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Abstract. A scheme is presented for entangling two separated nanomechanical

oscillators by injecting broad band squeezed vacuum light and laser light into the

ring cavity. We work in the resolved sideband regime. We find that in order to obtain

the maximum entanglement of the two oscillators, the squeezing parameter of the input

light should be about 1. We report significant entanglement over a very wide range of

power levels of the pump and temperatures of the environment.
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1. Introduction

It is well known that entanglement is a key resource for quantum information

processing [1]. One now has fairly good understanding of how to produce entanglement

among microscopic entities. In recent times there has been considerable interest in

studying entanglement in mesoscopic and even microscopic systems [2, 3, 4, 5, 6].

Nanomechanical oscillators are beginning to be important candidates for the study

of quantum mechanical features at mesoscopic scales. In fact the possibility of

entangling two nanomechanical oscillators has been investigated from many different

angles: such as entangling two mirrors in a ring cavity [7], entangling two mirrors of two

independent optical cavities driven by a pair of entangled light beams [8], entangling two

mirrors by using a double-cavity set up by driving with squeezed light [9], entangling

two mirrors of a linear cavity driven by a classical laser field [10], entangling two

mirrors in a ring cavity by using a phase-sensitive feedback loop [11], entangling two

dielectric membranes suspended inside a cavity [12], and entangling two oscillators by

entanglement swapping [13, 14]. Other proposals do not use cavity configurations but

coupling to Cooper pair boxes [15]. Here we report a conceptually simple method

to produce entanglement between two mirrors. Our proposal enables us to trace the

physical origin of entanglement.

In this paper, we propose a scheme for entangling two movable mirrors of a ring

cavity by feeding broad band squeezed vacuum light along with the laser light. The

two movable mirrors are entangled based on their interaction with the cavity field. The

achieved entanglement of the two movable mirrors depends on the degree of squeezing of

the input light, the laser power, and the temperature of the movable mirrors. The feeding

of the squeezed light has been considered to produce squeezing of a nanomechanical

mirror [16, 17]. Further Pinard et al. [9] have considered entanglement of two mirrors

in a double cavity configuration which is fed by squeezed light - one part of the cavity is

fed by light squeezed in amplitude quadrature and the other is fed by light squeezed in

phase quadrature. In contrast we consider a single mode ring cavity driven by a single

component amplitude squeezed light. In our scheme the entanglement can be managed

by an externally controllable field which is the squeezed light.

The paper is organized as follows. In section 2 we introduce the model, give the

quantum Langevin equations, and obtain the steady-state mean values. In section

3 we derive the stability conditions, calculate the mean square fluctuations in the

relative momentum and the total displacement of the movable mirrors. In section 4 we

analyze how the entanglement of the movable mirrors can be modified by the squeezing

parameter, the laser power, and the temperature of the environment. The parameters

chosen in the paper are from a recent experiment on optomechanical normal mode

splitting [18].

Before we present our calculations, we present a key idea behind our work. For a

bipartite system, a sufficient criterion for entanglement is that the sum of continuous
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variables satisfies the inequality [19]

〈(∆(q1 + q2))
2〉 + 〈(∆(p1 − p2))

2〉 < 2, (1)

where qj and pj (j = 1, 2) are the position and momentum operators for two particles,

respectively. They obey the commutation relation [qj, pk] = iδjk (j, k = 1, 2).

Mancini et al. [7] have derived another sufficient condition for bipartite

entanglement, which requires the product of continuous variables satisfies the inequality

〈(∆(q1 + q2))
2〉〈(∆(p1 − p2))

2〉 < 1. (2)

In this paper, we will use equation (2) to show the entanglement between the two

oscillating mirrors. Thus if we have a situation where the interaction occurs only via

the relative coordinates q1−q2,p1−p2, then we can hold 〈(∆(q1 +q2))
2〉 at its value, says

≃ 1, before interaction and if the interaction can make 〈(∆(p1 − p2))
2〉 < 1, then the

inequality (2) would imply that the mirrors 1 and 2 are entangled. In the next section

we discuss how this can be achieved by using a single mode ring cavity.

2. Model

The system under study, sketched in figure 1, is a ring cavity with one fixed partially

transmitting mirror and two movable perfectly reflecting mirrors, driven by a laser with

frequency ωL. As the photons in the cavity with length L bounce off the movable

mirrors, they will exert a radiation pressure force on the surfaces of the movable mirrors

proportional to the instantaneous photon number in the cavity. The motion of the

movable mirrors induced by the radiation pressure changes the cavity’s length, and

alters the intensity of the cavity field, which in turn modifies the radiation pressure

force itself. Thus the interaction of the cavity field with the movable mirrors through

the radiation pressure is a nonlinear effect. In addition, each mirror undergoes quantum

Brownian motion due to its coupling to its own independent environment at the same

low temperature T . The two movable mirrors are identical with the same effective mass

m, mechanical frequency ωm and momentum decay rate γm, and each mirror is modeled

as a quantum mechanical harmonic oscillator. We further assume that the cavity is fed

with squeezed light at frequency ωS.

In the adiabatic limit, the cavity field is a single mode with frequency ωc [20], and

we can neglect the retardation effect [21], neglect the photon creation in the cavity with

moving boundaries due to the Casimir effect [22], and neglect the Doppler effect [23],

thus the radiation pressure force does not depend on the velocity of the movable mirrors.

Assuming the collisions of the photons on the surfaces of the movable mirrors are elastic,

the momentum transferred to the mirrors per photon is h̄ky − (−h̄ky) = 2h̄ky (see figure

1 for the direction of y), where ky = k cos(θ/2), k is the wave vector of the cavity field

with k = ωc/c, and θ is the angle between the incident light and the reflected light

at the surfaces of the movable mirrors. During the cavity round-trip time t = 2L/c,

there are nc cos(θ/2) photons hitting on the surfaces of the movable mirrors, so the

radiation pressure force is F = nc cos(θ/2) × 2h̄ky/t = nch̄
ωc

L
cos2(θ/2). In a reference
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Figure 1. Sketch of the studied system. A laser with frequency ωL and a squeezed

vacuum light with frequency ωS enter the ring cavity through the partially transmitting

mirror.

frame rotating at the laser frequency, the Hamiltonian that describes the system can be

written as

H = h̄(ωc − ωL)nc + h̄gnc cos2(θ/2)(Q1 − Q2) +
h̄ωm

2
(Q2

1 + P 2
1 )

+
h̄ωm

2
(Q2

2 + P 2
2 ) + ih̄ε(c† − c),

(3)

we have defined dimensionless position and momentum operators for the oscillators

Qj =
√

mωm

h̄
qj and Pj =

√

1
mh̄ωm

pj (j=1,2) with [Qj , Pk] = iδjk (j, k = 1, 2). Further in

equation (3), nc = c†c is the number of the photons inside the cavity, c and c† are the

annihilation and creation operators for the cavity field with [c, c†] = 1. The parameter

g = ωc

L

√

h̄
mωm

is the optomechanical coupling constant between the cavity field and the

movable mirrors in units of s−1. The different signs in front of Q1 and Q2 are because

the radiation pressure forces exerted on the two mirrors are opposite. The parameter ε

is the coupling strength of the laser to the cavity field, which is related to the input laser

power ℘ by ε =
√

2κ℘
h̄ωL

, where κ is the photon decay rate by leaking out of the cavity.

In the system, the cavity field is damped by photon losses via the cavity output

mirror at the rate κ, and the movable mirrors are damped due to momentum losses at

the same rate γm. Meanwhile, there are two kinds of noises affecting on the system.

One is the input squeezed vacuum noise operator cin with frequency ωS = ωL + ωm. It

has zero mean value, and nonzero time-domain correlation functions [24]

〈δc†in(t)δcin(t′)〉 = Nδ(t − t′),

〈δcin(t)δc†in(t′)〉 = (N + 1)δ(t − t′),

〈δcin(t)δcin(t′)〉 = Me−iωm(t+t′)δ(t − t′),

〈δc†in(t)δc†in(t′)〉 = M∗eiωm(t+t′)δ(t − t′).

(4)

where N = sinh2(r), M = sinh(r) cosh(r)eiϕ, r and ϕ are respectively the squeezing

parameter and phase of the squeezed vacuum light. For simplicity, we choose ϕ = 0.
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The other is quantum Brownian noises ξ1 and ξ2, which are from the coupling of the

movable mirrors to their own environment. They are mutually independent with zero

mean values and have the following correlation functions at temperature T [25]:

〈ξj(t)ξk(t
′

)〉 =
δjk

2π

γm

ωm

∫

ωe−iω(t−t
′

)

[

1 + coth(
h̄ω

2kBT
)

]

dω, (5)

where kB is the Boltzmann constant and T is the temperature of the mirrors’

environment, j, k = 1, 2.

The dynamics of the cavity field interacting with the movable mirrors can be derived

by the Heisenberg equations of motion and taking into account the effect of damping

and noises, which gives the quantum Langevin equations

Q̇1 = ωmP1,

Q̇2 = ωmP2,

Ṗ1 = −gnc cos2(θ/2) − ωmQ1 − γmP1 + ξ1,

Ṗ2 = gnc cos2(θ/2) − ωmQ2 − γmP2 + ξ2,

ċ = −i[ωc − ωL + g cos2(θ/2)(Q1 − Q2)]c + ε − κc +
√

2κcin,

ċ† = i[ωc − ωL + g cos2(θ/2)(Q1 − Q2)]c
† + ε − κc† +

√
2κc†in.

(6)

From the second term of equation (3), we can see only the relative motion of the two

movable mirrors is coupled to the cavity field via radiation pressure. On introducing the

relative distance and the relative momentum of the movable mirrors by Q− = Q1 − Q2

and P− = P1 − P2, we find that equation (6) reduces to

Q̇− = ωmP−,

Ṗ− = −2gnc cos2(θ/2) − ωmQ− − γmP− + ξ1 − ξ2,

ċ = −i[ωc − ωL + g cos2(θ/2)Q−]c + ε − κc +
√

2κcin,

ċ† = i[ωc − ωL + g cos2(θ/2)Q−]c† + ε − κc† +
√

2κc†in.

(7)

We would use standard methods of quantum optics [26] which have been adopted for

discussions of quantum noise of nanomechanical mirrors [10, 25, 27, 28, 29], setting all

the time derivatives in equation (7) to zero, and solving it, we obtain the steady-state

mean values

P s
− = 0, Qs

− = −2g|cs|2 cos2(θ/2)

ωm
, cs =

ε

κ + i∆
, (8)

where

∆ = ωc − ωL + gQs
− cos2(θ/2) (9)

is the effective cavity detuning, depending on Qs
−. The Qs

− denotes the new equilibrium

relative distance between the movable mirrors. Further cs represents the complex

amplitude of the cavity field in the steady state. For a given input laser power, Qs
−

and cs can take three distinct values, respectively. Therefore, the system displays an
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optical multistability [30, 31, 32], which is a nonlinear effect induced by the radiation

pressure.

3. Radiation pressure and quantum fluctuations

To investigate entanglement of the two movable mirrors, we have to calculate the

fluctuations in the relative momentum of the movable mirrors. This fluctuations can

be calculated analytically by using the linearization approach of quantum optics [26],

provided that the nonlinear effect between the cavity field and the movable mirrors is

weak. We write each operator of the system as the sum of its steady-state mean value

and a small fluctuation with zero mean value,

Q− = Qs
− + δQ−, P− = P s

− + δP−, c = cs + δc. (10)

Inserting equation (10) into equation (7), then assuming the cavity field has a very large

amplitude cs with |cs| ≫ 1, one can obtain a set of linear quantum Langevin equations

for the fluctuation operators,

δQ̇− = ωmδP−,

δṖ− = −2g cos2(θ/2)(cs∗δc + csδc†) − ωmδQ− − γmδP− + ξ1 − ξ2,

δċ = −(κ + i∆)δc − ig cos2(θ/2)csδQ− +
√

2κδcin,

δċ† = −(κ − i∆)δc† + ig cos2(θ/2)cs∗δQ− +
√

2κδc†in.

(11)

Introducing the cavity field quadratures δx = δc + δc† and δy = i(δc† − δc), and the

input noise quadratures δxin = δcin + δc†in and δyin = i(δc†in − δcin), equation (11) can

be rewritten in the matrix form

ḟ(t) = Af(t) + η(t), (12)

in which f(t) is the column vector of the fluctuations, η(t) is the column vector of the

noise sources. Their transposes are

f(t)T = (δQ−, δP−, δx, δy),

η(t)T = (0, ξ1 − ξ2,
√

2κδxin,
√

2κδyin);
(13)

and the matrix A is given by

A =













0 ωm 0 0

−ωm −γm −g cos2(θ/2)(cs + cs∗) ig cos2(θ/2)(cs − cs∗)

−ig cos2(θ/2)(cs − cs∗) 0 −κ ∆

−g cos2(θ/2)(cs + cs∗) 0 −∆ −κ













.(14)

The solution of equation (12) is f(t) = M(t)f(0)+
∫ t
0 M(t′)η(t−t′)dt′, where M(t) = eAt.

The system is stable and reaches its steady state as t → ∞ only if the real parts of all
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the eigenvalues of the matrix A are negative so that M(∞) = 0. The stability conditions

for the system can be found by employing the Routh-Hurwitz criterion [33], we get

κγm[(κ2 + ∆2)2 + (2κγm + γ2
m − 2ω2

m)(κ2 + ∆2) + ω2
m(4κ2 + ω2

m

+2κγm)] + 2ωm∆g2 cos4(θ/2)|cs|2(2κ + γm)2 > 0,

ωm(κ2 + ∆2) − 4∆g2 cos4(θ/2)|cs|2 > 0.

(15)

All the parameters chosen in this paper have been verified to satisfy the stability

conditions (15).

Fourier transforming each operator in equation (11) by f(t) = 1
2π

∫ +∞
−∞ f(ω)e−iωtdω

and solving it in the frequency domain, the relative momentum fluctuations of the

movable mirrors are given by

δP−(ω) =
iω

d(ω)
(2
√

2κg cos2(θ/2){[κ − i(∆ + ω)]cs∗δcin(ω) + [κ + i(∆ − ω)]

×csδc†in(−ω)} − [(κ − iω)2 + ∆2][ξ1(ω) − ξ2(ω)]),

(16)

where d(ω) = −4ωm∆g2|cs|2 cos4(θ/2) + (ω2
m − ω2 − iγmω)[(κ − iω)2 + ∆2]. Equation

(16) shows δP−(ω) has two contributions. The first term proportional to g originates

from their interaction with the cavity field, while the second term involving ξ1(ω) and

ξ2(ω) is from their interaction with their own environment. So the relative momentum

fluctuations of the movable mirrors are now determined by radiation pressure and the

thermal noise. In the case of no coupling with the cavity field (g = 0), the movable

mirrors will make Brownian motion only, δP−(ω) = −iω[ξ1(ω)−ξ2(ω)]/(ω2
m−ω2−iγmω),

whose mechanical susceptibility χ(ω) = 1/(ω2
m − ω2 − iγmω) has a Lorentzian shape

centered at the frequency ωm with 2γm as full width at half maximum (FWHM).

The mean square fluctuations in the relative momentum of the movable mirrors are

determined by

〈δP−(t)2〉 =
1

4π2

∫ ∫ +∞

−∞
dωdΩe−i(ω+Ω)t〈δP−(ω)δP−(Ω)〉. (17)

To calculate the mean square fluctuations, we require the correlation functions of

the noise sources in the frequency domain. Fourier transforming equations (4) and (5)

gives the frequency domain correlation functions

〈δc†in(−ω)δcin(Ω)〉 = 2πNδ(ω + Ω),

〈δcin(ω)δc†in(−Ω)〉 = 2π(N + 1)δ(ω + Ω),

〈δcin(ω)δcin(Ω)〉 = 2πMδ(ω + Ω − 2ωm),

〈δc†in(−ω)δc†in(−Ω)〉 = 2πM∗δ(ω + Ω + 2ωm),

〈ξj(ω)ξk(Ω)〉 = 2πδjk
γm

ωm
ω

[

1 + coth( h̄ω
2kBT

)
]

δ(ω + Ω).

(18)

Upon substituting equation (16) into equation (17) and taking into account equation

(18), the mean square fluctuations of equation (17) are written as

〈δP−(t)2〉 =
1

2π

∫ +∞

−∞
[ω2A + ω(ω − 2ωm)Be−2iωmt + ω(ω + 2ωm)Ce2iωmt]dω. (19)
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where

A = 1
d(ω)d(−ω)

(8κg2 cos4(θ/2)|cs|2{(N + 1)[κ2 + (∆ + ω)2]

+N [κ2 + (∆ − ω)2]} + 2γm
ω

ωm
[(∆2 + κ2 − ω2)2 + 4κ2ω2]

×[1 + coth( h̄ω
2kBT

)]),

B = 8κg2 cos4(θ/2)cs∗2M
d(ω)d(2ωm−ω)

[κ − i(∆ + ω)][κ − i(∆ + 2ωm − ω)],

C = 8κg2 cos4(θ/2)cs2M∗

d(ω)d(−2ωm−ω)
[κ + i(∆ − ω)][κ + i(∆ + 2ωm + ω)].

(20)

In equations (19) and (20), the term independent of g is the thermal noise contribution;

while all other terms involving g are the radiation pressure contribution, including the

influence of the squeezed vacuum light. Moreover, 〈δP−(t)2〉 is time-dependent, the

explicit time dependence in equation (19) can be eliminated by working in the interaction

picture. If we look the relative motion of the movable mirrors as a harmonic oscillator

and introduce the annihilation (creation) operators b (b†) and b̃ (b̃†) for the oscillator in

the Schrödinger and interaction picture with [b, b†] = 1 and [̃b, b̃†] = 1. They are related

by b = b̃e−iωmt and b† = b̃†eiωmt. Then using P− = i(b† − b), and P̃− = i(b̃† − b̃), we get

〈δP̃ 2
−〉 =

1

2π

∫ +∞

−∞
[ω2A + ω(ω − 2ωm)B + ω(ω + 2ωm)C]dω. (21)

According to equation (2), the movable mirrors are said to be entangled if 〈δQ2
+〉

and 〈δP̃ 2
−〉 satisfy the inequality

〈δQ2
+〉〈δP̃ 2

−〉 < 1. (22)

where Q+ = Q1 + Q2, the total displacement of the two movable mirrors, which is

not related to the radiation pressure, only determined by the thermal noise. At the

temperature T , the fluctuations 〈δQ2
+〉 are

〈δQ2
+〉 = 0.5 +

1

eh̄ωm/(kBT ) − 1
(23)

Since [Q+, P−] = [Q1 + Q2, P1 − P2] = 0, Q+ and P− can be simultaneously measured

with infinite precision. Thus Q+ and P̃− can also be simultaneously measured with

infinite precision.

From equations (20) and (21), we find 〈δP̃ 2
−〉 is affected by the detuning ∆, the

squeezing parameter r, the laser power ℘, the cavity length L, the temperature of the

environment T , and so on. In the following, we confine ourselves to discussing the

dependence of 〈δP̃ 2
−〉 on the squeezing parameter, the laser power, and the temperature

of the environment.

4. Entanglement of the two movable mirrors

In the section, we would like to numerically evaluate the mean square fluctuations in

the total displacement and the relative momentum of the movable mirrors given by

equations (23) and (21) to show the entanglement of the two movable mirrors produced
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by feeding the squeezed vacuum light at the input mirror. To have fairly good idea of

entanglement, we use the parameters of a recent experiment [18] although we are aware

that the cavity geometry is different: the wavelength of the laser λ = 2πc
ωL

= 1064 nm,

L = 25 mm, m = 145 ng, κ = 2π×215×103 Hz, ωm = 2π×947×103 Hz, the mechanical

quality factor Q′ = ωm

γm
= 6700, θ = π/3.

First we illustrate the squeezed vacuum light’s effect on the entanglement between

the movable mirrors. We find as T = 41.4 µK, the mean square fluctuations 〈δQ2
+〉 ≈ 1,

which implies that as long as the mean square fluctuations 〈δP̃ 2
−〉 < 1, there is an

entanglement between the movable mirrors. The behavior of 〈δP̃ 2
−〉 at ℘ = 3.8 mW

is plotted as a function of the detuning ∆ in figure 2. Different graphs correspond

to different values of the squeezing of the input light. In the case of no injection

of the squeezed vacuum light (r = 0), which means that the squeezed vacuum light

is replaced by an ordinary vacuum light, we find 〈δP̃ 2
−〉 is always larger than unity,

the minimum value of 〈δP̃ 2
−〉 is 1.027, obviously there is no entanglement between the

movable mirrors. However, if we inject the squeezed vacuum light, it is seen that

entanglement between the movable mirrors occurs, meaning that there is a quantum

correlation between the movable mirrors, even through they are separated in space. We

also find the movable mirrors are maximally entangled as the squeezing parameter is

about r = 1, the corresponding minimum value of 〈δP̃ 2
−〉 is 0.265. So the injection

of the squeezed vacuum light leads to a significant reduction of the fluctuations in

the relative momentum between the movable mirrors. This is due to the fact that

using the squeezed vacuum light increases the photon number in the cavity, which

leads to a stronger radiation pressure acting on the movable mirrors and enhances the

entanglement between the movable mirrors.

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.5

1.0

1.5

2.0

D�Ωm

<
∆

P�
-

2
>

Figure 2. The mean square fluctuations 〈δP̃ 2
−

〉 versus the detuning ∆/ωm for different

values of the squeezing of the input field. r = 0 (red, big dashed line), r = 0.5 (green,

small dashed line), r = 1 (black, solid curve), r = 1.5 (blue, dotdashed curve), r = 2

(brown, solid curve). The minimum values of 〈δP̃ 2
−

〉 are 1.027 (r=0), 0.420 (r=0.5),

0.265(r=1), 0.394 (r=1.5), 0.947 (r=2). The flat dotted line represents 〈δP̃ 2
−

〉=1.

Parameters: the temperature of the environment T = 41.4 µK, the laser power ℘ = 3.8

mW.

Next we consider the influence of the laser power on the maximum entanglement
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between the movable mirrors. We fix the squeezing parameter r = 1, and the

temperature of the environment T = 41.4 µK. We have already known at this

temperature, 〈δQ2
+〉 ≈ 1. Thus, if the mean square fluctuations 〈δP̃ 2

−〉 < 1, the movable

mirrors become entangled. The mean square fluctuations 〈δP̃ 2
−〉 as a function of the

detuning ∆ for different laser power are shown in figure 3. We find that significant

entanglement occurs for a range of pumping powers.

0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0
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2.0

D�Ωm

<
∆

P�
-

2
>

Figure 3. The mean square fluctuations 〈δP̃ 2
−

〉 versus the detuning ∆/ωm, each curve

corresponds to a different laser power. ℘=0.6 mW (red, big dashed curve), 3.8 mW

(green, small dashed curve), 6.9 mW (black, solid curve), 10.7 mW (blue, dotdashed

curve). The minimum values of 〈δP̃ 2
−

〉 are 0.259 (℘=0.6 mW), 0.265 (℘=3.8 mW),

0.279 (℘=6.9 mW), 0.297 (℘=10.7 mW). The flat dotted line represents 〈δP̃ 2
−

〉=1.

Parameters: the squeezing parameter r = 1, the temperature of the environment

T = 41.4 µK.
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Figure 4. The value of 〈δQ2
+〉〈δP̃ 2

−

〉 versus the temperature of the environment T

(µK). The minimum value of 〈δQ2
+〉〈δP̃ 2

−

〉 is 0.132 at T = 0 K. The flat dotted line

represents 〈δQ2
+〉〈δP̃ 2

−

〉=1. Parameters: the squeezing parameter r = 1, the laser

power ℘ = 3.8 mW, the detuning ∆ = 0.965ωm.

We now show the effect of the temperature of the environment on the entanglement

between the movable mirrors. We fix the squeezing parameter r = 1, the laser power

℘ = 3.8 mW, and the detuning ∆ = 0.965ωm. The value of 〈δQ2
+〉〈δP̃ 2

−〉 as a function

of the temperature of the environment is presented in figure 4. As the temperature

of the environment increases, the amount of entanglement monotonically decreases due
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to the thermal fluctuations. This is as expected. What is remarkable is that we find

entanglement over a wide range of temperatures. As T ≥ 166 µK, 〈δQ2
+〉〈δP̃ 2

−〉 ≥ 1,

the entanglement vanishes, the movable mirrors become completely separable. So

decreasing the temperature of the environment can make the entanglement between the

movable mirrors stronger. Note that substantial progress has been made in cooling the

nanomechanical oscillators [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Further the ground

state cooling using the resolved sideband regime might soon become feasible. Clearly

the entanglement depends on both the quality factor of the cavity and the temperature

of the environment. The optical ring cavities are expected to yield much higher quality

factor: κ ≈ 2π × 10kHz, see for example [45], though for fixed mirrors replaced by

moving mirrors, the quality factor may be deteriorated. Metheods for detection of

entanglement are discussed in [7, 9]. We note here that in our case we can deduce

entanglement from the knowledge of 〈δP̃ 2
−〉. It can be shown from equation (11) that

〈δP̃ 2
−〉 can be obtained from the measurement of the fluctuations in the quadrature of

the output field.

movable mirror 1

movable mirror 2

fixed mirror 1

fixed mirror 2

Figure 5. Sketch of 4-mirror ring cavity. A laser with frequency ωL and squeezed

vacuum light with frequency ωS = ωL +ωm enter the ring cavity through the partially

transmitting fixed mirror 1. The fixed mirror 2 and the two identical movable mirrors

are perfectly reflecting.

If we use a different geometry of the ring cavity, as shown in figure 5, then we

have the possibility of entangling other quadratures of the mirrors. In this case, the

Hamiltonian of the system in the frame rotating at the laser frequency becomes

H = h̄(ωc − ωL)nc − h̄gnc cos2(θ/2)(Q1 + Q2) +
h̄ωm

2
(Q2

1 + P 2
1 )

+
h̄ωm

2
(Q2

2 + P 2
2 ) + ih̄ε(c† − c),

(24)

We note the interaction between the two movable mirrors and the cavity field depends

only on the total displacement of the movable mirrors. The movable mirrors are said to

be entangled if δQ2
− and δP̃ 2

+ satisfy the inequality [7, 19]

〈δQ2
−〉〈δP̃ 2

+〉 < 1. (25)
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where Q− = Q1 − Q2 and P+ = P1 + P2. The Q− is the relative displacement of the

two movable mirrors, which is not related to the radiation pressure, only determined

by the thermal noise. The P+ is the total momentum of the two movable mirrors,

and depends on the radiation pressure and the thermal noise. The relation between

P+ and P̃+ is the same as the relation between P− and P̃− we defined above. Since

[Q−, P+] = [Q1 − Q2, P1 + P2] = 0, Q− and P+ can be simultaneously measured with

infinite precision. Thus Q− and P̃+ can also be simultaneously measured with infinite

precision. Through calculations, we find that 〈δQ2
−〉 and 〈δP̃ 2

+〉 in a 4-mirror ring cavity

have the same form as 〈δQ2
+〉 (equation (23)) and〈δP̃ 2

−〉 (equation (21)) in a 3-mirror

ring cavity, respectively. If we choose the same parameters, the same numerical results

will be obtained. Therefore, using a 4-mirror ring cavity, the entanglement between two

oscillators can also be obtained.

5. Conclusions

In conclusion, we have found that the injection of squeezed vacuum light and a laser can

entangle the two identical movable mirrors by the radiation pressure. The result shows

the maximum entanglement of the movable mirrors happens if the squeezed vacuum

light with r about 1 is injected into the cavity. We also find significant entanglement

over a very wide range of input laser power and temperatures of the environment.
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[36] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D,
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