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On measurable relations
by

C.J. Himmelberg *, T. Parthasarathy and F. S. Van Vleck * (Lawrence, Ks.)

Abstract. The results in this paper I those in “M -able relations™ by C. J. Him-
melberg [H]. Some results of that paper are extended and examples are given showing the sharpness
of earlier results. In particular, examples are given showing (i) that the intersection of two weakly
measurable, closed-valued relations may fail to be weakly measurable, and (i) that Filippov's
implicit function theorem may fail without appropriate restrictions either on the domain of the
relation or on its values.

1. Introduction. Measurable relations, i.e., set valued functions which assign
to each element ¢ of a measurable space Ta subset of a topologicalspace X'in a manner
satisfying any one of several possible definitions of measurability, have been studied
extensively in recent years by many authors. In this paper, which is somewhat of
a sequel to the paper of Himmelberg [H], we extend some earlier results and give
several examples that indicate the sharpness of some theorems dealing with measur-
able relations and their properties.

Generally, the notation follows that in [H]. Also, as in [H], we are most con-
cerned with the case when T is an arbitrary, abstract measurable space. For gerieral
references to recent literature the reader is frequently referred to the excellent survey
paper by Wagner [W].

In Section 2 we give the notation and terminology that will be used. Also,
several propositions, which give known properties of measurable relations, are
stated without proof. All of these will be used later.

In Section 3 we present some cxtensions of known results. Several of these
extend results in [H] by noting that a‘separability hypothesis on X can be deleted.

Section 4 is devoted to examples. In particular, there is an example showing
that the intersection of two closed-valued measurable multifunctions may fail to
be measurable. Also there is an example showing that the Filippov type implicit
function lemma may fail without appropriate restrictions either on the domain of
the relation or on its values. The last example is of a countable (but not closed)-
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"valued measurable relation that has no measurable selector. These examples indicate
some of the limitations that are inherent in dealing with measurable relations.

2. Preliminaries. Throughout this paper T will denote a measurable space with
o-algebra /. Unless otherwise specified, that is all we will assume about T

X will be a metrizable space, and, following Bourbaki, we will call X: Polish,
if X is separable and metrizable by a complete metric; Lusin, if X is the bijective
continuous image of a Polish space; Souslin, if X is the continuous image of a Polish
space.

As usual, a relation F is a subset of T x X. Alternatively, F may be regarded as
a function from T to the set of all subsets of X, #(X). The set {tre T| F(t) + @}
is called the domain of F: T— 2(X). If the domain of F is T, then F is called
a multifunction (or correspondence) from T'to X and we often write F= T x X instead
of F: T—»2(X). If BcX, then F™Y(B)= {teT| F(t) n B # &}. Relations
are composed in the usual way.

A relation FeTx X is measurable (weakly measurable, %-measurable) iff
F~Y(B) is measurable for each closed (respectively, open, compact) subset B of X.
If Fe ¥'x X, where Y is a topological space, then the assertion that F is measurable
(weakly measurable, etc.) means that F is measurable (weakly measurable, etc.)
when Y is assigned the o-algebra 2 of Borel subsets of Y. Likewise, if F< (T'x ¥) x X,
then the various kinds of measurability of F are always defined in terms of the
product g-algebra o x # on T'x Y generated by the sets 4 x B where 4 € & and
Be A '

The following propositions are known and we state them here for ready ref-
erence.

PrOPOSITION 2.1. If F=T x X is measurable or weakly measurable, then domain
of F is measurable. If X is perfectly normal, then measurability implies weak measur-
ability..

PROPOSITION 2.2. Let J be an at most countable set and let F,cTx X be a re-
lation for each neJ.

() If each F, is measurable (weakly measurable, etc.) so is the relation | ) F,eTxX

defined by (J F,)(2) = U F,(2).
gii) If X is second countable and each F, is weakly measurable, then so is the
relation T F,eTx X’ defined by ([ F,)(1) = [] Fift).
n n n

PrOPOSITION 2.3. FTx X is weakly measurable if and only if the relation

FeTx X defined by F(t) = F_(t.)— is weakly measurable, where F_'Z;) denotes the clos-
ure of F(t). '

n

3. Some extension of known results. The following result was proved in

H, 'I.‘heorem 3.2(1)] when X is a separable metric space using an embedding
technique.

THEOREM 3.1. Let X be a metric space and let Fe Tx X be a relation with closed
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values, that is, F(t) is closed for each t. Then measurability of F = weak measur-
ability of F => €-measurability of F.

Proof. The first implication is well known and, in particular, follows from
Proposition 2.1. So suppose F is weakly measurable and let X be a compact subset
of X. Then K = () B, where B, = {x| d(x, K)<1/n}. To complete the proof of

n

Theorem 3.1 it suffices to show that F~Y(K) = (} F~(B,). So suppose re F~*(B,)

n
for each n. Then F(t) n B, % & for each n. Choose x, € F(t) n B,. Since x,€ B,,
there is a y, € K such that d(x,, y,)<l/n. Since K is compact, the sequences (x,)
and (y,) have a common limit point which must belong to both F(t) and K. That
is, e F~1(K) and hence F~'(K)> ) F~*(B,). Since it is trivial to verify the op-
N n

posite inclusion, the proof of Theorem 3.1 is complete.

Remark. Kaniewski has recently given an example showing that the first
implication cannot be reversed without additional assumptions (cf. [W, Example
2.4]). In Section 4 we will modify Kaniewski’s example to obtain counterexamples
to other desirable properties of multifunctions. Nishiura [Ni] has given an example
showing that the second implication cannot be reversed even if X is separable metric,
(T, o) is complete, and F(z) has compact values.

The next theorem gives sufficient conditions for the equivalence of measurability
and weak measurability provided T'and X are both Borel spaces. (Recall that a Borel
space is a Borel subset of a Polish space.)

Turorem 3.2. Let T and X be Borel spaces, and let F<Tx X be a multifunction
with F(z) closed and o-compact for each t& T. Then F is measurable if and only if F is
weakly measurable.

The proof of Theorem 3.2 depends on the following result due to Brown and
Purves [BP, Corollary 1]: If T and X are Polish spaces and if EcT'x X is a Borel
set such that E(t) = {x| (¢, %) € E} is o-compact for each re T, then the projection
of E on T is a Borel set. The Brown-Purves Theorem generalizes a result due to
Kunugui [Kun] and Novikoy [No-2] where the set E(t) was required to be compact.

Proof of Theorem 3.2. By Proposition 2.1 we need only prove the “if” part.
So assume F is weakly measurable. Then it follows, as in the proof of [H, The-
orem 3.3], that Fis a Borel subset of T'x X. Next, let T* and X* be the metric com-
pletions of T and X, respectively. Then Fis also a Borel subsgt of T* x X* since T
and X are Borel. Let B be closed in X and let B be the X* closure of B. Then
B=Bn X and so

F-Y(B) = {teT| F(r) n B # &}
= projection on T* of E = (I'™* xB)nF.
The set E satisfies the hypothese of the result of Brown and Purves mentioned
above and hence F~1(B) is a Borel set. Thus Fis a measurable multifunction.
Remarks. In [H] Theorem 3.2 is proved when T'is a measurable space and
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either X is metric and F has compact values [H, Theorem 3.1} or X is o-compact,
metrizable and F has closed values [H, Theorem 3.2(ii)]. e

Dauer and Van Vleck [DV, Proposition 2] have given an example of a multi-

function F with F(t) o-compact, but not closed, which is weakly measurable but
which is not measurable. !
The proof of the preceding theorem actually yields the following. .
PROPOSITION 3.3. Let T and X be Borel spaces, and let FeTx X be a multi-
function with F(t) o-compact for each t. (Noie that we do not assume F(t) to be
closed) If F is a Borel set in Tx X, then F is a measurable multifunction.
Remark. There is an example, [DV, Example 1], which shows that the con-
verse of Proposition 3.3 is not true. '
Proposition 2.2 shows that as-a general rule the property of measurability of
relations is preserved by (at most) countable unions and products, Unfortunately,
the situation is more complicated for intersections; see [W, p. 863] for a summary of
positive results. In Section 4 we give an example showing that the intersection of
two closed-valued Weakly measurable multifunctions need not be weakly measur-
: flble. However, for #-measurable multifunctions the situation is better as the follow-
ing result, which removes the hypothesis of separability from a result of Himmelberg
([H, Corollary 4.3]), shows.
THEOREM 3.4. Let X be a metric space, and let F,cTx X be a €-measurable
relation with closed values for each n in an at most countable set. Then F = NF,Sis
)

" %-measurable.
Proof. Let K be an arbitrary but fixed compact subset of X, Define G, =T xK
by G,(t) = F,(t) n K. Let B be any closed subset of K. Since K is compact, B is also

closed in X. Consequently each G, is measurable since F, is €-measurable. By
[H, Theorem 4.1], ) G, is measurable. Hence it follows from Proposition 2.1 that

{teT| N G,(t) # @} is measurable. But i

{teT| n G,(t) # B} = {teT| N F{t) n K # B} = F~1(K).
Thus F = (\ F, is #-measurable.
n
As an application of Theorem 3.4, we show that the boundary of a ¥ ~measuf~

able multifunction is ¢-measurable. For related results see [H, Theorems 4.6 and 4.7}

1 COROLI}.IARY 3.5. Let X be a metric space, and let F<T'x X be a €-measurable
relation with compact values. Then the relation BAF<Tx X, defined by (BAdF)(t
= boundary of F(t), is €-measurable. & )( ‘

Proof, First, the relation G=T'x X, defined by G(z) = X~ F(f), is measurable,
To see this, let B be a closed subset of X. Then '

GHB) = {t| (X~F())nBAB}
=T={t] BcF()}: :

icm

On measurable relations 165

If the set {r] Bc F(t)} # O, then B must be compact since F has compact values.
In this case, let 4 be a countable dense subset of B. Then

G YB) = T~{t] A<F(t)}
=T~ F'{a}.

acA
Since Fis € -measurable, it follows, in this case, that G™* is measurable. On the
other hand, if {| Bc F(t)} = @, then G™*(B) = T and so is measurable. Thus G is
measurable and hence, by Proposition 2.1 and 2.3, G is weakly measurable. Thus,
by Theorem 3.1, G is % -measurable. The result now follows from Theorem 3.4 since

BAF(t) = F() n.G@) .

4. Some counterexamples. In this section we give five examples. The first four
serve to delineate the sharpness of some of the results in [H]; the fifth answers
negatively a question raised in [DV]. The first example is of a %-measurable multi-
function which is not weakly measurable. Nishiura [Ni] has already given such an
example. However, ours, which is based on the existence of a Borel set whose pro-
jection is not Borel, will be used in the later examples. The second example shows
that the intersection of two closed-valued weakly measurable multifunctions may fail
to be weakly measurable. The known sufficient conditions all involve some type of
compactness hypothesis either on X or on the values F(2); see [W, p. 863] for a sum-
mary and references. The third example shows that the multifunction defined by
t— {x] f(¢, x) = 0} need not be weakly measurable even if fis a continuous function.
Himmelberg [H, Theorem 6.4] has given a positive result for (T, o) complete. The
fourth example deals with measurable implicit function theorems of the type first
proved by Filippov [F]: Given a function f: Tx X — Y, a multifunction FcTx X,
and a function g: T— ¥ such that g(¢) e f ({t} x F()) for all t & T, when does there
exist a measurable function r: T— X such that r(z) € F(t) and g(#) = f(1, r(H))
for all e T? Several results for this problem are given in [H]. (Note that The-
orems 7.1, 7.2, and 7.4 in [H] have not been established unless ¥ is additionally re-
quired to be separable.) For a summary of these and other results see [W, Section 7}.
The last example is that of a measurable, countable (but not closed)-valued multi-
function F which does not have a measurable selector. Dauer and Van Vleck, [DV,
Proposition 2], have given such an example for F weakly measurable.

In the following examples, let T = [0, 1] equipped with the o-algebra of Boret
sets, let Z be the irrationals, and let B be a closed subset of TxZ such that the
projection p(B) is not Borel and the projection p(B) # Z. (Recall that Z is Poﬁsp.)

EXAMPLE 1. A €-measurable multifunction that is not weakly measurable.

Choose z, € Z—p(B) and define FeTxZ by F(1) = B(t) U {zo}. Then F has
closed graph and is &-measurable. For let K be a compact subset of Z Then
FYK) = p((TxK) 0 F) is a Borel set by the Kunugui-Novikov Theorem. On:
the other hand, F is not weakly measurable. To see this, let G be a neighborhood.
of py(B) not containing z,: Then F~G) = pr(B). .
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ExaMrLE 2. The intersection of two weakly measurable multifunctions £,
G: T'— X with closed values may fail to be weakly measurable, even if' X is Polish
and dom(¥Fn G) =T.

Let X = T'x Z, and define F, =T x X by F (1) = pr'({t}). Clearly F, is weékly
measurable since p, is an open map. However Fy is not measurable since Fy '(B)
= p.(B) is not a Borel set. (This example of a weakly measurable, but not measur-
able, multifunction was given by J. Kaniewski and appears in {W, p. 865].) Now

let xoe X—B and define F, GeTx X by
F(t) = Fy(t) U {xo} and = G() = B U {x,}.

Then F is weakly measurable, G is continuous, and dom(F N G) = T, But Fn ¢
is not weakly measurable, for let U be any open set containing B but not x,. Then

(FA G (U) = {t] F(t) n G(t) A U # O}
{t] Fult) 0 B # O}

= F'(B) = p(B) .

i

ExampLE 3. There is a continuous function f: TxZ — R' such that the multi-
function FcT'xZ defined by F(r) = {x| (¢, x) = 0} is not weakly measurable.

Let F be given as in Example 1. Then, since F has closed graph, F is a closed
subset of the metric space TxZ. Let f* TxZ— R' be any continuous function
with F as its zero set.

ExaMPLE 4. There is a continuous function f: 7'xZ — R' such that
{x| f(t,x) = 0} # @ for cach ¢, but such that there is no measurable function
r: T+ Z sach that f(t, r(t)) = 0 for each teT.

Note that here the given function g: T — R* in the Filippov problem is the zero
function and that the given multifunction F=TxZ is the constant multifunction
F(t) = Z for each 1.

To find fit is sufficient to first find a closed subset I" of T'x Z such that pAl) =T
and I" has no measurable selector. For then let f be any continuous function on Tx Z
with I' as zero set.

Such a set I" has essentially been given by Novikov [No-1]. In his example I' is
measurable rather than closed, but it is not difficult to modify his arguxﬁcnt to
require I" closed. The following modification is due to R. Darst. Let A, A, be
analytic subsets of T’ such that T—4,, T'— A, are disjoint complementary analytic
sets that cannot be separated by Borel sets, and let J,, h, be (continuous) maps
of Z onto 4, A,, respectively. Then I' = Gr(h7' u hz") is the desired set; (Such
sets as A, A, have been shown to exist by Sierpifiski, Lusin, and Novikov; cf.
[Kur, p. 485].)

ExaMPLE 5. A countable, but not closed, -valued measurable multifunction
may fail to have a measurable selector:

This example is based on the following result of Blackwell and Dubins (BD»
Corollary 2]: There is no Borel measurable function g defined on the space Q of
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sequences of real numbers such that g(w,;) = g(®,) whenever v, and @, have the
same range and such that, for all ® € Q, g(®) is an element of the range o(w) of ®.

To use this, let & be the set of all nonempty, at most countable sets of real
numbers. Let o7 be the smallest g-algebra of subsets of & generated by sets of the
form {Fe &%| Fn B # @) for Bclosed in R'. (s/ is the Borel o-algebra on &
generated by the upper semi-finite topology on &; see [M, Definition 9.1].) Let
Fc 9 x R! be the multifunction defined by F(S) = S for each Se %. Cleatly Fis
measurable.

We now claim that F does not have a measurable selector. For suppose
7/t &% — R' is a measurable selector and consider the function g = fo0: 2— R,
where ¢: Q@ — & is the function whose value g(w) at o is defined to be the range
of w. It is not difficult to show that the function g is measurable; hence g is measur-
able. Clearly g(w,) = g(w,) when o, and w, have the same range, and, further,
for cach we @, g(w) = f(o(w)) € F(g(w)) = o(w). This contradicts the Blackwell-
Dubins result and hence f cannot exist.
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