figure 1. a, Study area in Central India. b, The geological map of 
the Central India showing locations of granites and gneisses studied in 
this work (after Acharyya and Roy14). 1, Gneisses (undifferentiated); 
2, Neoarchaean to Palaeoproterozoic supracrustal belts; 3, Granitoids; 
4–7, Palaeo-, Palaeo- to Meso-, Meso-, and Meso- to Neoproterozoic 
sedimentary rocks, respectively; 8, Gondwana sedimentary rocks; 
9, Deccan flood basalts, and 10, Quaternary–Recent sediments. Shear 
zones: SNNF, Son–Narmada North Fault; SNSF, Son–Narmada South 
Fault; BLF, Balrampur–Tattapani Fault; TS, Tan Shear; CIS, Central 
Indian Suture; SES, Sakoli East Shear Zone. Study areas: BGC, Bun-
delkhand Granite Complex; BB, Babina; TP, Tattapani; JG, Jabalpur 
Granite; TGC, Tirodi Gneissic Complex; AGC, Amgaon Gneissic 
Complex; AG, Amgaon Granite and DG, Dongargarh Granite. 
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 The Bundelkhand granite, Jabalpur granite, and Tirodi 
and Tattapani gneisses are the principal granitoid rocks 
that belong to the Bundelkhand terrain. The Amgaon 
gneisses, Amgaon granites and Dongargarh granites form 
a part of the granitoids of the Bastar terrain. 

Data acquisition 

Abundance of fresh rock outcrops satisfying 2π geometry 
has facilitated estimation of potassium, uranium and tho-
rium by in situ gamma-ray spectrometry. In situ analyses 
provide estimates representative of larger mass of rock of 
the order of 40 kg, in contrast to the laboratory analysis 
on much smaller samples of 1 kg or less. The method of 
in situ analysis has been described in ref. 25. Precision  
is estimated at 0.1 ppm for U, 0.5 ppm for Th and 0.1% 
for K. Heat production is computed using the relation 
given by Birch26. In situ gamma-ray spectrometric survey 
was carried out in some of the gneissic and granitic  
regions of the Bundelkhand and Bastar terrains along the 
following traverses. 

Bundelkhand terrain 

(1) Bundelkhand granite: Babina (25°13′09″N; 78°27′48″E) 
– Lalitpur (24°34′44″N; 78°37′30″E) – Tikamgrah (24°45′ 
13″N; 78°50′11″E) – Chattarpur (24°53′46″N; 79°36′18″E) – 
Khajuraho (24°50′00″N; 79°55′03″E). 
(2) Tattapani gneisses: Tattapani (23°41′08″N; 83°37′08″E) 
– Sendur (23°40′14″N; 83°36′19″E) – Balrampur (23°39′ 
12″N; 83°37′14″E). 
(3) Jabalpur granite: from SW part of the Jabalpur city 
(23°09′26″N; 79°54′07″E) to the NE part of the city 
(23°11′05″N; 79°58′12″E). 
(4) Tirodi gneisses: Tumsar–Katangi (21°31′32″N; 79° 
43′38″E) – Tirodi (21°40′40″N; 79°43′48″E). 

Bastar terrain 

(1) Tonalitic Amgaon gneiss: Arjuni–Gondia road 
(21°13′48″N; 80°12′02″E) – Mundipar (21°17′58″N; 80° 
12′09″E). 

(2) Amgaon granite: Gondia–Amgaon road (21°21′38″N; 
80°17′34″E) – Soni (21°20′50″N; 80°17′48″E). 
(3) Dongargarh granite: Chandi Dongri (21°04′47″N; 
80°38′00″E) – Dongargarh (21°10′28″N; 80°44′30″E). 

Radioelemental data and heat production  
estimates 

The radioelemental concentrations and heat production 
values calculated from them for the granitoid rocks of the 
Bundelkhand terrain are given in Table1 and those of the 
Bastar terrain in Table 2. These data show the following: 
 
(a) The middle Archaean tonalites, which occur as macro-
enclaves in the Bundelkhand granite are distinctly low in 
K, U and Th abundances that account for low heat produc-
tion of 1.4 µWm–3. 
(b) The porphyritic and the medium-to-coarse grained 
varieties of the late Archaean Bundelkhand granite show 
a wide range of U and Th abundances, giving rise to a 
broad range of heat production. The mean heat produc-
tion of these textural varieties, which are the most domi-
nant rock types in the Bundelkhand Granite Complex is 
5.5 µWm–3. The fine-grained granite, which is a minor 
phase has a restricted range and lower heat production of 
4.4 µWm–3

. This may have arisen because of a 
slightly lower content of U compared to that present in 
the porphyritic and coarse-to-medium grained variants. 
(c) The distinct rise in the heat production of granitoids 
from Middle to Late Archaean has been observed as evi-
dent from (a) and (b). However, such a rise in heat pro-
duction is not evident between the Late Archaean and the 
Proterozoic granitoids. The Proterozoic Jabalpur granites 
have a mean heat production of 3.4 µWm–3 and the 
Tirodi gneisses, 3.8 µWm–3. 
(d) Among all the granitic and gneissic rocks studied in 
the Bundelkhand terrain, the gneisses exposed to the south 
of Tattapani thermal springs are the most enriched in radio-
elements, which thereby accounts for the highest heat 
production of 7.4°µWm–3. 
(e) The granitoid rocks of the Bastar terrain examined in 
this work in general appear to be characterized by a 

Table 1. Mean K, U and Th abundances in granites  
and gneisses of the Bundelkhand terrain 

      
      
Rock type N K (%) U (ppm) Th (ppm) HP (µWm–3) 
 
 
Late Archaean Bundelkhand Granite Complex 
 Banded tonalitic gneisses inclusion (> 3.3 Ga) 8 1.4 (0.1) 3.0 (0.3) 6.9 (0.8) 1.4 (0.1) 
 Porphyritic granite 34 4.3 (0.1) 8.0 (4.1) 42.5 (23.5) 5.5 (2.7) 
 Medium-to-coarse grained granite 50 4.6 (0.7) 8.8 (5.6) 38.1 (21.6) 5.5 (2.8) 
 Fine-grained granite 22 4.4 (0.6) 5.9 (1.8) 31.4 (10.3) 4.1 (0.9) 
 
Proterozoic gneisses and granitoids 
 Tattapani biotite gneiss 19 5.3 (0.5) 11.3 (3.1) 56.0 (10.7) 7.4 (1.2) 
 Tirodi gneisses 12 4.2 (0.9)  4.6 (2.4) 32.5 (17.2) 3.8 (1.6) 
 Jabalpur granite 19 4.6 (0.4)  5.7 (1.4) 21.5 (6.0) 3.4 (0.7) 
      
      
Standard deviation is given in parentheses. 
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lower heat production compared to the granitoids and 
gneisses of the Bundelkhand terrain. Mean heat produc-
tion of the tonalitic Amgaon gneisses is 0.7 µWm–3, 
which is about half that of the tonalites of Babina area in 
the Bundelkhand Granite Complex. 
(f) Mean heat production of the Amgaon granite is 
2.5 µWm–3, and this value matches with the lower end of 
heat production values of the Late Archaean and Protero-
zoic granites of Bundelkhand terrain. Even the Rapakivi 
granites of Dongargarh are characterized by a mean heat 
production value of 2.9°µWm–3, which is lower than the 
lowest mean heat production of 3.4°µWm–3 characteristic 
of the Jabalpur granite of the Bundelkhand terrain. 

Discussion 

The data presented in the foregoing section bring forth 
certain salient features about radioelemental distribution 
and heat production in major rocks comprising the upper 
crust in some parts of central India. 
 An increase in the abundance of radioelements with 
decreasing age has been well documented in the Early to 
Late Archaean granitoids of the Barberton Mountain 
Land of South Africa27. A similar secular variation has 
been reported from several other shield areas (refs 28, 29; 
P. Senthil Kumar, unpublished thesis). This general  
observation holds good for the middle and late Archaean 
granitoids of the Bundelkhand craton. 
 Origin of late Archaean–early Proterozoic K-rich gra-
nitoids is an important stage in the evolution of the conti-
nental crust during which the upper granodioritic crustal 
differentiation is accomplished on a worldwide scale28. 
This event marks the time of most significant fractiona-
tion of LILE, including radioelements in the upper crust. 
According to many workers, this large-scale crustal diffe-
rentiation event was accomplished through a combination 
of magmatic accretionary processes and partial melting 
of the older Archaean felsic (tonalitic) crust. Evidence of 
mixing of melts from these above distinct sources is pro-
vided by ubiquitous occurrence of mafic micro-granular 
enclaves30 and a wide range of initial strontium isotopic 
ratios. The widespread occurrence of mafic microgranu-
lar enclaves and the Sri ranging from 0.7095–0.7125 in 
the Bundelkhand granite15 suggest that mixing of melts 
formed from older Archaean felsic crust, and accretionary 
melts derived from the mantle may have played an impor-
tant role in the evolution of the Bundelkhand granite. 

Similar origin may be valid for the Jabalpur, Amgaon and 
Dongargarh granites in which ubiquitous occurrence of 
mafic microgranular enclaves has been observed. 
 Unlike the Bundelkhand and Jabalpur granites of igneous 
origin, the 1.5 Ga-old Tirodi gneisses of the Bundelkhand 
terrain are considered to have been produced from psammo 
pelitic sedimentary protoliths20. One possible explanation 
for low U content in Tirodi gneisses is as follows. The det-
rital sedimentary protoliths are considered to be of Meso-
proterozoic age. During their sedimentation, in the pre-
sence of oxygenic atmosphere, U might have been lost in 
uranyl form in solution leaving the detritus depleted in U 
(ref. 28). Gneisses formed from such protoliths depleted 
in U may have given rise to comparatively U-poor Tirodi 
gneisses. 
 The Tattapani gneisses underlying the Gondwana sedi-
mentary rocks31 form a part of the Proterozoic Chota-
nagpur gneiss terrain. They have the highest radioele- 
mental abundance among the granitoid rocks of central 
India studied in this work. Previous studies have shown 
that the Chotanagpur gneiss terrain hosts widely-distributed 
zones of U-mineralization32,33. It is possible that the source 
rocks for U-mineralization are fertile granitoids and gneis-
ses that are rich in heat-producing elements34. The Tatta-
pani fault along which the high temperature thermal 
springs are observed, traverses these high heat-producing 
rocks. Widely distributed high heat-producing basement 
granitoid rocks persisting to depths of a few kilometres, 
as evident from geological studies in this region, may 
elevate the heat-flow in this region. Deep circulating  
meteoric waters in fault zones, in such elevated heat-flow 
terrains, can attain high temperatures at shallow depths 
(~ 3–5 km), provided, these waters remain in contact with 
them over an extended period of time. Tritium ages of 
Tattapani thermal spring waters show that they are 30 to 
40 years old35 and their nitrogen content, O– and He- 
isotopic compositions show that they are meteoric waters36. 
There is no evidence in their isotopic composition for mix-
ing of primary magmatic waters. Therefore, the high tem-
perature of the Tattapani thermal spring waters can be 
attributed to the high radioactive heat production of the 
Tattapani gneisses. No Quaternary volcanism/magmatism 
has been reported in this region. Therefore, models sup-
porting heat-contribution from subjacent magmatic reser-
voirs do not appear to be tenable. Though the present study 
has brought out the presence of high heat-producing rocks 
in this area, further study is essential to assess the contri-
bution of the mantle to the surface heat-flow. 
 The Bundelkhand and Bastar terrains have been sug-
gested to be discrete terrains based on geological and 
geophysical evidences11–13. It has been proposed that the 
two terrains are juxtaposed along the Central Indian  
Suture. A comparison of the composition of the tonalitic 
gneisses of the Bundelkhand and Bastar terrains shows 
that the tonalitic gneisses of the Bundelkhand terrain are 
comparatively richer in radioelements relative to those of 

Table 2. Mean K, U and Th concentrations of the Proterozoic 
gneisses and granites of the Bastar terrain 

      
      
Rock type N K (wt%) U (ppm) Th (ppm) HP (µWm–

3
)

            
Tonalitic Amgaon 
gneisses (> 2.3 Ga) 

10 1.3 (0.2) 1.1 (0.24) 4.3 (1.0) 0.7 (0.1) 

Amgaon granite 10 3.6 (0.2) 4.0 (1.4) 16.4 (3.4) 2.5 (0.5) 
Dongargarh granite 12 3.9 (0.5) 3.7 (1.5) 22.6 (8.2) 2.9 (0.8) 
      
      
Standard deviations are given in parentheses. 
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the Bastar terrain. The radioelemental abundances and the 
heat production of the Proterozoic granites and gneisses 
of the two terrains are also distinct. The U as well as Th 
contents of the granitoids of the Bundelkhand terrain are 
significantly higher than those in the Bastar terrain. The 
processes leading to the differences in the radioelemental 
abundances in the granites and gneisses of the two ter-
rains are engaging our attention. 
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