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Calculation of the micromaser spectrum. g.
Green's-function approach and approximate analytical techniques
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We 6rst calculate the "exact" micromaser spectrum by solving numerically for the Green's function
of the appropriate master equation for the one-atom (micro-) maser. We then proceed to calculate
approximate analytical expressions for the maser linewidth using (i) a phase-operator approach, (ii)
an ansatz similar to the standard quantum theory of the laser, and (iii) a linear expansion of the
correlation function. Novel features, quite cHstinct from the familiar Schawlow-Townes linewidth,
are found, e.g. , the linewidth decreases as the number of thermal photons increases.

PACS numbers: 42.50.Dv, 42.52+x, 32.80.-t

I. INTRODUCTION

The micromaser [1] is a fundamental system in quan-
tum optics of special interest because on the one hand it
is simple enough to be theoretically tractable [2,3] and on
the other hand it shows all important quantum phenom-
ena of the matter-light interaction. Examples include
collapse and revivals of the Rabi nutation [4], the gen-
eration of sub-Poissonian photon statistics [2,3,5], to the
extreme case of a number state [6], trapping states [7],
and a quantum-nondemolition measurement of the pho-
ton number [8]. Moreover, the micromaser allows us to
prepare and measure the off-diagonal elements of the field
density operator. Atoms injected in a superposition of
the two atomic states create [9] nonvanishing off-diagonal
elements; that is, they create a preferred field phase.
A Ramsey arrangement [10] provides information [11,12]
about their time evolution and the evolution of the field
as it rnanifests itself in the spectrum of the micromaser.

In a previous paper [ll] we have investigated this spec-
trum. The approach pursued in Ref. [11] rests on an ap-
proximate analytical expression for the maser linewidth
as well as on a numerical evaluation of the two-time corre-
lation function. That paper was intended as a short note
and thus we omitted there all details of the calculations.

This pair of papers presents the calculations neces-
sary to understand the analysis, and in so doing, yields
additional insights. In the present paper we compute
the two-time correlation function of the micromaser Beld
via a Green's-function approach. We compare the so-
calculated linewidth to approximate analytical expres-
sions. In the following paper [13) we investigate the
eigenvalues of the master equation for the off'-diagonal
elements of the micromaser density matrix. We discuss
the contribution of various eigenvalues to the micromaser
linewidth.

II. DEFINITIONS OF THE SPECTB.UM

A. General considerations

There exist various definitions of the spectrum [15].
One relies on the decay of the expectation value of the
electric field

(&(t)) = ~0(a'(t)) + c c

= 80 ) '/ri + 1 pn n+i(t) + cc.(2.1)

The present paper is organized as follows. In Sec. II we
define the steady-state spectrum of the electric field as
the Fourier transform of the two-time correlation func-
tion K(t) = (at(t)a(0)). We express K(t) in terms of the
Green's function and the steady-state photon statistics.
In Sec. III we apply our general considerations to the
micromaser. We summarize the equation of motion for
the density matrix of the maser field and obtain an exact
numerical solution for the Green's function based on con-
tinued fractions. A detailed discussion of the spectrum
and its width, that is, the maser linewidth [11,14], and
its dependence on the pump parameter and the number
of thermal photons follows. We show that in a broad re-
gion of the micromaser parameters the linewidth has a
tendency to decrease with increasing temperature. Such
a property is quite distinct from the usual spectral prop-
erties of the laser or maser. To gain insight into this
behavior we derive in Sec. IV an approximate analyti-
cal expression for the micromaser linewidth based on the
London phase operator. This demonstrates that novel
features of the micromaser spectrum result from inter-
ferences between various quantum Rabi oscillations. We
conclude by summarizing our results in Sec. V.

1050-2947/93/48(1)/803(10)/$06. 00 48 803 1993 The American Physical Society



TRAN QUANG et al. 48

from an initial value of (E(t = 0)) governed by the oK-
diagonal element p„„+i(t= 0) of the field-density oper-
ator. The spectrum is then given by the Fourier trans-
form of Eq. (2.1). This of course implies a measurement
scheme which first creates nonvanishing off-diagonal el-
ements and then monitors their decay. For the micro-
maser this can be achieved by first injecting atoms into
the maser cavity which are initially in a coherent super-
position of the excited state and the ground state [9].
When we now interrupt the Bow of coherently excited
atoms, the so-prepared off-diagonal elements of the den-
sity matrix decay.

Another method of measuring the spectrum does not
require the initial preparation of off-diagonal elements.
It is based on the Fourier transform of the two-time cor-
relation function

(E"'(t)E' '(0)) - (a'(t)a(o)) =—K(t) (2.2)

Here we compare the diffusion of the electric field from an
arbitrary initial field E(t = 0) to the field E{t)at a later
time t. In the remainder of the paper we assume that at
t = 0 our field has reached steady state. At t = 0 the
correlation function K(t = 0) = (ai(0)a(0)) is then ruled
by the the steady-state photon statistics P„=p„„,that
is, by the diagonal elements of the field-density operator.
The two-time correlation function K(t) is governed by
the decay of the oK-diagonal elements p„„+i(t) starting
from very specific initial conditions, i.e. , p„„+i(t= 0) =
Qn+ 1 P„+i.

In the present two papers —with the exception of
Sec. IV—we follow the second approach. In this paper
we pursue the Green's-function technique to calculate the
time evolution of the K(t) whereas the following paper
is devoted to an eigenvalue and eigenvector analysis.

B. Green's-function approach

S(~ —~,) = Re K(t) '&~ -~&'dt (2.3)

that is, the Fourier transform of the two-time correlation
function

K(t) = ("(t).(o)) (2.4)

We first express this correlation function K(t) by the
Green's function of the master equation for the field-
density operator. The expression obtained is rather gen-
eral. In Sec. III we apply this result to the case of the
micr omaser.

The time dependence of the field operator

a (t) = U" (t) a (0) U(t) (2.5)

expressed by the time-evolution operator U(t) casts K(t)
into the form

K(t) = Trf „[Ui'(t) i'(0)U(t) (o)pf, (0)]

~f [a (0)U(t)a(0)pf, (0)U (t)]. (2.6)

Here pf „denotes the density matrix for the total system
consisting of the field (f) and the reservoir (r). When we
trace over the photon-number states ]n) of the field we
find

The focus of the present papers is the calculation of
the micromaser spectrum

K(t) = T„ ) (l1a~ (0)U(t) lm) (mla(0) pf, (o) ln) (nlU'(t) Il)
t,m, n=O

) Ql(m+ l)Tr„[U( i, (t)(m+ l[pf, „(0)~n) Ut ((t)],
L,m, n=O

(2 7)

where the time-evolution operators

U, .(t) = (~IU(t)I&), U', (t) = (~IU'(t)I&) (2.8)

matrix is diagonal; that is, we confine ourselves to sys-
tems without a preferred phase. When we substitute
Eq. (2.9) into Eq. (2.7) we arrive at

still contain the reservoir operators.
At steady state, that is at time t = 0, we factorize the

density operator py „ into that of the field p&' and the

reservoir p„' . This implies for the matrix elements

K(t) = ) G~ (t)g(l+1)(m+1) P +i, (2.10)
lm

where

(m+1lpf;(0)ln)= p."(m+ Ilpf'ln)

=P: ~ +i, (nlPf' In)()
(~)=—P, ~m+~, n&~. (2.9)

«, (t) = T.[«, (t)p."U'~, i+i(t)].

The initial condition for G~, (t) reads

G, (t =0) = T„[(l~m)p&'&(m+1]l+1)]

(2.11)

Here we have assumed that the steady-state field-density = 6( Tr„[p~'~] = b) (2.12)
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where we have used the orthogonality of the number
states and Tr„[p,

'
] = 1. We note that this result also fol-(s)

lows from the quantum regression theorem [16] as shown
in Appendix A.

In order to obtain the time dependence of the Green's
function G~ we interpret the t ~, as the the ofF-

diagonal element (l ~G( )]l + 1) of the operator

G( )(t) = Tr„[tr(t)([m)(m+ l])p(')Ut(t)]. (2.13)

(o) t nb N sin (gr~l/) )=Po +"-. i, nb + 1 v(nb + 1) )
where Po denotes a normalization constant and N = r/p
represents the number of atoms passing through the cav-
ity in a time p

Since for every m the Green's function G„must sat-
isfy the equation of motion for p (t) we have to solve

Since the time-evolution operator U(t) enters into
G(m) (t) in the same way as into the field-density opera-
tor,

Pf() = [ () f, (0)+ (t)] (2.14)

the operator G(m)(t) must obey the same master equa-
tion as the field-density operator pf(t). In particular,
for every m the Green's function Gi = (l~G( )

~l + 1)
must satisfy the same equation of motion as pi, i+i(t) =
(il pf(t) li+ 1).

III. APPLICATION TO THE MICROMASER

p( )(t) ~(&) p( ) + g(b) p(&) + g(b) p( )

where

A(") = r sin(grn) sin(grgn + k) + pnbgn(n + k),

(3.2a)

8„" = —r[1 —cos(grQn+ 1)cos(grQn+ 1+k)]

So far our considerations are quite general. Before we
apply the Green's-function technique to the micromaser
system we briefiy summarize [2,3,9) the equation of mo-

tion for the density matrix p„" (t)—:(n
~ pf (t) ]n+ k) of the

micromaser field. In the interaction picture the density
matrix elements p„(t) obey the three term recurrence(a)

relation

subject to the initial condition Eq. (2.12).
For the Laplace transform of G„(t),

G„, (8) = e "G„, (t)dt, (3.5)

The solution for G„m(s) can be expressed in terms of
continued fractions [17]. Equation (2.3) together with
Eqs. (2.10) and (3.5) yields for the spectrum of the mi-
cromaser

x Q(m + l)(n + 1)P ~i . (3.7)

We note that the spectrum of the micromaser field is
directly related to the steady-state photon statistics and
to the spectrum of the Green's function.

In Fig. 1 we show the normalized spectrum S(u-
n, )/S(0) for various values of the interaction parame-
ter gw. It contains only one peak centered at the cavity
frequency u, and is Lorentzian for a wide range of the
pump parameter 8 = ~Ngr.

We obtain the linewidth D, that is the full width at

we obtain from Eq. (3.4) the following recurrence rela-
tion:

Gn 1,m + (~n — s) Gn, m + ~n Gn+1, m = '4m .

(3.6)

k ( kl—p(nb+1)
~

n+ — —pnb n+1+ —~, (3.2b) 1.0

= p(nb+ 1)g(n+ 1)(n+ 1+k) . (3.2c)

Here r is the injection rate of excited Rydberg atoms
whose time of flight through and coupling strength with
the cavity field are given by v and g, respectively. The
cavity decay rate is denoted by p and nb is the mean
thermal photon number.

Since we want to calculate the correlation function
K(t) via Eq. (2.10) we have to determine (i) the steady-
state photon-number distribution and (ii) the time de-
pendence of the Green's function G„.The steady-state
photon-number distribution follows from Eq. (3.1) using
the condition of detailed balance [2] and reads

(~ —~ )A
Ei 8 10

FIG. 1. Normalized spectrum S(cu —u, )/S(0) as a function
of the parameter (u —ur, )/p for N = 20, nb = 1 and for
gr = 0.3 (dotted curve), gr = 1 (broken curve), and qr = 3
(solid curve).
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IV. APPROXIMATE ANALYTICAL APPROACH
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FIG. 2. Exact numerical linewidth D/p as a function of the
pump parameter 8 = v Ng7 for N = 50, nb = 10 (broken
curve), nt, = 0.05 (solid curve), and nq = 1 (dotted curve).

half maximum of the function S(w —cu, )/S(0), numer-
ically. We now discuss the dependence of D on vari-
ous maser parameters such as interaction parameter g~,
mean thermal photon number nb, and atomic injection
rate ¹ In Figs. 2 and 3 we depict the dependence of the
micromaser linewidth on the interaction parameter gw,
that is, as a function of the pump parameter 8. In the
vicinity of the threshold region, 8 = 1, the linewidth of
the micromaser is much narrower than the cavity damp-
ing constant p. For the cavity at very low temperatures
(broken curve) the linewidth exhibits sharp resonances
which are reminiscent of the trapping states [7]. We note
that the phase difFusion is especially large there. More-
over, Fig. 2 shows that in a large region of the pump
parameter 8 the linewidth D even reduces as the thermal
mean photon number nb increases, a phenomenon quite
different from a standard laser. In the limit of large-8 val-
ues the linewidth decreases as indicated in the lower part
of Fig. 3. This phenomenon is alien to the monotonic
dependence of the Schawlow- Townes linewidth.

at(t) = «e'«') (4.1)

and thus

(&(t)) - (a'(t)) = «(e*"') (4.2)

We now derive an equation of motion for the expec-
tation value (e'&) and compare the corresponding ana-
lytical phase-diffusion constant with the exact numerical
calculation based on computing the two-time correlation
function of the micromaser field. From the definition of
the phase operator

n=O
(4.3)

The numerical calculations of the micromaser spec-
trum via continued fractions make it difficult to gain
insight into the dependence of the maser linewidth on
the parameters of interest such as nb and 8 depicted in

Figs. 1—3. We therefore devote this section to present
an approach based on the London phase operator [18,19]
which allows us to obtain approximate analytical expres-
sions for D [20]. For an application of the ordinary quan-
tum theory of the laser to the micromaser and a linear
expansion of the correlation function we refer to the Ap-
pendices B and C.

The treatment of Secs. II and III takes the phase as
well as the intensity fluctuations into account. However,
above threshold, when there is a rather well-defined num-
ber of photons present, that is, when the fluctuations in
the intensity are small compared to the average intensity,
one would expect that the decay of the expectation value

(E(t)), Eq. (2.1), is mainly governed by phase fluctua-
tions. We therefore consider in the present section an
approach in which we represent the operator a~ by the
rather simplified phase operator [18]

we find for its expectation value

300 —,.

200 —:

. 20(n)

(~iy) ) p(&)

With the help of Eq. (3.1) we obtain

(
.p) ) - g(~) (~) / g(~) (&) + ("(~)p(~)

(4.4)

100
(4.5)

0
I

10 20 30
0/vr

I

4. 0 50 that is

FIG. 3. Exact numerical linewidth D/p as a function of the
pump parameter 8 = ~Ng7. for N = 20, nb = 1 compared to
the corresponding average photon number.

(~.y) — & ) ~ p(~)

Here the quantity p,„reads

(4.6)
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{~) {i) {~)
+n+1 ~n ~n —1

. , (gr(gn+2 —v/n+1)l
r2

+p(nb + 1)[(n + zi —Qn(n + 1)]

+pnb[n+ sz —Q(n+ 1)(n+ 2)]. (4.7)

i i I I I I I i I I I i I I

We obtain an approximate solution of Eq. (4.6) when we
assume that p„ is a slowly varying function of n. In this
case we can replace p„by its mean value

t I I I I i I I
I

I I I I I I t I I

I
I I I I I I 1 I I

(/ ) =)./ & (4 8)
'IO 20 30

and obtain

(4 9)

FIG. 4. Comparison between the exact linewidth D/p
(solid curve) and the Schawlow- Townes analog (broken
curve), Eq. (4.12), for N = 20 and nb = l.

When we further assume that P„ is signi6cantly different
from zero only for n &p 1 we may expand the square roots
in the definition of p,„,Eq. (4.7), for large n and obtain

D—= (/ )

values of 8 (Fig. 5) and large values of 8 (Fig. 6). We note
that both approximations describe the qualitative fea-
tures of the exact linewidth rather well. The sine expres-
sions of Eqs. (4.10) and (4.11) smooth the quadratic di-
vergence of the Schawlow-Townes expression, Eq. (4.12).
However, both approximations overestimate the peaks

2 gV p 27lg+ 1
(4.10)

as an approximation for the phase-diff'usion constant
D [21].

We can directly relate D to the average photon number
when we assume that (/i„) —p,„&„l. We then obtain
from Eq. (4.10)

I

I

II

il

Ii II

I I
I

I

,
, h, ', "„'g

W(2 , + i)
q4+(n) y

4(n)
(4.11)

where

a+ p(2ni, + 1)
4(n)

(4.12)

o. = p(v&g~) = p8 . (4.is)

This result has been derived in our previous paper [ll]
with the help of a detailed balance approach.

We note that the linewidth (4.11) is a generaliza-
tion of the usual laser linewidth. In the limit of short
interaction times or large photon numbers, that is,
when gr/(4+(n)) (( 1, we expand the sine function in
Eq. (4.11) and arrive at the familiar Schawlow-Townes
linewidth [22]
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For small pump parameters, that is 8/n ( 5 this
Schawlow- Townes type of expression for the maser
linewidth is indistinguishable from the expression for D
given in Eq. (4.11). However, for larger values of 8 the ex-
pressions do not agree as manifest in Fig. 4. In Figs. 5 and
6 we compare the analytical expressions for D, Eq. (4.10)
and Eq. (4.11), to the exact numerical linewidth for small

FIG. 5. Comparison between the exact linewidth D/p
(solid curves) and the approximate analytical expressions
(broken curves), (a) Eq. (4.10) and (b) Eq. (4.11). The pa-
rameters are N = 50 and nb = 10
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100

50—

value of g7. the phase differences between Rabi frequen-
cies decrease with nb, therefore (although the photon
distribution is broader) the linewidth D is reduced as
nb increases, see Fig. 2. In the region of large interaction
times g~, such that the mean value of the phase difference
((gn+ 2 —v'n+ 1)g~) is larger than vr, the linewidth D
tends to decrease as this difFerence is increased.

V. CONCLUSION
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In this paper we give a numerical approach to calcu-
late the micromaser spectrum via a two-time correlation
function of the micromaser field and present a compar-
ison with approximate analytical results. We consider
infj.uences of the mean thermal photon number and the
pump parameter on the micromaser spectrum. Novel fea-
tures quite distinct from the familiar Schawlow-Townes
laser linewidth are found. It is shown that they result
from the interference between various quantum Rabi os-
cillations. We emphasize that the micromaser spectrum
can be measured using the multiple fields method [11],
proposed in our previous paper. The role of the pumping
statistics on the micromaser spectrum will be considered
elsewhere.

0
0 10

I

20
I

30 40 ACKNOWLEDGMENTS

FIG. 6. Comparison between the exact linewidth D/p
(solid curves) and the appro~imate analytical expressions
(broken curves), (a) Eq. (4.10) and (b) Eq. (4.11). The pa-
rameters are N = 20 and nb = 1.

caused by the trapping states. For large values of 8 the
approximation (4.10) describes the linewidth better than
Eq. (4.11).

We conclude this section with a discussion of the phys-
ical interpretation of the spectral properties of the micro-
maser. Equation (4.11) shows that the complicated pat-
tern of the micromaser linewidth results from the com-
plicated dependence of (n) on the pump parameter [3,23]
which enters the denominator in the argument of the
sine function. Equations (4.7) and (4.11) show that the
linewidth of the micromaser field is determined by the
interference between various quantum Rabi oscillations
via their relative phase, that is, (gn + 2 —gn + 1)gw =
g7/(2~n). Hence the number of Rabi oscillations and
the photon-number distribution P„enter the expression
for the micromaser linewidth. For a pump parameter
8 close to its threshold value the mean photon number
(n) is large (see Fig. 1 of Refs. [3,23]). Consequently
the phase difference between various Rabi oscillations,
i.e. , the value (gn+ 2 —gn+ 1)gw, is small. Therefore,
in this region of the pump parameter 0 the linewidth
D is much narrower than the cavity damping constant

In the quiescent periods in which the mean pho-
ton number remains at a quasi-steady-state (see Fig. 1
of Ref. [23]) the mean photon number in the cavity in-
creases substantially as np increases. Hence for a fixed
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APPENDIX A: QUANTUM REGRESSION
THEOREM

(Al)

With the help of the Green's function G „(tp+t; tp) we
find from Eq. (Al)

(at(tp + t)) = ) G„(tp + t; tp)p + (to)gn+ 1,
A im

(A2)

where G„satisfies for every m the equation of motion
for the matrix element p„„+~with the initial condition

G„(tp, tp) = 6„, (A3)

In this appendix we derive the expression Eq. (2.10)
for the two-time correlation function, Eq. (2.4), with the
help of the quantum regression theorem. The mean value
of the field operator at reads
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When we interpret p~ ~+i in Eq. (A2) as the mean value
of the operator ~m+ l)(m~ and use the quantum regres-
sion theorem [16] we can write the two-time correlation
function (a~(to+ t)a(to)) as

(a'(to + t)a(t. ))

= ) G„(t,+t;to)g(m+1)(n+1) p +, +,(to).
A jm

p(i) (t) p(1) (t) g —e(P» P»——x)t/2 (83a)

(83b)

where

- —r/2
B„=(nb + 1) nb + —sin (grv n )n

Equation (82) casts the elements p„ i(t) and p„+i(t) in
the form

In the steady-state limit, that is, for to —+ oo, the two-
time correlation function

K(t) = lim (ai(tp + t)a(tc))

is identical to Eq. (2.10).

B+ =

- —1/2N
x nb + sin2(grgn + 1)A+1

1 N
nb+ sin (grQn+1)Ab+1A+1

- 1/2N
x nb+ sin (grgn+ 2)n+2

(84a)

(84b)

APPENDIX B:LASER. THEORY APPRDACH
We substitute the ansatz (82) into the equation of motion

for p( )(t), Eq. (3.1), and find with the help of Eqs. (83)

(o) (o) ~
—p, t/~

& +a~ (81)

The quantum theory of the laser [22] calculates the
off-diagonal elements based upon the ansatz

p"'(t) = —-'~ p'"(t)
[+(i) + ~(i) + e(p „ir„—,)t/2—

+g( ) ~+e(v- —~-+ ) /
]p( ) (t) (85)

+
/' nb N sin'(grv/v) ~

(nb+ 1 (nb+ l)v )

+
"+' /' nb N sin'(gr~v) ) '/'
.--; (nb+1 (nb+1)v ) (82)

where C is a constant which determines p~ (t = 0) and(1)

p„ is the decay parameter which we want to calculate.
I

where F(k) is some arbitrary function of k. This ansatz
assumes that the off-diagonal elements p„resemble the
diagonal elements p„. According to this ansatz we try(o)

a solution of the Eq. (3.1) for p„(t) in the form

p(i) (t) Ce—~-i/2

where

p")(t) = -'"-'p'"(o)

ip g(i) g(i) g — (.(i) gy+

(86)

(87)

Here the quantities A„, 8„, and C„are defined by(~) (~) (~)

Eqs. (3.2). Algebraic manipulations allow us to rewrite
Eq. (87) in the form

We note that Eq. (85) is consistent with the ansatz
Eq. (82) only in the case when the decay rate fs„ is in-
dependent of n or at least is a slowly varying function of
n, that is, when the exponentials in the right-hand side
of Eq. (85) can be neglected. In this case the solution of
Eq. (85) reads

i p„= r [1 —cos(gr v n + 1 ) cos(grgn + 2 )] + p(nb + 1)(n + z) + pnb(n + z ) —p(nb + 1)gn(n + 1) (1 + C )
—[pnb g(n + 1)(n + 2) + r sin(grgn + 1 ) sin(grgn + 2 ) ](1+ C„+i) (88)

where

nbN [gn + 1 sin(gr~n ) —~n sin(grgn + 1 )]2

[N sin(gr~n) sin(grgn+ 1) + nba(n+ 1)]

(»)
Since C„essentially scales with nb we have for nb &( 1 in
Eq. (88)

and obtain

zP,„-r[1 —cos(grv n+ 1)cos(grgn+ 2)]
rsin(grgn + 1 ) si—n(gr gn + 2 )

+p(nb+ 1)[n+ —,
' —gn(n+ 1) ]

+pnb[n+ -,'—g(n+ 1)(n+ 2)].

1 + C~ —1 + C„+i = 1 (810)
%'e now interpret p„as the phase-diffusion coefBcient for
fixed n The efFective p.hase-diffusion coefficient is then
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obtained by averaging p,„over the steady-state photon
statistics. Since the quantities P„given in Eq. (Bll)
and p„given in Eq. (4.7) agree, this averaging procedure
leads to Eqs. (4.10) and (4.11) as described in Sec. IV.

APPENDIX C: SHORT- TIME APPROXIMATION I

a ] I ] sg

I

I

In Sec. III we have presented the equation of motion
for the density operator of the micromaser field in the
number state representation. For the following discussion
it is more convenient to use the density operator pf itself.
In the interaction picture the equation of motion for pf (t)
reads

2
8/g(.

7[M(7 ) 1]pf (t) + Lcgsvpf (t) (C1)

where

M(v) pf (t) = cos(v aat gw) pf (t) cos(V'aat g7)

and

t sin(v'aat gw) sin(v'aat gz)+a pf (t) a
aat aat

(C2a)
2-

L, „pf(t) = (nb+ 1)[2apf(t)a —a apf(t) —pf(t)a a]

+ng [2a pf (t)a —aa pf (t) —pf (t)aa ] .

(C2b)

We express the correlation function K(t) = (at(t)a(0))
by

K(t) = Trf(at pf(t)),

wher" --similar to the Green's function of Sec. II—the
operator

FIG. 7. Comparison between the exact linewidth D/p
( ) and the approximate analytical expressions, Eq. (Clo)
(——) and Eq. (C14) (———) for N = 50. For nb we have
chosen (a) nb = 10 and (b) n(, = 0.05.

that is, we approximate K(t) by an exponential decay
corresponding to a linewidth

pf ( ) = „[U(t)G(o)Pf,,(0)U (t)] (c4)
K(0)
K(0)

(C7)

satisfies the equation of motion for the maser field-density
operator, Eq. (Cl), with the initial condition

Equation (C7) together with the equation of motion for
pf(t), Eq. (Cl), yields

pf(0) = a(o)Pf(0) . (C5)
Tr f (a apf (0)) = rTrf {a [M(r) —1][apf (0)])2

For small t we approximate the correlation function
K(t) by [24]

+2 f( [ Pf( )]) ( 8)

Cyclic permutations and the relation

f(aat)a = af(ata),

(C6) which is valid for an arbitrary function f, lead to

K(t) = K(O) + t = K(O)
~

1 — t ~—dK(t) f D
t ~=o

K(0)
—Ht/2

(C9)

D —p+ 4r —2r

~

~sin s (1/a a+i —Vu u) a a) (sin(naia pigs)sin(slaiags)]g(aia~i)aia. —aia])
(C10)ata a a
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This expression simplifies when we replace (f(ata)) by
f((ala)) and when we use for (n) =— (ata) » 1 the ap-
proximation sin(V (aiba) gw) sin(g(ai'a) + 1 gr) We
then arrive at

stitute this result into Eq. (Cll) and obtain

D =4r sin
~ ~

+. , ( gr 'l pn,
~4+(&) ~ (n)

' (C14)

. , &g~l r
D —p+ 4r sin

~

— sin (g(n) + 1 gv) .
(4 (n) )

(Cll)

In order to cast the second term in Eq. (Cl1) into a form
similar to the one in approximation (4.11)we derive from
Eq. (Cl) an equation of motion for (n). From

In Fig. 7 we compare and contrast the unfactorized
expression for D, Eq. (C10), and the factorized one,
Eq. (C14), to the exact linewidth obtained from the
Green's function. Note that for r = 0, that is for an
empty cavity with (n) = nb in steady state, both ap-
proximations Eq. (C10) and Eq. (C14) reduce to the ex-
act expression

—(n) = rsin (Q(n) + lgv) —p[(n) —nb] (C12) This is in contrast to the approximation Eq. (4.11)which
for r = 0 and nb (& 1 reads

we find in steady state

r(sin (V (n)+ Ig~)) = p[(n) —nb). (C13)
D=

4ng
(C16)

Again we have replaced (f(afa)) by f((ala)). We sub-
This sharp rise in D for small values of 8 is apparent in
Fig. 5(b).
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