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Abstract

If the unitary quark- mixing matrix, V , is moduli symmetric then it

depends on three real parameters. This means that there is a relation

between the four parameters needed to parametrize a general V . It is

shown that there exists a very simple relation involving |V11|2, |V33|2, ρ
and η. This relation is compared with the present experimental data.

It is concluded that a moduli symmetric V is not ruled out.
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1 Introduction

It is well known that for three generations, the general parametrization
[1],[2] of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix, V ,
depends on four parameters, namely, three angles and a phase. Experimental
data gives the values of the moduli |Vij| and a particular parametrization of
V is needed to determine the complex matrix elements of the unitary matrix
V . Four moduli (obtained from data) are needed to determine the four
parameters in V .

The present data [2], gives us the ranges of |Vij|. These are

VEXP =







0.9741 − 0.9756 0.219 − 0.226 0.0025 − 0.0048
0.219 − 0.226 0.9732 − 0.9748 0.038 − 0.044
0.004 − 0.014 0.037 − 0.044 0.9990 − 0.9993





 . (1)

It is clear from these values that there is a possibility that V might turn out to
be moduli symmetric. The ranges suggest that |Vij | = |Vji| for (i, j) = (1, 2)
and (2, 3), but it seems that |V13| 6= |V31|. However, the latter matrix elements
are difficult to measure and may change in future. Since V is unitary, it
follows that

∆ ≡ |V12|2 − |V21|2 = |V23|2 − |V32|2| = V31|2 − |V13|2. (2)

So either V is completely moduli symmetric ( ∆ = 0 ) or it is fully asym-
metric (∆ 6= 0). Recently an attempt to understand the smallness of this
asymmetry (i.e. smallness of ∆) has been made [3].

In this note, we explore the experimental consequences of a moduli sym-
metric V , denoted by VMS. Since, ∆ = 0 for VMS, this gives an extra
condition1and consequently a general parametrization of VMS contains only
three real parameters [3], [4].

The important point is that if V = VMS then there will be a relation
between four measurables, which for a general V would be independent. In
this note we obtain a general relation and confront it with available data.

2 The relation

There is a lot of interest in measuring the quantities connected with the
unitarity relation or triangle, viz.,

V11V
∗

13
+ V21V

∗

23
+ V31V

∗

33
= 0, (3)

1An explicit parametrization for VMS was considered inreferences 5 and 6. A relation

involving |V12|, |V23| and theparameters ρ and η of the unitarity triangle was pointed out.
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Define zi=Vi1V
∗

i3 ; i = 1, 2, 3 then Eq.(3) can be written as

− z1/z2 − z3/z2 = 1. (4)

This defines a triangle. Define the complex numbers[2]

− z1/z2 = ρ + iη, (5)

so using Eq.(4),
− z3/z2 = (1 − ρ) − iη (6)

This notation like that for the angles of the triangle has become standard.
The angles α = arg(−z3/z1), β = arg(−z2/z3), and γ = arg(−z1/z2) of the
triangle satisfy

sin α =
sin β

√

ρ2 + η2

=
sin γ

√

(1 − ρ)2 + η2

, (7)

and
tan γ = η/ρ. (8)

To obtain the desired relation we note that from Eqs.(5, 6)

(1 − ρ)2 + η2

ρ2 + η2
=

|V33V31|2
|V11V13|2

=
|V33|2
|V11|2

≡ r (9)

The last equality follows if V is moduli symmetric since then |V13|2 = |V31|2.
Thus, for VMS, the four independent quantities ρ, η, |V11| and |V33| are related.

To compute the ratio r, we convert the ranges for |Vij | given in Eq.(1) into
a central value with errors. This procedure gives, |V11| = 0.97485± 0.00075,
|V33| = 0.99915 ± 0.00015 |V13| = 0.00365 ± 0.00115 and |V31| = 0.009 ±
0.005. Using these we find for VMS, rMS = |V33|2/|V11|2 = 1.05048± 0.00165,
otherwise r = |V31V33|2/|V13V11|2 = 6.38683 ± 8.15826. The extremely large
error in r reflects the large errors in |V13| and |V31|.

According to the relation in Eq.(9), ρ and η lie on the circle

(ρ + 1/(r − 1))2 + η2 = (
√

r/(r − 1))2 (10)

The circles for rMS are plotted in Fig 1. The relevant portion in the first
quadrant is shown since ρ and η are both positive. It should be noted for
r = 1 the circle degenerates into a straight line ρ = 1/2. As r increases, the
radius increases and the centre approaches the origin along negative ρ-axis.
For r = 6.38683 the centre of the circle is at (−0.185638, 0) and the radius
is 0.469148. Since there is a large error in r (for the asymmetric case), it is
clear that the range of values for r contain those for rMS. Given the present
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data it seems that the possibility that V is moduli symmetric is not ruled
out. Our point here is that Eq.(10) provides a very simple and direct way to
check if V is moduli symmetric or not. One has to await more accurate data
for |V13| and |V31| to come to a definitive conclusion in this regard.

From Eqs,(7, 8), we can determine

sin 2β =
2η(1 − ρ)

(1 − ρ)2 + η2
. (11)

The curve in Eq.(11) represents the product of straight lines given by

η = tanβ(1 − ρ), (12)

η = cot β(1 − ρ). (13)

Experimentally, different groups and different decay modes give a wide range
of values for sin 2β. Using the average of all modes and groups [7], sin 2β =
0.699 ± 0.054, the straight lines in Eq.(12, 13) are also plotted in Fig.1. It
is interesting to note that the circles for r = rMS = 1.05048 ± 0.00165 and
the line in Eq(13) with cot β = 2.45368 ± 0.265066 have a small region of
intersection around ρ = 0.447577, η = 1.36391. However, this is excluded
by constraints from other data [2]. For the general case, taking 1/2 the
error into account, that is r = 6.38683 ± 4.07913, one finds that there is
a large region of intersection region with the lines in Eq.(12 with tan β =
0.407551±0.044027, though there is no intersection with Eq.(13). As one can
see the lines corresponding to Eq.(12) with tan β = 0.407551±0.044027 have
a small region of intersection with the circles for r = rMS = 1.05048±0.00165
around the point ρ = 0.492779 and η = 0.206728 keeping open the possibility
that V be moduli symmetric.

Further, we note that sin2 γ/ sin2 β = r so that knowledge of β from
sin 2β enables one to obtain angles α and γ. The values of the angles for
r = rMS and the general r are given in Table I. The values in the two
columns, as expected, are fairly different. The point to note is that for the
moduli symmetric case, since rMS ≈ 1, one expects β ≈ γ, unlike the general
or asymmetric V where the two angles can be quite different (viz. Table I).
It is very interesting to note the value of sin 2α (which is in the process of
being measured) in the two cases. From Table I, for the central values, one
expects sin 2α = −0.9974 for the moduli symmetric case in contarast to a
value of 0.163 for a asymmetric V . An experimental value of sin 2α near −1
would favour a moduli symmetric V .

In conclusion, we have pointed out that a simple, model independent
relation between ρ, η, |V11| and |V33| provides a direct test of the moduli
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symmetry of V . The present data does not rule out such a symmetry. For a
conclusive answer we must await future data.

In our view a moduli symmetric quark-mixing matrix would be far more
elegant and physically interesting than one with a tiny, difficult to explain,
asymmetry.
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(VG) was visiting the School of Physics, University of Hyderabad, Hyderabad
(India) during August 2003.
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ANGLES r = rMS = 1.05048 ± 00165 r = 6.38683 ± (8.15826)/2
β 22.1734 ± 2.16325◦ 22.1734 ± 2.16325◦

γ 22.7568 ± 2.17246◦ 72.5159 ± 58.4675◦

α 137.07 ± 3.06581◦ 85.3107 ± 58.5075◦

Table I Numerical values of the unitarity triangle angles with errors cor-
responding to r = rMS and for general r. Note that in the latter case we
have taken the error in r to be half of its actual value.
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Figure 1: Plots of η versus ρ : (a) General Case: The lower three curves
represent Eq(10) for r = 6.38683 + (8.15826)/2, 6.38683 and 6.38683 −
(8.15826)/2. They are parts of circles of radii 0.341763, 0.469148, 1.1617
with centres at (−0.105643, 0), (−0.185638, 0), (−0.764701, 0) respectively.
(b) Moduli Symmetric Case: The upper three curves again repre-
sent Eq(10) for r = 1.05048 + 0.00165, 1.05048 and 1.05048 − 0.00165.
The radii of these circles are 19.6765, 20.3037, 20.9733 with centres at
(−19.1828, 0), (−19.8098, 0), (−20.4792, 0) respectively. (c) The lower pair
of straight lines corresponds to Eq.(12) with tanβ = 0.407551 ± 0.044027
while the upper pair of straight lines corresponds to Eq.(13) with cotβ =
2.45368 ± 0.265066.
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