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Conservation law with discontinuous flux

By

ADIMURTHI and G. D. Veerappa GOWDA

1. Introduction

In this paper we study the following scalar conservation law:

du 9
(1.1) 8t+8x(F(x’u))_0’ zeR, t>0,

U(J"vO) = UO(ZE), S R7

where the flux function F(z,u) is a discontinuous function of x given by
F(x,u) = H(z)f(u) + (1 — H(x))g(w), H is the Heaviside function, f and
g are smooth functions on R. Conservation laws with discontinuous flux func-
tion in x appears for example in the modelling of two phase flow in a porous
media [6], [9], in sedimentation problem [3], [4] and in traffic flow [13].

It is well known that after a finite time, solution of (1.1) do not in general
posses a continuous solution even if ug is sufficiently smooth. Hence a solution
u of (1.1) we-mean a solution in the weak sense. That is u € Lf. such that for
all o € C}(R x R,),

(1.2) /_Z /Ooo (uif 4 F(w,u)?j)dt de + /_o; u(z, 0)¢(z, 0)dz = 0.

It is easy to see that (1.2) is the weak formulation of the following problem.
Denoting u; = du/0t, u, = Ou/Ox, then in the weak sense u satisfies

us + f(u), =0 for >0, t>0,
(1.3) w4+ g(u)y =0 for <0, t>0,
u(,0) = uo(x),

and at x = 0, u satisfies the Rankine-Hugoniot condition i.e., for almost all
t>0,

(1.4) f(u(0+,1)) = g(u(0—,1)),
where u(0+,t) = limg,_ o+ u(x, t) and u(0—,t) = lim,_o_ u(x, t).
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Kruzkov [11] proved that if F' is continuous in w and 0F/Ox is bounded,
then (1.1) admits a weak solution. If F' is discontinuous in x, Kruzkov’s method
does not guarantee a solution. For example in (1.3) if we take g(u) = u,
flu) = —u, ug(x) = 2 if x < 0 and wp(x) = 3 if z > 0, then it is easy to see
that u(z,t) =2 if £ < 0 and u(z,t) =3 if x > 0, is a solution for (1.3) but do
not satisfy (1.4). Hence it is not a weak solution of (1.1). The discontinuity of
the flux function at = = 0 causes a discontinuity of a solution which in general
not uniquely determined by the initial data. When there is no discontinuity of
a flux function at x = 0, that is f = ¢ and strictly convex, this problem was
studied by Lax and Oleinik [5], [12], [14]. Using the Hamilton-Jacobi equation
they obtain an explicit formula for the solution and derive an entropy condition
so that the solution they obtained is unique.

For a general f, Kruzkov [11] proves the uniqueness of an entroy solu-
tion. Kruzkov [11] and Keyfitz [10] showed that the entropy solution can be
represented by L'-contraction semigroup.

When f # g, this problem is studied by Gimse and Risebro [6] and Diehl
[1], [2]. In the case of two phase flow problem, Gimse and Risebro [4] obtain
a unique solution of the Riemann problem for (1.3) and (1.4) by minimizing
|u(0+,t) — u(0—,t)|. Using this they construct a sequence of approximate
solutions converging to a weak solution for bounded initial data. Later it was
pointed out by Diehl [3], [4] that “to minimize |[u(0+,¢) — u(0—,t)|” may not
be a suitable choice. Instead of this one has to look for the solution which has
smaller variation (he puts a condition called I' condition). In this class Diehl
gives an explicit formula for a solution in the case of a Riemann problem and
proves the uniqueness.

Now the question is “Whether the solution obtained from Diehl can
be represented by a contraction semigroup in L'-norm in the sense
of Kruzkov [11] and Keyfitz [9]7”.

By looking at Diehl’s work it is not clear that solution can be represented
by a contraction semigroup. The main difficulty is to obtain a proper entropy
condition at x = 0.

In this paper under the following condition (see Section 3 for details):

(H) f, g € C*Y(R) and are strictly convex and super linear growth,

we settle this question affirmatively for arbitrary bounded initial data (see also
[1]). Also we show that, in general, our solution differ from the solution obtained
by Diehl (see Example 5.3). Here we give an explicit formula for the solution
of (1.3) satisfying (1.4). This agrees with the Lax-Oleinik [5] formula when
f =g. Also we give a correct entropy condition at x = 0 so that the problem
(1.3) and (1.4) admits a unique solution determined by the initial condition
like in Kruzkov [11]. In [2] we have relaxed the condition (H) and proved the
existence by making use of the Riemann problem solution given in Section 5 and
construct a Godunov type scheme satisfying the boundary entropy condition.

The plan of the paper is as follows. In Section 2, we state entropy condi-
tions E; and Ej, and prove uniqueness results. In Section 3, we state explicit
formula for the solution of the corresponding Hamilton-Jacobi equation of (1.3)
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and (1.4) (Theorem 3.1) and also formula for the solution of (1.3) and (1.4)
(Theorem 3.2). In Section 4, we prove these theorems and also show that these
formulas satisfy the entropy conditions F; and Ej given below. In Section 5,
we derive the solution for the Riemann problem.

2. Entropy conditions and Uniqueness results

In this section we state the interior and boundary entropy conditions and
prove the uniqueness of a solution, using the method of Kruzkov [11].

Interior entropy condition (F;). w is said to satisfy the entropy condi-
tion (F;) (Lax-Oleinik entropy conditions) if for all ¢ > 0

(2.1) lim w(x+2z,t) < lim wu(z—z,1t) it x>0,
0<2z—0 0<2z—0
(2.2) oilzn—lmu(x +2,t) < hzrgo u(z — z,t) it z<0.

Boundary entropy condition (Ep). Atz =0, u(0+,t) = lim,_.oy u(x,t),
u(0—,t) = lim,_,o— u(x,t) exist for almost all ¢ > 0. Furthermore for all most
all £ > 0 one of the following condition must hold:

(2.3) I (u(04,t)) >0 and g (u(0—,t)) >0,
(2.4) F(u(0+,1)) <0 and  ¢'(u(0—,t)) <0,
(2.5) F(w0+,8) <0  and ¢ (u(0—,1t)) >0.

Entropy pairs. Let ¢, p2 be convex functions. Let ¢ (s) = f/(s)¢](s),
Ph(s) = g'(s)@h(s). Then (p;,1;), i = 1,2 are called entropy pairs associated
o (1.1).

Kruzkov entropy condition (Eg). A weak solution u € LS of (1.3)

loc

and (1.4) is said to satisfy (Fx) if for every entropy pairs (¢;,%;) i = 1,2 and
for every p € C{(RxRy),p>0

(2.6) // (¢1 —+w1( )gp>dtdx> /1/)1 (0+,1))p(0,)dt,

(2.7) / / <¢2 P ol )gx>dtdx2/0 W (u(0—, £))p(0, £)d.

Then we have the following

Theorem 2.1.  Let u,v € L™ be two weak solutions of (1.3) and (1.4).
Assume that u,v satisfy the entropy conditions (Ep) and (Ex) and satisfies
initial condition in the following sense:

T [luC2) = ol 1 = Jim [[u(,) = w1 =0,

Then u=w.

As an immediate consequence of this we have the following
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Theorem 2.2.  Let u,v € L™ N BV, be two solutions of (1.3) and
(1.4) satisfying (F;) and (Ep). Further more assume that the set of discontinu-
ities of u and v are discrete set of Lipschitz curves. Then u = v.

Proof of the Uniqueness results. Using the idea of Kruzkov, we prove the
following inequalities (2.11) and (2.12). In order to prove the uniqueness these
inequalities are not sufficient. In addition to these, we need (E}) to prove the
uniqueness.

For the sake of completeness we provide the proof of these inequalities.
Let u and v satisfies the hypothesis of Theorem 2.1. Like in continuous flux
function ([8, p. 24|, [7, p. 23]) by approximation one obtains, for every k €
R,0<peCR xRy)

28)
- - u\xr — QB u\xr QB X — - U+
L[ (= 058+ ftute .03 Y doar > = [~ st 0, k)p(0.0)0

(2.9)
0 poo .
[m/o (|u(3:,t) - k\% + g(u(z,t), k)gg) dz dt > /0 g(u™(t), k)p(0, t)dt,

where f(a,b) = ((f(a)—f(b))/(a—b))|a—b], g(a,b) = ((9(a) —g(b))/(a—b))|a—
b, ut(t) = w(0+,¢), u (t) = u(0—,t). Let p > 0 be a compactly supported
smooth function of z,¢,y, s and by taking k = v(y, s), p € CLRxRL xRxR,),
Dy =Ry xRy, D% = Dy x D, and integrating (2.8) with respect to y and s
to obtain

J,

(1) = 018015 + Flute, ) 000 9) 52 ) drdy s

2
> / @t (8), 0(y, 5))p(0, £y, 5)dt dy ds.
D+><R+

Let A(x,t,y,s) = (f(u(z,t))—f(v(y,s)))/(u(z,t)—v(y, s)) and interchang-
ing v and v in the above formula and add to obtain

J,

) o o o , o
otet) = ot { (50 + )+ Atwutoes) (2 + 92 ) baoayasar

> / Fu* (8), 0y, ))p(0,t,y, s)dt dy ds
Dy xRy

2
+

—/ flu(z,t),vF(s))p(x,t,0,s)dt d ds.
D xRy

Let p(X,T1,Y,T2) = p(X + Y, Ty + T3,Y,T1), then after a change of variables
t=T1+Ts,s=T,z=X+Y,y=Y, Df_ = D, the above inequality reduces



Conservation law with discontinuous flux 31

to

.
[+ v, 1 4 1) - o) [—”
D oT:

FAX+Y T +T2,YT1)3 } dX dY dT dT;
> [ O )p(0. by s)dr dyds
D+><R+
—/ flu(z,t),v7(s))p(z,t,0,s)dz dt ds.
Dy xRy

Lete; > 0,62 > 0and a € C3((—1,0)x(—1,0)) with 0 < «, ng (X,T5)dX dT,
= 1. Let aal,sz(X;T2) = (1/6162) (X/617T2/€2) Let 0 € CO(R+ X R+)

and take p(z,t,y,5) = Qe e,(v — y,t — 5)B(y,s). Then p(X,T1,Y,Ts) =
aEl,Ez(Xa T2)ﬂ(Y, Tl)- Let

I =/ Flut(t),v(y,s))p(0,t,y,s)dtdyds
Dy xRy
=[Ot )3y e

/ / / fu™(t),v(e1z, t —e2T))a(—2,T)B(e12, t — e2T)dzdT dt.

Since lim., Lov(e12,t) = v (t) for almost all ¢ and [ f(u™(t),v"(t —
eaT))a(—2,T)B3(0,t — e2T)dz dT converges in L' as e3 — 0 to obtain

lim hm I = / f(u *(1))B(0,t)dt.

82—>O 61—>

Let

I, = / flu(z,t),vT(s))p(z,t,0,s)dx dt ds
Dy xRy

/Ooo /OOO /Ooo Flu(, ), 07 (8)) o, o, (2, — $)3(0, 8)da dt ds
—0

since o, ¢, (z,t —s) =0 for z > 0. Let

9
I3 =/ (X +Y,Th +T5) —v(Y,T1)| [_p
D oT;

0p
FAX4Y, T+ T, Y, T))

QY] dX dY dTh dT5

0
= [ WO vT ) i) [a—f
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98
Y

:/ / / [u(Y +e1 X, Ty +e2T2) —o(Y, Th)|
Dy J=Y/e1 J—T1/e2

+ A(Y + ElX, T1 + EQTQ,Y,Tl) g—}ﬁ/:| Oé(X, TQ)dTQ dX deT1 .

+A(X+Y, Tl +T2,Y, Tl) :| asl,sz(Xa TQ)dX dY dT1 dT2

op
or

For M > 0, there exist a C'(M) > 0 such that for aq,a2,b < M
1
vmhwfm%w|K/'fwm+<1mww)mlm
0
1
_ (/ F(0as+ (1 — 9)b)d9) laz — b|‘
0
1
g/|fwa41—mmumwy—m—mz—m
0
1
+las — b|/ F(0ar + (1 — 0)b) — F'(0as + (1— 0)b)|d6
0
< C(M)la’l - a2|7
hence
PY. a3

61212105111§013 = /D+ [u(Y, T1) — v(Y, T1)| {8—T1 +A(Y7T1,Y7T1)8—Y} dy dI.

Therefore combining all the inequality to obtain

op op
/D+ lu(z, t) — vz, t)| {m +A(m,t,x,t)ax} da dt
> [T s @00
0

Let B(z,t) = ¢(t)C(x,t) where C(z,t) is such that 9C/0t + M|0C/0x| < 0,
then

/D lu(z,t) — v(x, t)|' (¢)C(x, t)dx dt
+ /D+ lu(z,t) — v(z, t)| {ac + Aai} o(t)dz dt
> - Ooo flut @), v ()et)C(0,t) dt.

Now 9C'/ot + A(OC/dz) < 9C/dt + M|9C/dx| < 0, hence
(2.10)

/ lu(z,t) — v(z,t)|¢ (t)C(x, t)dz dt > — /oo flu®(#),v"(t)e(t)C(0,t) dt.
Dy 0
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Let a <b,a+b>0,z9=1/2(a+b), G={(z,t),|x — x| + Mt <1/2(b—a)}
and p.(s) be a decreasing C*-function in R* such that p-(s) — Xo,(v—a)/2)(5)
in LY(R"). Let C(z,t) = p(|]x — x| + Mt). Then 0C /0t + M|0C/0x| <
M(p' +|p'|) = 0. Hence substituting this in (2.10) and letting ¢ — 0 to obtain

max (37 ,0)
/ lu(x, t) —v(z,t)| (t)dx dt > 7/ flut (@), v (t)p(t)dt.
D+I'-WG 0

Let b—a >2MT and 0 < ¢ € C5°(0,T), then the above inequality becomes

oo b—Mt
/ / u(z,t) — v(z,t)| dedt
0 ax(a+Mt, 0)

(2.11) o
-/ £t (0), 0+ (1) (1)
0
Similarly the inequality (2.9) gives that for any ¢ € C§°(0,7) when T <
(d—c)/2M,c < dwith c+d <0,

min(d—Mt 0)
/ / u(z,t) — v(z, t)| dz dt

(2.12) M

max(Z,0)
> / a(u= (), 0™ (1)) (t) dt .

]

Proof of Theorem 2.1. From (2.11) for any a > 0, max(—a/M,0) =

0 and hence fb+AAjtt lu(x,t) —

f:HJ\\j: lu(z, t) — v(z,t)|dx < fab lup(z) — vo(x)|dx = 0. Therefore u = v for
x> Mt Leta <0<ba+b>0,¢<0< —a,¢c—a<0,Ty=—a/M=
d/M. Then by the choice of a,b,c, Ty < min((b —a)/2M,—(c+ a)/2M). Let

v € C§°(0,Tp), Then from (2.11) and (2.12) we have

To b— Mt
/ / —v(x,t)|dx dt
0

(2.13) A

v(x,t)|dz is a decreasing function and hence

Claim.  For almost all ¢, g(u™(t),v™(t)) — f(ut(t),vT(¢)) > 0.

Let
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Without loss of generality assume that u™ () > v+( ). Suppose (f(u™(t)) —
Ft )/ (ut(t) —vt(t)) >0, then f(u(¢)) > f(v™(¢)) and hence from (1.4)
gu=(t)) > g(v=(t)). If f'(ut(t)) > 0 then by (Ep), ¢'(u~(¢)) > 0 and hence

v~ (t) < u(t) since g is convex. This together with (1.4) gives I = g(u™(t)) —
g(v ( )) fut(t) + fot(¢)) > 0. If f'(u™(t)) < 0, then by convexity of f
Flut () < flot(t )) which is not possible by assumption.

Suppose (f(u(£)) — F(u*(£)/(u™(t) — v¥(t)) < 0, then f(u(t)) <
f(vt(t)) and hence from (1.4) g(u=(t)) < g(v=(t)). If u_(t) < v~ (t), then
I>0.If u=(t) > v~ (t), then I = 0. This proves the claim.

From the above claim and (2.13), it follows that | TO

Tare [u

v(x,t)|dzdt > 0, for all ¢ > 0, € C°(0,T). Hence t — [
b— Mt

(

v(z,t)|dr is a non-increasing function. This implies that [ . |u(z,t) —
(
i

b— DMt
fc-‘th | (QC,

u\zx,

b—Mt

)

)

)
v(z,t)|de < f; luo(x) — vo(x)|dz = 0 and therefore u = v for 0 < x < Mt.
Similarly for z < 0 and hence u = v. This proves the Theorem.

O

Proof of Theorem 2.2. Let ¢ be smooth function Y'(s) = f/(s)¢’(s). Let

(2.14) I(s,t) = (s =t)(Y(s) = V(1)) — (@(s) — (£))(f(s) — f(1))
Claim. s+ I(s,t) is convex and positive for each fixed ¢.

% = (Y(s) =Y(t) + (s = )Y"(s) = ¢ (s)((5) = £(1)) = (p(5) = (1)1 (5),
2
% = 2Y"(5) + (s — )Y"(s) — 2¢'(5) f'(s)

" (s)(f(s) = f(1) = (e(s) — (1)) " (s)
( =" ()¢ (s) + ['(s)#"(5))
—@"(5)(f(s) = (1)) = (p(s) — (1)) " (5)
=" () = f(s) = (=) [ ()] + ["(9)p(t) — p(s) = (t = )¢/ (s)]

1
~(s—1)2 {g@"(s)/o (1—0) (6t + (1 — 0)s) db

+ f”(s)/o (1— 0)¢" (0t + (1 — 0)5)d6

> 0.

Furthermore, I(t,t) = 90I/0s(t,t) = 0. Hence I(s,t) > 0. This proves the
claim.

Using this claim and Theorem 2.1 we deduce Theorem 2.2. In order to do
this, it is enough to show that (F;) implies (Ex). Let ¢ be a smooth convex
function on R and let ¢'(s) = f/(s)¢’(s). Since u is a solution of (1.3) and set
of discontinuities of u are discrete set of lipschitz curves, hence by integration
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by parts we have for any p € C}(R x Ry), p > 0,

/ / ( +(u) )dxdt Z/{ w)|vr + [(u)]va}p do
- [T srenpo.na,

where I'; are curves of discontinuities of w in « > 0, (v1,v2) the unit outward
normal to I'; and [p(u)] = ¢(u™) — ¢(u™), jump across the curves I';. Since
u is a solution of (1.3), hence by Rankine-Hugoniot condition, vo > 0 and
vi/ve = —[f(uw)]/[u]. Hence on I';,

[ﬂWm+WWM:w{—

V2 —
= — -1 ).
(u_ _ u+) (u 7u )
Since u satisfies (E;) and hence v~ > w*. Therefore from the above claim
[p(w)]vr + [¢(u)]ve > 0. This proves that u satisfies (2.8). Similarly u satisfies
(2.9). Hence u satisfies (Fx) and therefore from Theorem 2.1, v = v. This
proves the Theorem. O

3. Explicit formula for the solution

Before going to the explicit formula, let us recall some well known results
on convex functions without proof (for example see [5, p. 112]).

f : R — R is said to be a strictly convex and superlinear growth if for
a#bte(0,1)

flta+ (1 —16)b) <tf(a)+ (1 —1t)f(b) and lim M:oo

a— 00 |a‘
Associate to f define its convex dual f* by

fr(@) = sup{azy — f(y)}.
yER
If f is strictly convex and super linear growth then f and f* satisfies the
following:
(a) f*(0) = —min f, is finite,
(b) f* is strictly convex and super linear growth and satisfies

fly) = igg{axy — f* (@)}

Definition 3.1 (Admissible curves). Let 0 < s <t and & € ¢([s,t],R).
¢ is called an admissible curve if the following holds.

(1) € consists of at most three linear curves (see Figs. 3.1a, 3.1b and 3.1c
for > 0, Figs. 3.2a, 3.2b and 3.2¢ for < 0) and each segment lies completely
in either x > 0 or x < 0.
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(2) Let s = t3 <ty <ty <to =1 besuch that for i =1,2,3, & = {|i, 1,1
be the linear parts of £. If £ consists of three linear curves then & = 0 (see
Figs. 3.1c and 3.2c).

o oA oA
x xy (x
t, : &,
£ 2
1 e,
> >
13 3
Fig3.1a.& =(€,.0.0) Fig3.10.8 =€ .0.8) Fig3.1c.& =€ 8289
LX) o/
(xt) (x.t)
3 &
> >
3 3
Fig32a.& = & 4. 6) Fig3:20.8 =& .0.83) Fig3.2c.8- (6. &,&)

Represent an admissible curve £ = {£1,&2,&3}. Let

a1 c(z,t,8) = {€ € ¢([s,t],R); £(t) = x,& is an admissible curve},
(3:1) ez, t) = ¢z, t,0).

Divide ¢(z, s,t) into three categories defined as below.

(3.2)

co(x,t,8) = {€ € c(x,t,5);€ is linear and x£(0) > 0V 0 € [s,t]}.
(see Figs. 3.1a and 3.2a)

cr(z,t,8) = {€ € c(x,t,s); € consists of three pieces and z£(0) > 0V 0 € [s, t]}.
(see Figs. 3.1c¢ and 3.2c)

ep(x,t,8) = c(x,t,8) — {cr(z,t,8) Uco(x,t,s)}.
(see Figs. 3.1b and 3.2b)

c(x,t) = ¢(x,t,0) for I =0,r,b.

Let f and g satisfies the hypothesis (H). Let f*, ¢g* denotes the convex duals
of f and g respectively. Let w be a function on R and & € ¢(z,t, s). Define

L (d
pealatis) =€) + [ ()
(0€[5,11:6(8)>0)
0 (8o
(o€l tlie(@)<0p  \d0

+ meas{6 € [s,t];£(0) = 0} min{f*(0), ¢*(0)}.
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Theorem 3.1.  Let vg be an uniformly Lipschitz continuous function on
R and pe(z,t) = pe v, (x,t,0). Define
(3.4) v(z,t) = inf{pe(z,t), &€ c(z,t)}.

Then v is an uniformly Lipschitz continuous function satisfying the following:

(i)

vt + f(vz)

(3:5) v+ g(vs)

0 m x>0,t>0,
0 m x<0,t>0.

(ii) For almost every t, vy(0+,t) = limy_oy ve(x,t) and v, (0—,t) =
limg_,o— vy (z,t) exist and satisfy f(vy(0+,t)) = g(vs(0—,t)). Furthermore
there exist disjoint sets V, 51,85 such that (0,00) = VU S U Sy, V an open
set, meas(Sy) = 0 with the property that for almost every t € V, one of the
following pair of inequalities holds:

(3.6) f(0z(04,)) 20, ¢'(v2(0—,1)) >0,
(3.7) f(wa(0+,8)) <0, ¢'(v2(0—,2)) <0.
Ift € S1, then

(3.8) f(wa(0+,8)) <0, ¢ (v2(0—,8)) > 0.

(iii) There exist a constant M > 0 and Lipschitz continuous functions
Ri(t) > 0, Li(t) > 0 on [0,00) with R1(0) = L1(0) = 0 such that for all
z2>0

(3.9) flva(z + 2,1) = f(v2(2, 1))
g z]\f—zx if 0<z<z+z<Ri(t),
- ; if x>0 and not in the above range.
(3.10) 9'(va(@,1)) — g (va(x — 2,1))
niz if Li(t)<z—zandz <0,
- % if x <0 and not in the above range.

Theorem 3.2.  Let ug € L(R) and vo(x) = [ uo(0)d. Let v be as
n (3.4), then u = Jv/0x is a weak solution of (1.3) and (1.4). Also u satisfies
the entropy condition (E;) and (E}) and the solution can be given explicitly as
follows:

There exist Lipschitz continuous functions Ry(t) > 0 and Li(t) < 0 on
(0,00) and bounded variation functions yi(x,t) for £ > 0 (non increasing in
(0, R1(t)) and non decreasing in [R1(t),o0)) and y_(z,t) for x < 0 (non de-
creasing in (—00,0)) such that
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(i) For x >0,
o w1 () o =<m
S (%M) if x> Ri(t).

(i) For x <0,
D (=) o #=h0

(3.12) u(x,t) =
(¢)! <x - y(x’t)> if x> Li(2).

t

Furthermore w is unique in the class of all solutions for which the set of dis-
continuities is a discrete set of Lipschitz curves.

Remark 3.3. Like in the single flux case, under suitable assumptions
on f and g, following decay estimates holds. Let u,v, R1(t), L1(t) be as in
Theorem 3.2. Then

(1) Assume that |vg|eo < 00, f*(0) > g*(0), g(0) = 0, ¢’(0) > 0 and there
exist ¢ > 0 such that 1/¢ < ¢*"(€) < ¢. Let Uy = {t; Ri(t) > 0}. Then there
exist a constant M > 0 such that for almost all ¢t € U

|f(u(0+, )] < M/t
(2) Assume that |vg|eo < 00, f*(0) < g*(0), f(0) =0, f'(0) <0 and there
exist a ¢ > 0 such that 1/¢ < f* (§) <ec. Let U_ = {¢t; L1(t) < 0}. Then there
exisst a constant M > 0 such that for almost all ¢t € U.

lg(u(0—,t))| < M/t"/2.

4. Proof of Theorems of 3.1 and 3.2
Let v,vg and ¢(x,t) be defined as in Section 3.

Definition 4.1. For z € R, ¢t > 0, define the set of characteristic curves
ch(z,t) by

(4.1) ch(z,t) ={£ € c(z,t); pelz,t) =v(z,t)}
Then we have the following

Lemma 4.2.  For (z,t) e Rx Ry, v e LS (R xRy) and ch(z,t) # .
Furthermore there exist a constant M > 0 depending only on Lipschitz constant
of vo, [ and g such that |d§/ds|ec < M for all £ € ch(x,t).
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Proof.
Step 1. ve LX (RxRy).

Let L = Lip (vg). It is enough to prove for z > 0. Let & = (£1,£2,&3) €
c(w,t) defined on the partition 0 = t3 <ty <t; <to=1t. Let & = d¢;/ds and
(&1,&2,&3) = (p1,p2,p3). We have to consider three cases. Suppose € € co(z,t),
then £(8) = o+ py (6 — t) and hence pe(z,1) = vo(€(0)) + tf*(p1) > v0(0) —
L(z — p1t) + tf*(p1) = vo(0) — Lz + ¢(Lp1 + f*(p1)) > vo(0) — La — tL; where
L, = |inf,(Lp + f*(p))| < co. Suppose £ € cyp(x,t), then t1 = to =t — x/p1
and 0 <t —x/p; <t and hence

pe(x,t) = vo (P3 (t - p%)) + p%f*(pl) + (t - pﬁl) 9" (ps)

> 10(0) + (t - pl) (Lo +0"Ga)} + 20

> 00(0) + (t - 3) inf{—Lp + g*(p)} + — inf f*(p)
D1 p p1L P
> v(0) — Lot,

where Ly = |inf,{—Lp + ¢*(p)}| + |inf, f*(p)| + |inf, ¢*(p)|. Suppose & €
¢r(x,t), then £(0) = —taps and with Ly as above

pe(x,t) = vo(—taps) + (t — t1) f*(p1) + (t1 — t2) min(f*(0), g7(0)) + t2f " (ps)
> v9(0) — Ly [t2 + (t — t1) + (t1 — t2)]
=0(0) — Lat.

Since £o(0) = x for 6 € [0,1] is in ¢(z,t) and hence by the above estimates,
we obtain a constant L > 0 such that for all (z,t) € Ry x Ry,

vo(0) — i(x—l—t) <w(x,t) < pe(x,t) =vo(z) +tf7(0).

This proves that v € L5 (Ry x R ).

loc
Step 2. ch(z,t) # ¢.

Let &, € c(x,t) be a minimizing sequence for v(z,t). Let &, = (E1n, Eon, E3n)
defined on 0 = t3 < o9, < t1, <tg=1. Let §m = Pin,t = 1,2,3. Let € > 0 and
choose N(e) > 0 such that for all n > N(e), pe, (x,t) —e < v(z,t). We claim
that for some subsequence, {|¢,|o0} is bounded or a minimizer is achieved. To
prove this we have to consider several cases. Suppose for some subsequence,
&n € co(x,t), then &, is a straight line and hence vo(x — p1nt) +tf*(p1n) —€ <
v(z,t) <wv(x)+1tf*(0). Therefore t(f*(pin) — f*(0)) —e < vo(x) —vo(x — P1nt)
< Lpipt. This implies that either {p1,} is bounded or {(f*(p1n) — f*(0))/p1n}
is bounded. Hence by superlinearity {p1,} is bounded and therefore {|¢, o0} is
bounded.
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Suppose for some subsequence, &, € cy(x,t), then ta, =t — x/p1,. Let
ayn = (€1n,0,0) defined on the same partition as of &, then

(4.2) v (p3n (pi — t)) + pif*(pln) + <t - pi) 9" (p3n) — e < w(w,t)

(43) < () + i) + (t - ;) min(f*(0), 4*(0))
and hence

x g*(p3n) — min(f*(0), g*(0))
(44) P3n (t - E) < Dan — L) <e.

Let lim,,— oo (t — 2/p1,) > 0. Either ps, <1 or ps, > 1. Suppose ps, > 1,

then letting n — oo, € — 0 in the above equation gives {ps, } is bounded. Since
t —x/p1n < t, hence {ps,(t — x/p1n)} is bounded and

if*(pln) <o(z,t)+e—wo <P3n (Ihxn - t>) - (t - pi) 9" (p3n) -

This implies that {p1,} is bounded. Hence {|{|o} is bounded.

Suppose lim,, . (t — 2/p1n) = 0, then lim, .o p1, = x/t. If {p3n} is
bounded, then {|&,]c} is bounded. If p3,, — oo, then letting n — oo, € — 0 in
(4.4) to obtain lim; o0 (t — 2/p1n)9* (P3r) = 0. This implies that

v(@,t) = lim pe, (2.8) = v (0) + ¢ (5) |
and hence £(0) = x + (z/t)(0 — t) € ch(z, ).

Suppose for some subsequence &, € ¢,(z,t), then

v0(7p3nt2n) + (t - tln)f* (pln) + thf* (an) + (tln - t2n) mln(f*(()), g*(O))
<wv(z,t)+e
S UO(O) + (t - tln)f*(pln)
+ t1, min(f*(0),¢*(0)) + ¢,

this implies that

(4.5) Pl fan {f ) _ i 0), g*<o>>} <e.

‘ 3n|

Let lim,,_ o tap, > 0. Then either |ps,| < 1 or |ps,| > 1. Suppose |p3n| > 1,
then letting n — oo, € — 0 in (4.5) to obtain that {ps,} is bounded. Since
x/p1n =t — t1n, hence

$f* (pln)

(46) Pin < U(:r'a t) +e— UO(_p3nt2n) - t2nf*(p3n)

— (tin — t2n) min(f7(0), 9%(0)),
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and this implies that {p1,,} is bounded and therefore {|£n|oo} is bounded.

Let lim,,— oo to, = 0, then either {ps,} is bounded or p3,, — oco. If {ps,}
is bounded, then it follows from (4.6) that {pi,} is bounded. Hence {|&,|o0}
is bounded. If ps, — oo, then from (4.5) it follows that to, f*(psn) — 0 and
hence p3pta, — 0. Hence from (4.6) {p1,} is bounded. Let for a subsequence
Pin — D, tin — t1, then

v(z,t) = lim pe, (2,1)
= vo(0) + (t —t1)f*(p) + t1 min(f*(0), g7(0)).

Hence if £&(0) = x +p(6 — t) for 0 € [t1,t] and &(0) = 0 for 0 € [0,14], then
&= (&,&,¢) € ch(x,t). This proves the claim.

Now from the above claim we can choose a subsequence still denoted by
{€,} converging to & uniformly and &;,, — & to obtain & € ch(z,t). This proves
ch(x,t) # ¢.

Step 3. |d€/ds|eo < M, VE € ch(z,t).

Let & = (§1,§2,£3) € ch(x,t) defined on the partition 0 = t3 < to < ¢; <
to =t Let & = p; i = 1,2,3. Let £ € co(x,t), then £(0) = = + p1(6 — t)
and hence vo(z — p1t) + tf*(p1) = v(x,t) < wvo(x) +tf*(0). This implies that
f*(p1) < Lpy and hence {|€|o} is bounded by a constant independent of (z,).

Let t; > 0. Suppose § € cp(x,t), thento =t; =t—a/p;. Let a = (1,0, ),
then vo(ps(x/p1 — 1)) + (x/p1)f*(p1) + (t — 2/p1)g*(p3) = v(z,t) < vo(0) +
(2/p)f*(p1) + (¢ — 2/py) min(F*(0), 6°(0)). This implies that (1/ps)(g" (ps) —
min(f*(0),¢*(0))) < L and hence {ps} is bounded independently of (z,t). If
p1 = 0, then there is nothing to be proved. Hence assume that p; > 0. Since &
is a minimizer and hence (0/9p1)p¢(x,t) = 0. This implies that

vt (s (2 =0) ) = 7 0) + 00 0) = ") = 0.

b1

Since f(f*(p1)) = —F*(p) + prf”(p1) to obtain f(f¥(p1) = g"(ps)
—p3vy(ps(z/p1 — t)). Since ps is bounded independently of (z,t), |vfleo < 00
and f is of superlinear growth implies that p; is bounded independently of
(,t). This gives that {|¢|os} is bounded independently of (z,t).

Suppose £ € ¢.(x,t). Then

o{et) = vol—t2p) + = () + (t Lo t2> min(£*(0), g°(0)) + t2f* (ps)

Let p; > 0, then (9/dp;)pe(z,t) = 0 implies that —f(f* (p1)) = min(f*(0),
¢*(0)) and hence {p;1} is bounded independently of (x,t). Let ps > 0, then
(0/0p3)pe(x,t) = 0 and hence f*'(p3) = vj(—t2p3) and hence ps is bounded
independently of (z,t). This proves the Lemma. O

Lemma 4.3. 1z — v(x,t) is a Lipschitz continuous function with Lips-
chitz constant independent of t.
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Proof. In order to prove this, we have to consider several cases. In the
sequel we denote L; to be a generic constant depending only on Lipschitz
constant of vy, f* and g*.

Step 1. Let 0 < 1 < x9, then v(xa,t) — v(xy,t) < Ly|ze — 1] .

From Lemma 4.2, there exist a { = (£1,82,83) in ch(z,t) defined on
the partition 0= t3 S tg S t1 S to = t. Let (p1,p2,p3) = (61,52,53) and
po = (f*(0) — g*(0))*.

Suppose £ € co(z1,t). If 21 = 0 and p; < 0 or 1 > 0, define «(f) =
x2 +p1(0 —1),0 € [0,¢], then « € co(x2,t) and

v(w2,t) —v(z1,t) < vz —pit) +tf*(p1) — vo(w2 — pit) —tf*(p1)
S L(l‘g — 1‘1) .

Suppose £ € cy(z1,t). Let p = ps + (f7(0) — ¢"(0))" = ps + po. If
(xg —x1) — p(t — x1/p1) > 0, define A\ = x1 + (p(t — a:l/pl))/t be the slope of
the line joining (z9,t) and (z2 —x1 — p(t — x1/p1),0) and a(f) = xo + A(0 — t),
6 € [0,t], then « is in ¢o(x2,t) and by convexity of f*

(@, t) — v(z1,t) < vo(a(0)) — vo(£(0)) + f*(A) — f)—jprl)

&

since p(t — x1/p1) 2 — o1, |[(f* () — g7(p3))/Bl < |(f*(B) — 97(ps))/pol
if f*(0) > ¢*(0) and (f*(p) — g (m))/P = (f*(p3) — f7(0))/ps + (97(0) —
9" (ps))/ps + (f*(0) — g*(0))/ps if f*(0) < g*(0).

If 5 — xqy — p(t — 21 /p1) < 0, define )\ = xop1D/(Ppr1 + p1(x2 — x1)) the
slope of the line joining between (z2,t) and (0,t—x1/p1 — (x2 —21)/P), a1 (0) =
zo+ A0 —1),0 €[t —x1/p1 — (x2 — x1)/D,t] and as(0) = p3(0 —t + x1/p1 +
(xo — x1)/p),0 € [0,t — (x2 — 1)/D — x1/p1], then @ = (a1, ¢, a3) € cp(w2,t)
(see Fig. 4.1) and by convexity of f* we have

v(@a,1) = v(a1,8) < vo((0) = v0(E(0) + ZF V) + (=32 ) 9" (ps)

X
- ;—if*(m) - (t - ;—i) 9" (p3)

—~
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T2 —T1

(w2 — 1) + %f*(Pl) + Tf*(ﬁ)

since t — x3/A = (t — x1/p1) — (22 — 21)/P, (f*(P) — 9" (p3)) /D < |(f"(ps) —
f7(0))/psl + (9" (p3) — g7(0))/ps| if f*(0) < g(0) and if f*(0) > g*(0), then
[(f*(B) — 97 (ps)) /Pl < L.

Let € € ¢, (x1,t). If f*(0) < g*(0), then by strict convexity of f*, £ cannot
be a minimizer. Hence assume that f*(0) > ¢*(0) and po = f*(0) — ¢*(0) and
p=p1+po. If 10— +Z~)(t2—t—|—$1/p1) > 0, define A = (xl/p1t)p1—|—(t2/t)p3+
((t —te —z1/p1)/t)p and a(f) = z2 + A(0 —¢) for 6 € [0,¢], then o € co(xa,t)
and by convexity of f*,

v(w2,t) — v(w1,t) < vo(a(0)) —vo(£(0)) +tf*(N) — ﬁ—If*(O) — (t1 — t2)g™(0)
— taf"(p3)
<L <$2—1?1 +l3<t2 —t+ p_i>) + p—if*(pl)
b (ps) + (t— by — Z—pf (5)

- ﬂf*(il?l) — (t1 —t2)g"(0) — taf*(pa)

P
<2L(xy —x1) + (t— Z—l —t2> ﬁ(f*(ﬁ)p%g*(()))

< (o f*(ﬁ)ﬁg*(O)l) (3= 1),

since p(t — x1/p1 —t2) < @2 — 2.

Suppose p(t —x1/p1 —t2) > x2 — 21, define A = xop1p/(Pr1 +p1(r2 — 21)),
a1(0) = z2+ X0 — 1), 0 € [t —x1/p1 — (2 — x1)/D,t] az2(f) = 0 for 6 €
[ta,t —x1/p1 — (X2 — 1) /D], @3 = &3 in [0, 3). Then o = (e, g, a3) € ¢ (a2, 1)
(see Fig. 4.2) and

ont) = vlort) < 2P0+ (12 - 220 ) g0
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PO -g O,
S‘ 5 (w2 1)

S i(dfg - :131) .

Now Step 1 follows from all the above estimates.

) 0
(4 ) (%) (x.1) [C )
& . 3
©.t-5) .t %*) ]
Xy Xpo X 0,1-%0 . X2 " X1
Ot X1 XX, 5, 0% 7%
1
(A7) E3= 05
Fig.4.1 g Figd.2 ¢

Step 2. w(xa,t) —v(wy,t) > —L(xs — 21).

Let § € ch(wa, t) with (p1,p2,ps) = (€1,€2,€s) defined on 0 < t5 < t; <
t; < tog =t. Suppose £ € co(za,t). If 21 — pi1t > 0, define a(0) = z1 + p1(0 —
t),0 € [0,¢], then a € ¢o(x1,t) and

v(x2,t) —v(x1,t) > vo(z2 — P1t) —vo(z1 — P1t) > —L(22 — 1)

If 21 — p1t < 0, define «(0) = x1 + (x1/t)(0 — 1), 0 € [0,¢] then o € cp(x1,t) and
by convexity of f*.

> —L(xy — p1t) + (tp1 — 1)

S AN TAAES 07 PR

since 1 — p1t < 0 implies that zo — p1t < 9 — 21, 1 — p1t > 1 — x2. Let
€ € cr(za,t) Ucp(za,t). Define X = (xzo/x1)p1,1(0) = 21 + A(0 — t) for
0 € [t1,t], @ = (1,£2,€3), then a € ¢, (x1,t) U cp(22,¢) and

(f*(mg —f (6)>
1

oz, 1)~ vlan,t) 2 2 (o) = )

=2 = L) -

P
(f*(p1) — £7(0))
b1

(x2 — 1)

1

f(0)
= (22 — 1)
Z —E(.’EQ — :131).

This proves Step 2.
By Step 1 and 2 it follows that for 0 < x1 < x9,[v(z2,t) — v(21,t)| <
L|zy — x1|. Similarly if 2o < 21 < 0, |v(22,t) — v(2x1,t)| < Llzg — 21|. Let
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11 <0 < @y, then [v(z1,t) —v(ze, t)| < |v(z1,t) —v(0,1)| + |v(22, 1) —v(0,1)) <
L(|Jz1] + |z2|) = L|ws — x1|. This proves the Lemma. O

Lemma 4.4 (Dynamic Programming Principle).  Let0 < s <t, w(z) =
v(x, s) and define

(4.7) W(z,t,s) =inf {pew(z,t,5), &€c(z,t,s)},

then v(x,t) = W(x,t,s) .

Proof. From Lemma 4.3, v(x,s) is uniformly continuous function in x
and hence by imitating Lemma 4.2, minimizers for W (x,t,s) exist. Denote
ch(z,t,s) the set of minimizing curves. In order to prove the Lemma, we have
to consider several cases. S

Let z > 0 and § = (§1,82,83) € ch(z,t,s) with (p1,p2,p3) = (§1,82,83)
defined on the partition s = t3 < t5 < t; <ty =t. Let y = £(s) and o =
(a1, a9,a3) € ch(y,s) with (q1,¢2,q3) = (A, &g, &3) defined on the partition
0=s53 <85y <51 <59=s5.

Case 1. Let & € ¢o(x,t,8).

Let o € ¢o(y, 8). Define A = (1—s/t)p1 4+ (s/t)q1 and 5(0) = z+ A (0—1), 0
€ [0,t]. Then 8 € ¢o(z,t) and

v(x,t) <wvglx — At) +tf7(N)
<wvo(x —qit) +sf (q1) + (t —8)f"(p1)
=v(y,s) + (t =) f"(p1)
=Wi(x,t,s).

Let a € ep(y, s) Uer(y, s) and A = x/((t — s)p1 + (sq1 —x)). Define v, (6) =

x—/\(6‘—t), 0¢c [817t]7 Y2 = Q2,73 = (3, then’y = (717’727,73) € cb(;v,t)Ucr(:U,t
and

Case 2. Let &€ € ¢p(x,t,s).

Let a € co(y,s). Define A = (15 —y)/(t —x/p1) = s/(t — x/p1) + ((t —
s—x/p1)/(t —s/p1))p3, 11 = &1,72 = ¢,73(0) = A0 — t + 21/p1), theny =
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(717’725 73) S Cb(.’lf, t) and
x * x *
v(z,t) < vo((0)) + *f (p1) + |t — o 9" (A

< wla (0))+pf(p1) (t—s—p)g<p3>+sg< )

+
=(y, —|— f D1 +<t—s——)
gW(xts)

Let a € ¢y(y, 8) Ucr(y,s). Define v1 = & 12(0) = 0 for 0 € [t1, s2], 73 = as,
then v = (1,72,73) € er(@, ) Ucp(,t). If v € cp(w,¢), then

o(,6) < 00(1(0)) + - £ () + (11 = s2) min(f*(0),9°(0))
+ 529" (g3)
< w(1(0) + = () + (11 = 51)9°(0) + (51— s2) min(f°(0), 4°(0))
+ 529" (g3 )
< w((0)) + - F* (1) + (01 = 8)g"(ps) + 0" ()

+ (51 — s2) mm(f (0),97(0)) + 529" (g3)
= v(y.s) + p%f*m) +(t — 5)g" (pa)
< W(z,t,s),

since 0 = (1/(t; — s1))(t1 — s + y/q1). Similarly the same inequality holds if
v € cr(z,t).

Case 3. & € c,(x,t,5).

Suppose (O2RS CO(y78)7 define A = _a(o)/t27’71 = 617/}/2 = 627’73(9) =
A(@ — tq) for O € [0.t5]. Then v = (y1,72,73) € ¢(x,t) and

v(@,t) < vo(7(0)) + p%f*(m) + (t1 — t2) min(£*(0), g*(0))
+ 2" (A)
< w((0)) + - S (1) + (1 — t2) min(f*(0), g"(0))
+ (t2 — 8) f"(p3) + sf"(q1)
= o(9) + {217 n) + (0 = 1) min( 700,57 (0) + (12— 9" pa) |
< W(at,5),

since A = (1/t2)((t2 — $)p3 + s¢1). Suppose a € cp(y, s), define A = —a(0) /11,
1 =&, 72 = ¢, 73(0) = A(0—t1) for 0 € [0,21]. Then v = (71,72, 73) € cv(z,t).



Conservation law with discontinuous flux 47

By strict convexity of f*,¢ € ¢,(,t, s) implies that f*(0) > ¢*(0). Hence
v(z,1) < vo(1(0)) + p%f*(pn +t1g"(M)
< w(@(0)) + = (1) + 519" () + (11 = s1)97(0)
< w(@(0)) + = f*(0n) + (11— 12)g7(0) + (t2 = 51)*(0)
+ 519" (q3)
< w(@(0)) + () + (11— 12)97(0) + (02 = 5)f" (s)
+ %f*(ql) + 519" (g3)
= w0y, ) S (1) + (1 = t2) min(f* (0), 6"(0))

+ (t2 — s).f*(p3)
< W(z,t,s).

Suppose a € c.(y,s), define 4 = &1,72 = 0 in [t1, 2] and 3 = a3. Then
Y= (71772)73) € CT(x t) and f*(o) > g*(o) Hence

v(z,t) <wvo(v(0)) + (t1 — 52)g™(0) + 5197 (g3)
< vo(7(0)) + (t1 —t2)g"(0) + (t2 — s1) f7(0) + (s1 — 52)9"(0)
+ 519" (g3)
< vo(a(0)) + (t1 — t2)g"(0) + (51 — 52)g"(0) + (t2 — 5) f" (p3)

+ q%f*((h) + 519" (g3)

X * . * * *
=v(y,s) + o f (p1) + (1 — t2) min(f(0), g"(0)) + (t2 — 5)g" (ps)
< W(z,t,s).

Combining all the 3-cases to conclude that
(4.8) v(z, t) < Wi(x,t,s).

In order to prove the reverse inequality, let £ = (£1,82,83) € ch(w,t) with
(p1,p2,p3) = (£1,&2,€3) defined on the partition 0 = t3 <t; <ty <t; <tg=t.
Case 4.  Let & € co(,t).

Let y = £(s) and «(f) = 2 + p1(0 — ¢) for 6 € [s,t]. Then a € cy(x,t,s)
and
o(z —p1t) +1f"(p1)
(x = p1t) + sf"(p1) + (t — )" (p1)
y»s)+ (t=s)f"(p1)
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Case 5. Let £ € ¢p(x,t).

Let y = £(s) and define o = |5 5 . Then a € ¢(x,t,5) and if t —s—2/p; >
0, then

olast) = oo (€(0) + (o) + (t - ;) 4" (p3)
= wlEO) + (o) + (t . ;) g (p3) + 5" (p3)

> oly.5) + (1) + (t— . pi) 4" (ps)
> W(x,t,s).

Ift—s—x/p; <0, then
olot) = wl6O) + 2 )+ (1= 2 ) g"m)
p1 P1

~ () + L) + ( Y

>v(y,s) + (t—s)f"(p1)
> Wiz, t,s).

)g*(m) + %f*(m)

Case 6. & € cp(z,1).
Let o = |54, then « € c(x,t,5). If s € [t1,1], then
v(w, 1) = vo(£(0)) + p%f*(m) + (1 — to) min(f*(0), g*(0)) + t2f* (ps)
— 09 (£(0)) + p%f*(m) + (1 — to) min(f*(0), g*(0)) + t2f* (ps)
+(t—9)f*(m)

v(@, 1) = vo(£(0)) + (s — to) min(f*(0), g*(0)) + taf* (ps)
+ (tr — s) min(f*(0), 4" (0)) + p%f*(pn
> u(y, s) + p%f*(m) + (ty — s) min(f*(0), 9*(0))
> Wia,t,s).

If s € [0,%1], then

v(z,t) = vo(£(0)) + p%f*(m) + (t1 — t2) min(f7(0), g"(0)) + (2 — ) /" (ps)
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+ sf*(ps)
> v(y, s) + p%f*(m) + (t1 — to) min(£*(0), g*(0)) + (2 — 5) £* (ps)
> Wi(z,t,s).

Combining (4.8) and the above estimates to obtain v(x,t) = W(x,t,s). Simi-
larly for x < 0 and this proves the lemma. O

Now the following corollary is the immediate consequence of Lemma 4.4
which we state without proof.

Corollary 4.5. Let 0 < s <t, &€ ch(x,t) and a = {54, B=¢
Then a € ch(x,t,s) and 8 € ch(&(s), s).

[0,s]

Lemma 4.6. v is a uniformly Lipschitz continuous function.

Proof. In view of Lemma (4.3), it is enough to prove that t — v(z,t) is
a Lipschitz continuous function with Lipschitz constant depend only on vy, f*
and g*. Without loss of generality we can assume that o > 0 and 0 < s < 1.
Let & = (&1,82,83) € ch(x,t) with (p1,p2,p3) = (£1,82,83) defined on 0 = t3 <
ty < t; < to = t. From corollary (4.5), a|jsyq € ch(z,t,s). Let L denote a
constant depending only on Lipschitz constant of z — wv(x,t), f*,¢*. From
Lemma 4.2, we have,

(i) if o € ¢o(x, ¢, s) then
v(x,t) —v(z,s) > v(a(s),s)+ (t—s)f (p1) —v(x,s)
> —L{la(s) — x|+ (t — 9)]
> —2L(t—s).
(i) if a € cp(w,t, ), then z/p; <t — s and |a(s) — x| = [p3(z/p1 — (t -
s)) — x| < (x/p1)(ps+p1)+ (t —s) < L(t — s). Hence

v(z, t) — o(w,5) > v(a(s),s) + p%f*(m) +(t—s—a/p) g (ps)

—v(z,s)
> —LI&(s) — x| = (IF*(pu)] + 9" (p3)]) (¢ — 5)
> —L(t—s).

(iii) if @ € ¢, (x,t,8), then z/p; <t —s,t; —ty <t — s, hence
v(@,t) — v(z,s) = v(als), s) + Z%f*(m) + (1 — t2) min (f*(0), ¢7(0))
)

+ (t2 — 8)g™(p3) — v(z, s)

> —i{% 17O+ 197 ()] + |g*<p3>|} (t—s)
Z _i(t - 5)7

since |a(s) — x| < |ps|(ta — s)| + p1(z/p1) < L(t — s).
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Also from Lemma 4.4, v(x,t) — v(x,s) < (t — s)f*(0). Combining all
the above estimates to obtain |v(x,t) — v(x,s)] < L|t — s|. This proves the
lemma. O

Analysis of characteristic curves ch(z,t). Since the admissible curves
consists of three types of curves. Hence we need to understand the behaviour
of the characteristic curves in a systematic way.

Definition 4.7. Let o € ¢(x1,t1) and § € ¢(xa,t2). a and G is said to
intersect properly if there exist a 6y € (0, min(¢y,%2)] such that a(6y) = 5(6o),
05(90) 7é 5(90) and 05(90) 7é 0.

Lemma 4.8. Let a € ch(z1,t1) and B € ch(xa,t2). Then a and § do
not interset properly.

Proof. Suppose a, 3 intersect properly. Then there exist a 6y € (0, min(t,
to)] such that () = B(0g) # 0, &(6p) # B(6y). Without loss of generality we
can assume that © = a(6y) > 0 and ¢; < t2. Then we can find sy < 0y < 51
such that « and (3 are positive line segments in [s2, min(¢y, s1)] and (s, s1]
respectively. Let A = (8(s1) — a(s2))/(s1 — s2), ¥(0) = B(s1) + A(6 — s1) for
0 € [s2,81]. Then v € ¢o(B(s1),$1,52) and from strict convexity of f* and
Corollary 4.5

v(B(s1),51) < v(Y(82),82) + (51 — 52) f*(N)
(a(s2), 82) + (00 — s1) f* (&) + (s1 — 0o) f* ()
=v(z,00) + (s1 — b)) f* (5) v(B(s1), 51),

N
<

which is a contradiction. This proves the lemma. d
0 0
Oy & (Re(0.) O R®.H xR0 (xb
87 0, Re®D)al “’
(O, (x) T Oy ey =™ "
g Oy, R0 o
B,
S OLXD) —» g,
-0, (x).0) € V.R000 (XD g
Fig.4.3

Fig.4.4

Let t > 0 and define
(4.9) Ry (t) = inf{z;2 > 0,ch(x,t) C co(z,t)},

i 0<z<
(4.10) Ro(t) = inf{z;0 7'1' < Ry(t), ch(';v,t) Nep(z,t) # ¢},
Ry (t) if the above set is empty.

(4.11) Li(t) = sup{z;x < 0,ch(z,t) C co(z,t)},
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(4.12) Lo(t) = {Sup{x :Li(t) <o <0,ch(z,t) Nep(x,t) # o},

Li(t) if the above set is empty.
Then we have the following

Lemma 4.9. Fori=1,2, let R; and L; are as above. Let
M = sup{|€|s : € € ch(x,t), (z,t) e R x Ry}

Then
(i) Ri(t) < Mt, L1(t) > —Mt. For x € (Ry(t),00) U

ch(z,t) N (er(z,t) Uep(x,t)) = ¢. Furthermore if f*(0) < g*(0) then for x >
0,ch(z,t)Nep(x,t) = ¢. If f¥(0) > g*(0), then for x <0, ch(z,t)Nep(z,t) = ¢.
(ii) If x € [Ra2(t), R1(t)) U (Ll(t),Lg(t)], then ch(x,t) Neq(z,t) # ¢.

(iii) If x € (0, Ra(t)) U (L2(t),0), then ch(z,t) N ((co(z,t) Ucr(z,t)) = ¢.
(iv) R;, Li(i = 1,2) are Lipschitz continuous functions.
(v) Let & = (&1,&2,&3) € c(x,t) defined on the partition 0 =t3 <ty <3 <
t. Define

inf{€(0); ¢ € ch(
(4.13) Y+ (2, 1) = {sup{€(0); & € ch(
inf{t; € € ch(

(4.14) ty(z,t) =inf{ta: € € ch(z,t), Ra(t) <z < Ri(t)},

sup{£(0); & € ch(z, t);z < La(t)},
(4.15) y—(z,t) = < inf{&(0); &£ € ch(x,t);z = Li(t)},
inf{t;; &€ ch(z,t), 0<z < Ry(t)},

(4.16) t_(x,t) =inf{te; € €ch(z,t), Li(t) <ax < La(t)}.

)

x,t)
x,t), x=Ri(t)},
x,t)

Then x +— yy(x,t) is non decreasing in [Ry(t), 00), non increasing in (0, Ry(t))
and x — y_(x,t) is non decreasing in (0,00). Also t — yi(R1(t),t) is non
decreasing and t — y_(L1(t),t) is non increasing in (0,00). Furthermore,

lim x,t: Rt,t, lim —x7t:—Lt7t.
(4.17) z_>Rl(t)+y+( ) = y+(Ra(?) )zéLl(t)_y( ) =y_(Li(t),1)

ti(z,t) =t (Ra(t),t), t—(z,t) =t_(L1(2),1).

(vi) For almost every x, x — v(x,t) is differentiable and at the points of
differentiability x #£ 0,
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f*’ (LM) if x> Ry(t),
’Lf O<ax< Rl(t),

)
o (L(%ﬂ) if @< Li(t),
)

(4.18) vg(z,t) =

if Ll(t)§$<0.

Furthermore the following limits exist.

(4.19) vy (0+,1) = Ilirgl+ vg(x,t), vy (0—,1) = mlir(r)lﬁ Vg (2, 1) .

Proof. Tt is enough to prove the Lemma for x > 0. Similar arguments
follows for < 0. From Lemma 4.2, M < co. Let £ € ch(z,t) and =/t > M.
Then &;(0) = 2 — &t > 0 and hence & € co(x,t). This implis that Ry(t) <
Mt. By compactness of ch(z,t), there exist a & € ch(R1(t),t) N co(R1(t),1).
Hence if for some © > Ri(t), £ € ch(x,t) N (cp(z,t) U cp(x,t)), then & and
& must necessarily intersect properly which contradicts Lemma 4.8. Hence
ch(z,t) N ((co(z,t) Ucr(x,t)) = ¢. Let f*(0) < g*(0) and & € ch(x,t) Nep(z,t)
defined on the partition 0 = t3 < ty < t; < tg = t with £ = (p1,p2,p3). Let
A= (z+pstz2)/t and a(f) =z + N0 —1t), § € [0,t]. Then o € ¢o(z,t) and from
strict convexity of f*

v(z,t) <wvg(a(0)) +tf*(N)
< v0(£(0)) + gf*@) + (ty = t2) *(0) + o f*(p3)
=v(x,t),

which is a contradiction. This proves (i).

Let Ro(t) < Ry(t), then there exist a = (ay,as,a3) € ch(Ra(t),t) N
¢r(Ra(t),t) defined on the partition 0 < t3 <ty < t; < to =t. We claim that
if # > Ro(t) and ch(z,t) Nep(z,t) # &, then ch(x,t) N e (x,t) # ¢. For let
€= (&1, 6,63) € ch(x, t)Ney(x, t) with s, = t —x /€. From Lemma 4.8, £ and a
do not intersect properly and hence to < s1 < t1. Define § € ¢.(x,t) by B =¢
in [s1,t] and 8 = « in [0, s1]. Then from Corollary (4.5)

v(z,t) < vo(B(0)) + Bﬂf*wl) + (51— to) min(f*(0), g (0)) + tf*(5s)

= vo((0)) + (s1 — t2) min(f(0), g%(0)) + t2f*(d3) + g—lf*(&)
= (0,1 i (&
(0,81) + §1f (&1)

=v(z,t)

and hence § € ch(z,t). This proves the claim. Now (ii) follows from the above
claim, since for x € [Ra(t), R1(t)), ch(z,t) N ((cr(z,t) Nep(z,t) # ¢. Now (iii)
follows from (i) and the definition of Ra(t).
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Let 0 < s < t and & € ch(Ryi(t),t) Neo(R1(t),t),n = (m1,m2,73) €
Ch(Rl (t),t) \ Co(R1 (t),t) defined on the partition 0= t3 S tQ S tl S to =t.
From Lemma 4.8, if t; < s < ¢, then Ry(t) +0i(s —t) = n(s) < Ry(s) <
&(s) = Ri(t) + &1(s — t). Hence |Ry(t) — Ri(s)] < M(t —s). Suppose s <
t1 =t — Ri(t)/m, then R1(t) < m(t—s) < M(t—s) and 0 < Ri(s) <
Ri(t) + (s —t) < 2M(t — s). This implies |Ry(t) — Ri(s)| < 2M(t —
s). Let Ry(t) = Ri(t), then with { and 1 as above, if t; <
Ry(t) +n(s — 1) = ns) < Ra(s) < £(s) = Ra(t) + &ils —
plies that [Ra(t) — Ra(s)| < M(t —s). If @ < t, then Ry(t) < M(t — s)
and Ra(s) < Ra(t) + &1(s —t) < 2M(t — s). Suppose Ra(t) < Ri(t), then
choose a € ¢,(Ra(t),t) and B € cp(Ra(t),t). Let ¢ — Ro(t)/dn < s < ¢, then
B(s) < Ra(s) < a(s) and hence |Ra(t) — Ra(s)| < M(t—s). If s <t— Ry(t)/du,
then Ro(t) < &yt —s) < M(t —s) and Ra(s) = 0 if s € [to,t1] and if
s <ta, Ra(s) <al(s)=ds(s—1t) <M(—s). This proves (iv).

From Lemma 4.8, no two characteristics intersects properly. Hence from
(i) through (iii), it follows immediately that z — yy(x,t) is non increasing
in [0,R1(¢)) and z — yy(x,t), t — yi(Ri(t),t) are non decreasing func-
tions in [Ry(t),00) and (0,00) respectively. From the definition it follows
that lim, g, 1)+ ¥+ (2, 1) = yy (Ra(t),1). Let Ro(t) < o < Ry(t) and a €
ch(Ry(t),t) such that to = t1(R1(t),t). Let 8 € ch(x,t) Nep(x,t) with o =
ty(x,t). From Lemma 4.8, t — x/3; > t — Ry(t)/d1. Hence if t{(z,t) >
t1(Ri(t),t) then from Corollary 4.5, v € ¢.(z,t) where v is defined by
Y0,t4 (Ri(2),8)] — & and ’7|[t+(R1(t),t),t] = ﬁ This implies that t+($,t) <
t4 (R (t),t) which is a contradiction. If £, (z,t) <t (Ri(t),1), let V][o,¢, (2.0 =
0, Vit iy = B then € ch(Ry (£),£) ey (Ra (¢), £) and hence ¢4 (R, (£).1) <
ty(z,t) <ty (Ryi(t),t) which is a contradiction. This proves (v).

€= (&,8, &) € ch(z,t) with £ = (p1,p2,p3) defined on 0 = t3 < ¢ <
t1 < tg = t. Since & € ch(x,t) and hence (0/0p1)pe(x,t) = 0 if py > 0
or x > 0,(0/0t2)pe(x,t) = 0 if to > 0 and (9/Ips)pe(z,t) = 0 if ps # 0.
Expanding these equations to obtain:
Ifpi #0orz>0.

AN

(4.20) vh(e —pit) = [ (1) if €€ cola,t),
(4.21) min(f*(0),g*(0)) = f*(p1) —pr f* () if € € ep(a,1),
(4.22)

pal (ps (;t))plf*’<p1>f*<p1>+g*<p3> it ¢t

If b3 7& 07

(4.23) vo(=psta) = [ (ps) i &€ cpla),

(4.24) v, <p3 <; - t>) =g (ps) if €€ep(a,t)
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If to # 0,

min(f*(0),4"(0)) = f*(ps) — psvo(—pst2)

(4.25) ,
[ (p3) —p3f* (p3)-

Now from the compactness of ch(x,t), we can choose a n = (n1,12,13) €
ch(z,t) with nn = (¢1, g2, g3) satisfying the following:

0(0) = v+ (2, 1) i o> Rih),

t— L =y (at) if 0<az<Ri(t),
4.26) n
4. b, t) = £ (R (0), ) it @ e [Ra(t), Ra(1)),

%(%~%>:y_@J—£> if € (0,Ra(t)).

From Lemma 4.8, it follows easily that for x € (0, Ra2(t)) z — g3(z/q1 —t) is a
non increasing function. Hence x — y_(0,t—2/¢1) is a non increasing function.
Hence y4 (z,t),y—(0,t — x/q1) are differentiable almost every x and therefore
q1, g3,t4 are differentiable almost every x. Hence from (4.20) to (4.26) at the
points x of differentiability of q1, g3, t4,

(4.27)
Ov _ 0 8Q1 0 8t+ 0 a%i
a0 = (3 S+ B+ )
B 0
—8_mp7](x7t)
’Ué(.’lf_qlt) if .’17>R1(t)a
) ﬁ@g—mzﬁmMﬂm) if z € (Ra(t), R(1)),
" Z—t))+ () -9
asvh (as (2 )2 fla) - o OB
1
= (@)
= (W) if x> Ri(t),
f*' (%) if zel0,Ri(t)].

If Ry(t) = 0, then by monotonicity of yi(z,t), lim,_g+ v (x,t) exist. Since
F(* (p) = pf*(p) — f*(p) hence for = € (Ra(t), R1(t)) and from (4.21),
F(f*(q1)) = —min(f*(0),¢*(0)). Now f'(f* (¢1)) = ¢1 > 0 and hence from the
above equation ¢; is constant. Therefore if Ro(t) = 0, then lim, g+ vy (z,%) =
£ (@) Let Ry(t) > 0, then from (4.22) and (4.24), f(f*'(a1)) = g(9 (43))
and (f'(f*(q1)) = @1 > 0. Hence f*(q1) = f~*(9(9* (g3))). From (4.26),
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g5 = (—y—(0,t — z/q1))/(y+(x,t)) and hence lim,_ g+ g3 exist. This implies
that lim, o+ ve(z,t) = lim, o+ f* (q1) = lim, o+ f~'(g9(g* (¢3))) exist. This
proves the lemma. O

Lemma 4.10.  For almost every t

(428) f(vx(0+a t)) = g(vz (07, t)) )
and one of the following inequality holds:
fwe(0+,8)) >0, ' (v2(0—,2))
(4.29) foz(0+,1) <0, ¢'(v2(0—,1))
<0,

Oa
Oa
[ (vz(0+,1)) g (v,(0—,¢)) <0.

IN IV IV

Proof. Proof is lengthy and we divide into several steps. Without loss of
generality we can assume that

(4.30) f7(0) = g*(0).
Hence from (i) of Lemma 4.9, Ly (t) = La(t) and ch(x, t)Nep(z,t) = ¢ for < 0.
Step 1. Lemma holds in U = {t; Ra(t) > 0}.

From (iv) of Lemma (4.9), U is an open set and hence U = J;2, I; where I;
is an open interval. Since no two characteristics intersects properly and Ry > 0
in U, hence for all s € U, ch(z,s) C ¢o(z, s) for z < 0. This implies that L; =0
on U and y_(0,s) is continuous for almost every s € U. Let ¢ be a point
of continuity of y_(0,-),x € (0,Ra(t)) and n € ch(x,t) with n = (¢1,¢2,q3)
satisfying (4.26). From (4.22), (4.24) and (4.27), f(ve(x,t)) = f(f* (q1)) =
9(9" (g3)). From (4.18), g(v,(0—1)) = g(g" (=y—(0,1)/t)). As & — 0, —
x/q1 — t and hence from (4.26), lim, o+ g3 = —y—(0,¢)/t. This implies that
F(0a(0,1)) = limy o+ 99" (a3)) = 9(9" (—y—(0,6)/1)) = g(0,(0—,1)). Fur-
thermore f'(v,(0+4,¢)) = lim,—o0+ ¢1 > 0 and ¢'(v,(0—,t)) = lim, o4 g3 > 0.
This proves Step (1).

Step 2. Lemma holds in S = (0,00) \ U.
In order to prove this we define two auxiliary function as follows:

vi(x,t) = inf {pe(x,t);2 > 0,€ € co(z,t) Ucr(z,t)}.
v_(z,t) = inf {pe(x,t);2 < 0,& € co(x,t) Uep(z,t)}.

Using the same arguments as in previous lemmas, vy satisfies the following
properties:

(1) Since f*(0) > ¢g*(0) it follows from (i) of Lemma 4.9, v_(z,t) = v(z, t)
for x < 0. Furthermore ¢t € S implies that v(z,t) = vy(x,t) for z > 0 and
v(z,t) =v_(z,t) for £ <0 and S = {t;v4+(0,t) = v_(0,%)}.

(2) vy are Lipschitz continuous functions
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(3) For x <0, there exist n(z,t) such that

77(%’5) = (nl(xvt)’qu 773(xat)) € C(:C,t) with 7) = % - (p1($,t),¢,p3($,t))

minimizing v_(z,t) and satisfying
(i) x +— n(z,t) is differentiable almost every z < 0,
(ii) t — 0(0,t) is of bounded variation,
(iii) at differentiable points z < 0,

Oov_

5y @) =" (or(2,1),

PO (ps(,)) = 9lg™ (pi(w, 1)) if ps(a,t) exist.
(iv) For almost every t,

O (0,0) = ~olg" (pa(0.1)).
(v) If ps(x,t) exist, then py(x,t) < 0 and p3(z,t) < 0.

(4) For & > 0, there exist £(z,t) = (&1(x, 1), &a(x,t), E3(x, t)) € e(x,t) with
é(a:,t) = d¢/df = (q1(z,t), g2(x, 1), q3(x, t)) defined on the partition 0 = t3 <
to(x,t) < t1(x,t) < to = t which minimizes v (z,t) and satisfies the following
properties:

(i) @+ &(x,t) is differentiable almost every z > 0.
(ii) t — £(0,t) is of bounded variation.
(iil) at differentiable points z < 0,

31)_,_

oy @) = F( (1),

FUF (@, 1) = F(F (g3(x,t)  if gs(z,t) exist,

(iv) for almost every t

’

Ovr = FU (@ (0,8) it qi(0,8) >0,
ot - F(f(g3(0,2))) if &(0,7) = ¢.
(V) Q1(Oat) Z 0.
Except (iv) of (3) and (4) every other statements follows exactly as earlier
and the proof of this is given below. Suppose for x close to 0, n(x,t) € cp(x, 1),
since no two different characteristics intersect properly and hence for s < ¢ and
close to ¢,1(0,s) € ¢(0,t). Hence v_(0,s) = vo(—sp3(0,s)) + sf* (p3(0,s)).
Since (0/0p3)p, = 0 implies that vj(—sp3(0,s)) = f* (p3(0,s)) and from (iii)
of (3) we have, p1(0,t) <0, p3(0,t) <0,

Ov_ 0
W(O, t) = &’U_ (O, S)‘S:t

= —p3(0,£)vp(—tps(0, 1)) + f*(p3(0,1))
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—(p3(0,t) f* (p3(0,8)) — f*(p3(0,2)))
= —f(f* (p3(0,1)))
= g(g" (1(0,1))).

Suppose for all z,n(x,t) € co(x,t), then p1(0,¢) > 0 and at points of differen-
tiability of p1(0,t) and v_(0,?)

8&3}_{(0’” - %<”o(—tp1(07t)) +tg"(p1(0,1))

~(p1(0,t)g* (p1(0,1)) — g* (p1(0,1)))
= —g(g" (p1(0,2))).

This proves (iv) and (v) of (3). Similarly (iv) and (v) of (4) also follows.
Now for almost every t € S, (0/0t)(v4(0,t) —v_(0,t)) =0 and vy (x,t) =
v(z,t) if £ > 0 and v_(z,t) = v(z,t) if z < 0. Hence form (iii), (iv) of
(3) and (4) g(us(0—,1) = limgo- g((Dv_j0w)(x.1) = 9o (p1(0,1)) =
~ (@ /0)(0,1) = (004 /0)(0,1) = F(/7 (a1(0, 1)) = lim, o+ F((D0/02)(x,
t)) = f(vz(0+,t)) provided ¢;(0,t) > 0.
If £(0,t) = ¢, then by convexity of ¢* and vy (0,t) = v_(0,t) gives
p3(0,t) = ¢3(0,t) and this gives again f(v,(0+,t)) = g(v(0—,t)). This proves
(4.28). Now from (v) of (3), (4) gives (4.29). This proves the lemma. O

Lemma 4.11.  For x # 0, Let v, (w,t) be defined as in (4.18) and M =
sup, ¢{l€leo; & € ch(x,t)}. Then for z >0,

(4.31)
M
z—i—zx if 0<zxz<ax+z<Ri(t),
fva(@+2,8) = fl(al@,t) < 15
— if >0 and not in the above
t range of values.
(4.32)
M
z—|—|Z;U| if Lit)<z<z-—2z<0,
g'(ux(x,t)) - g'(vz(;v —z,1)) < 2
n if * <0 and not in the above

range of the values.

Proof. It is enough to prove for z > 0. Let n(z) = (1 (x), n2(x),n3(z)) €
ch(z,t) with n = dn/df = (¢1(x), g2(x), g3(z)) satisfying (4.26).

Case (i).  yy(z,t) is a non decreasing function and hence

Floale +2,0) - flog(a,t)) = 2 vt at) zoye(@l)

t t
_atzoyi(atant)  z-yi(etat)
- t t

z
7 .
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Case (ii). 0<x < Ry(t), z+ 2z > R1(t).
In this case g1 (z) > x/t and hence

£+ 2,8)) = f (el ) = TEETIEERD g
r+z
7

-

z
.

Case (iii). 0<z<z+4 2z < Ry(t).
Since x — y4(z,t) is a non increasing function in (0, Ry(t)) and hence

Tr+z x
t—yi(@+2t)  t—yi(zt)
Tr+z T
“t—yi(z+zt) t—yg(z+azt)
z
t—yi(x+ 2,t)
@1 (x+2)z
- T+ z
Mz
x4z

f'(va(z +2,8) = f'(va(2,1)) =

This proves the lemma. O

Proof of Theorem 3.1. From Lemma 4.6, v is a Lipschitz continuous func-
tion with lim; .o v(z,t) = vo(x). In order to prove (3.5) we have to show that
v is a sub and supersolution.

Sub solution. Let xg > 0,9 > 0, € C1(R x R, ) such that v — ¢ has
a local maximum at (xg,tg) with v(zg,to) = @(zo,t0). Let 0 < & < xg such
that if B(e) = {(z, s); |z — xo] <&, to —e < s < tp}, then B(e) C {(x,t); = >
0,t > 0} and v — ¢ < 0in B(e). Let tg — e < s < to, |p| < &/(to — s) and
vp(0) = zo + p(8 — to) for O € [s,t]. Then by the choice of p, v, € co(o, to, 5)
and hence from Lemma 4.4

(to — s)f"(p) = v(xo,t0) — v(x0 + p(s — o), s)
> ¢(x0,t0) — (w0 + p(s — to), 5)
= p(z0,t0) — p(20,8) — pPx(To,8)(to — 5) +o(to — 5) .

Dividing by (to—s) and letting s — o to obtain f*(p) > ¢i(zo, to) —pes(xo, to) -
Hence (@1 + f(02)) (w0, to) = sup,{¢t + ppz — f*(p)}(wo,t0) < 0. Similarly if
zo < 0. Hence v is a sub solution.

Super solution. Let zg > 0, tg > 0, € CY(R x Ry) such that v(xg,ty) =
©(x0, to), v— has alocal minimum at (o, to). Let M = {|§.|oo;§ € ch(zo, to, s),
0 < s < tp}. Then from Corollary 4.5 and Lemma 4.2, M < oo independently
of (zg,t0). Let 0 < & < xg/M such that B(e) = {(z,s); |[x —xo| < g,tg —e <
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s<to} C{(x,t);2>0,t >0} and v —p >0 in B(e). Let tp —e < s < tp and
&s € ch(xg,to, s). By the choice of € and M, & € co(xo,to,s) and (£4(0),0) €
B(e) for all @ € [s,to]. Let for a subsequence s — tg, & — p1. Since v > ¢ in
B(e), it follows that

(to — S)f*(és) = v(wo, to) — v(wo + fs(S —tp),5)
< (0, t0) — p(z0 + &s(5 — to), 5)
o(z0,t0) — @20, 5) + Espa(T0, 5)(to — 8) + ot — 5) -

Dividing by (to — s) and letting s — ¢ to obtain
0 < (¢t + prope — f*(p1)) (20, t0) < ¢ 4+ sup {pez — [*(p)} (x0, to)
P

= (¢t + f(z)) (0, o) -

Similarly for < 0. (ii), (3.6) and (3.7) follows from Lemma 4.10 and (3.8),
(3.9) follows from Lemma 4.11. This proves the theorem. O

Proof of Theorem 3.2. Let v be as in Theorem 3.4 and u = dv/dx and
defined as in (4.18). Then from Lemmas 4.10 and 4.11, u satisfies the entropy
conditions (F;) and (E}) and Rankin Hugonoit condition (1.4) at 2 =0.

Let ¢ € C5°(Ry x Ry). Since v is a Lipschitz continuous function, and v
satisfies (3.5), it follows that

o= [ [T+ s padoar
:/0 v(z,0)p.(z,0) dxf/ / (vout — f(Vg) s )dx dt

= —/O uo(x)p(z,0) dx—|—/ / (vt + f(vg)pg)da dt
=— /Ooo uo ()¢ (z,0)dr + /0 /0 (upr + f(u)py)dx dt.

Similarly if 2 < 0 to obtain for all p € C§°(R_ x Ry)

0=— /0 uo(z)p(z,0)dx + /_OOO /_Ooo(ugot + g(u)p,)dzdt.

— 00

This implies u is a weak solution of (1.3). (3.10) and (3.11) follows from (v)
and (vi) of Lemma 4.9 and uniqueness follows from Theorem (2.2). This proves
Theorem 3.2. |

Proof of Remark 3.3. Tt is enough to prove (1). Choose a o such that

’

g* () = 0. Then g*(c) = g*(¢’(0)) = —g(0) = 0. Since ¢’(0) > 0 and hence
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o > 0. This imples that v(0,t) < vo(—0ot) + tg*(0) < |vg|eo. Also by Taylor
formula for any p there exist a £ such that

g (p)=9"(p—0o+o)
“(0) + 9" (0)(p— o)+ g (E)(p— 0)?

Since f*(0) > ¢*(0) and hence ¢,(z,t) = ¢ for any < 0. Hence if ¢t € Uy,
then

0(0,t) = vo(y-(0,1)) + tg° (_@)

t (y_(0,t 2
> ke + 2 (S22 40
c t

On the other hand since g* (o) =0,
v(0,t) < vo(—0at) +tg™(0) < |vo|oo -
Hence combining the above two inequalities gives
2
(y—(toat) —l—O’) < 2|’U0t‘ooc .

From Lemma 4.2, there exist a M > 0 such that |(y_(0,t))/t] < M. Let
L = |g* (—y_(0,t)/t)|s. Since g(0) = 0 and hence there exist a constant
M(L) > 0 such that |g(g* (—y—(0,t)/t))] < M(L)|g* (=y—(0,t)/t)|. Hence
from (1.3)

[f (u(0+, )] = g(u(0—,1)]

< M(L) |g* (_y%(ot) —0—!—0)’

= M) o7 @)+ (R <o)
o0,
MLl

This proves the remark. d
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5. Solution of the Riemann Problem
Let

Uy if >0,
5.1 u(x,0) = up(x) =
(5-1) (z,0) () {ul if z<0.
Equation (1.1) with the initial data (5.1) is called Riemann Problem. To obtain
the solution of the Riemann Problem, consider the initial data

Uy X if x>0,

(5.2) v(z,0) =vo(x) = {

Uy x if <0,

for the Hamilton-Jacobi equation (3.5). By using the formula (3.4), obtain
the solution v(x,t). Now the solution to the Riemann problem is given by
u(z,t) = Ov/Ox. For completeness we provide the solution v(z,t) and u(z,t)
in the following Corollary without proof. Proof is a direct calculation from
formula (3.4).

Corollary 5.1.  Let vo(x) be given by (5.2). Then solutions v(x,t) of
(3.5) and u(x,t) of (1.3), (1.4) are given as follows:
(1) Suppose f*(0) > ¢g*(0), then

Case (i)  ¢'(w) <0 and f'(u,) > 0:
Let uy be such that f(uy) = ming(u) and f'(uy) =2 0. Since f is conver
U4 1S unique.

For x <0,
N z—tg(w) if x<tg'(w),
v, ) = tg* (%) if tg'(w) <z <0,
5.3
( ) Uu; Zf X S tg/(ul)a
u(a:,t) = (g/)—l (%) Zf tg’(ul) <z <O0.

Forxz >0 and uy > u,,

(2.1) = uyx —tf(ug) if 0<uz< st,
et = urx — tf(uy) if x> st,

(2,1) Ut if 0<uz<st,
u(z,t) = _
Uy if x> st,

where s = (f(us) — f(u,)/(ur — uy).
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For x > 0 and uy < u,,

upz —tf(uy) if 0<a <tf'(uy),
via,t) = tf* () if () <@ < tf (uy),
urx — tf(uy) if x>tf'(u,),
(5.5)
Uy if 0<a<tf'(ug),
u(,t) =S (7(F) i ) <@ <t (),
Uy Zf x Z tf/(ur)-

Case (ii) g (u) <0 and f'(u,) <0:
Let uy be such that f(uy) = ming(u) and f'(uy) > 0. Since f is conver,
such a uy is unique and uy > Uyp.
a) Suppose f(uy) > f(u,):
For x <0,

oo w x —tg(uy) if x<tg(uw),

v(z,t) = tg* (%) if tg'(w) <z <0,
5.6
(56) u if x<tg'(w),

ulat) = (¢)" (%) if tg'(w) <z <0.

For x>0,
(2,1) = ug x—tf(ug) if 0<ux<st,
5.7) R DA R B I )
' (2.1) = Ut if 0<zx<st,
e = Uy if x> st.

where s = (F(uy) — F(un))/ (s — ).
b) Suppose f(ui) < f(uy):

In this case there exists u_ such that g(u_) = f(u,) and ¢'(u—) <0.
Since g is convex such a u_ is unique.

Forxz <0 and u_ < uy,

(2,1) u_x —tg(u_) if x> st,
v(z,t) = ,
upx —tg(uy) if x < st,

(o, 1) = {u if x> st,

u; if x < st

where s = (g(u-) — glur))/(u_ — w).
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Forxz <0 and u_ > uy,

u-z—tg(u)  if x>ty (u),
v(z,t) = ¢ tg* (%) if tg'(w) <z <tg'(u_),
upx — tg(uy) if x<tg(u),
(5.9)
(= if x>tg'(u-),
X .
u(e,t) = (@) (T) it w) <z <tgu),
ug if x <tg'(w).
For x>0,
(5.10) v(z,t) = ux — tf(u,),

u(z,t) = up.

Case (iii) g (uw) >0 and f'(u,) > 0:
Let uy be such that f(uy) = g(w) and f'(us) > 0. Since f is convex such
a Uy 1S unique.
For x <0,
v(z,t) = x — tg(uy),

(5.11) u(x,t) = .

For x > 0 and uy > u,,

oo t) = {uwtf(un f 0<a<st,

up x — tf(u) if x> st,
(5.12)

(2,1) Uy if 0<zx<st,
u(z,t) = ,
Uy if x> st,

where s = (f(uy) — F(ur)/(us — uy).

Forx >0 and uy < u,,

uyr —tf(uy) if 0<a<tf'(uyg),
oia,t) = {11 () if () <@ < tf (),
(5.13) up & — tf (uy) if x>tf(u),
Uy if 0<z<tf'(uy),
() =S (N7H(F) i ) @ <t (),
Uy if x>tf(u).

Case (iv) g (uy) >0 and f'(u,) <O0:

a) Suppose g(u) > f(uy):
Let uy be such that f(uy) = g(u;) and f'(ug) > 0. Since f is convex
such a uy is unique and uy > u,.
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For x <0,
(5.14) v(z,t) = x — tg(u),
’ u(x,t) = .
For x>0,
oz 1) = uy x —tf(ug) if 0<uz<st,
(5.15) ’ upx — tf(u,) if x> st,

Uyt if 0<ux<st,
Uy if x> st,

where s = (f(us) — f(u,))/(us — uy).
b) Suppose g(u) < f(ur):

In this case there exists u_ such that g(u_) = f(u,) and g'(u—) <0.
Since g is convex such a u_ is unique and u_ < u;.

For x <0,

o) = {u z —tg(u_) zf x > st,
u x —tg(uy) if < st,
(5.16)

(o, 1) = {u if x> st,

u; if x < st,

where s = (g(u_) — g(u))/(u_ — w).
For x>0,

U($,t) = Uy T — tf(ur)v

(5.17) u(z,t) = up.

(2) Suppose f*(0) < g*(0), then
Case (i) g (u) <0 and f'(u,) > 0:
Let u_ be such that g(u—) = min f(u) and ¢'(u_) < 0. Since g is convex

such a u_ is unique.
For x <0 and u_ > uy,

u x —tg(u) if x<tg(w),

v(z,t) = ¢ tg* (%) if tg'(w) <x<tg'(u-),
-z tolw) if tg'u)<z<0,
(5.18)
U if v <tg'(w),
u(wt) =@ (T) i tgw) <@ <tg'(un),

u_x —tg(u) if tg'(u_) <z<O0.
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For x <0 and u_ < uy,

u_x —tg(u_) if 0>z > st,
’U(l‘,t) = .

u z —tg(u) if x < st,
(5.19)

(2,1) U_ if 0>x> st,
% x7 = .
Uy if x < st,

where s = (f(u-) = f(u))/(u— — w).
For x>0,

v(x,t) = {tf* (9 if 0<z<tf(u),
upx—tfluy) i x=tf (),

(5.20) A ,
u<x,t>={(” (3)  # osesiw),

t
Uy if x>tf(u).

Case (i) ¢'(w) <0 and f'(u,) < 0:
Let u_ be such that g(u—) = f(u,) and ¢’'(u_) < 0. Since g is convex such
a u_ 1S unique.
Forxz <0 and u_ < uy,

v(z,t) = {u z —tg(u-) if x> st,

uyz —tg(uy) if x < st,
(5.21)
— ) > st
u(x,t>={“ st
Uy if < st,

where s = (g(u_) — gu))/(u_ — w).
For x <0 and u_ > uy,

u_x —tg(u_) if x>tg (u-),
v, t) = tg" (T) if tg'(w) <@ < tg(u_),
(5.22) uyx —tg(uy) if x<tg(u),
' u_ if x> tg(u),
(e ) =S @) (T) i tgw) <@ <tg'(u),
upx — tg(uyg) if x <tg'(u).
For x>0,
(5.23) v(x, t) = upx — tf(u,),

Case (iii) g (w) >0 and f'(u,) > 0:



66 Adimurthi and G. D. Veerappa Gowda

a) Suppose g(u;) < min f(u):

Let u_ be such that g(u—) = min f(u) and ¢'(u—) < 0. Since g is
convex such a u_ is unique and u_ < uy.

For x <0,

o) = {u_ x—tg(u_) z:f x > st,
up x —tg(uy) if x < st,
(5.24)

(o, t) = {u_ if x> st,

u; if x < st,

where s = (g(ur) — g(u))/(w — ).
For x>0,

o(e.t) = {tf* (3) ifow s tfi ),
wa—tfw) if x> tf (),

u(x,t):{(fl)_l (5) i e<tr),

Uy if x>tf'(u).

(5.25)

b) Suppose g(u;) > min f(u):
In this case there exists uy such that f(us) = g(w;) and f'(uy) > 0.
Since f is convex such a uy is unique.

For x <0,
v(x,t) =ux—tg(uy),
(5.26) (z,1) l g(w)
u(z,t) = uy.
For x >0 and uy > u,,
o ) = ug x —tf(ug) z:f 0<z<st,
urx —tf(uy) if x> st,
(5.27)

(2,1) Uy if 0<zx<st,
u\zx, = .
Uy if x> st,

where s = (f(uy) — f(ur))/(us — up).
For x>0 and uy < u,,

uyr—tf(uy)  if 0<a<tf'(uy),

vant) =11 (5) if tf/(uy) < @ < tf(uy),
(5.28) wr—tflu) i @z tf (),
o if 0<a<tf(uy)

(e ) =S UN7H(F) i ) <@ < (),
Uy Zf thf/(ur)-
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Case (iv) g (u) >0 and f'(u,) <O0:

a) Suppose g(uy) > f(u,):
Let uy be such that f(uy) = g(w) and f'(ug) > 0. Since f is convex
such a uy is unique and uy > .

For x <0,

(5.20) v(x,t) =u x — tg(u),
’ u(x,t) = .
For x >0,
_ ] <
o) = uyx —tf(ug) zf 0<z<st,
upx — tf(u) if x> st,

(5.30)

(2,1) Uyt if 0<ux<st,
u(x,t) = ,
Uy if x> st,

where s = (F(us) — Flup))/(us — uy).
b) Suppose g(w) < f(uy):
In this case there exists u_ such that g(u_) = f(u,) and g'(u_) < 0.
Since g is convex such a u_ is unique and u_ < uy.
For x <0,

o ) = {u_ x —tg(u_) if x> st,

upx — tg(u) if x < st,
(5.31)
_ ] t
u(x,t):{u Zf T > st
Uu; if x < st,

where s = (g(u—) — g(ur))/(u— — ).
Forx >0,

U($,t) =Ur T — tf(ur)v

u(z,t) = up.

(5.32)
This completes the corollary.

If f = g, then two shocks cannot cross each other. On the other hand
if f # g, then in general the line x = 0 allows a shock pass through it. The

following example illustrates this phenomena.

Example 5.2. Let f(u) = u?/2, g(u) = (u® + 1)/2, and up(z) =
X(—oo,—l)(x)~
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Fig 5.1. Shock passing through the line x = 0

Then the solution u of (1.1) and (1.3) (Fig. 5.1) is given by

1 (V2+1)

1
1 if x+1§§, <0 orT(t—Z)ngit,xEO,

. 1 1
u(z,t) =140 if x+1>§t, <0 or:c>§t,

V2 if 0<z2< (‘/5;1)(15—2), t>2.

Example 5.3. In this example we show that solution constructed by
Diehl [1], [2] differs from us. Let f, g satisfies the hypothesis (H).

]
AN
o BN %
o % u v} u Bn Q
Fig.5.2

Let f(ap) = min f = ¢g(fp) = ming. Assume that oy < Gy and let w €
[, Bo] be the unique point where f(u) = g(u) with f/(@) > 0 and ¢'(u) < 0.
Let ap < up <@ < w < Po, v = f(u) = g(@), a1 < @ < Py such that
floa) = g(B1) = v (see Fig. 5.2),

i 0 if < u, .
f-(u w ) — eerﬂllgr]f( ) ' = — f(’lL) if w > Qo,
T 0n[1ax ]f(ﬂ) if u>uwu, f(ap) if u<ap,
€|Ur,u
0 if .
G(u,up) = 0;1(13};}9( ) 1 if < b,
’ err[lin ]g(e) if u>w if u> 0o,
€ ur,u

P(f,ur):{ur}u{u<ur; flu+e,u) > f(u,u), V5>0}

U{u>u,«; flu—e,u.) < flu,u) V5>O}
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= [a, 00),
N(g,w) ={w}U{u<u; glute,u)<glu,u) Ve>O0}
U{u>u;  glu—er,uw) > glu,u) Ve <0}
= (—00, fo],
U={ueR fuu)=guu)}=1{a},

(a,B);  fle) =g(B) =v}
(alrﬂ)’ (6761)7 (ﬂvﬂ)}z

T(up,u) =

A A A

s1 = (9(w) — 9(@))/(w — 1), 52 = (f(w) = f(u,))/(@ — uy). Then the
solution constructed by Diehl [1], [2] is given by

Uy if < sit,
(2,1) u if s1it<xz <,
u x’ = .
[ if 0<x< sot,
Uy if sot <.

The solution from our method (see Corollary 5.1, Case (i) with f*(0) = ¢*(0) =
—f(ap)) is given by

Uy if x<tg(uw),

(¢")1 (%) if tg'(w) <z <0,
u(x,t) = .

(f)! (;) i 0<a<tf(u),

U itz >tf'(u).
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