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ABSTRACT 

This paper introduces a new approach to 3D localisa-
tion of a narrowband acoustic source in a shallow ocean 
using acoustic vector sensors (AVS). Assuming a horizontally 
stratified and range-independent model of the ocean, it is 
shown that the azimuth of the source can be determined from 
the estimates of the horizontal components of the acoustic 
intensity vector obtained from the measurements of an AVS. 
The range and depth of the source could then be estimated 
through a 2D search to match the computed complex acous-
tic intensity vector expressed as a function of these parame-
ters with its estimate obtained from the AVS measurements. 
However the search in range is computationally intensive as 
the range parameter is unbounded. We propose an alterna-
tive approach employing a vertical array of AVS, based on 
eigen-decomposition of the spatial correlation matrix of the 
data vector, leading to a closed form solution for the range 
parameter. The source depth is then estimated through a 1D 
search of this bounded parameter.  

1. INTRODUCTION 

An acoustic vector sensor (AVS) simultaneously measures 

the acoustic pressure and the three Cartesian components of 

the particle velocity vector at a point in an acoustic field. A 

single AVS is capable of finding the direction of an acoustic 

source using the information provided by the particle veloc-

ity measurements unlike a conventional sensor which meas-

ures only the scalar acoustic pressure. Hence, an array of 

vector sensors can outperform a similar array of conven-

tional scalar sensors.  The AVS has received considerable 

attention from the signal processing community after the 

publication of two seminal papers by D’Spain et al [1, 2] in 
1991. This is exemplified by a host of papers that appeared 

in the literature starting with Neharoi and Paldi [3] who pre-

sented the AVS measurement model for plane wave propa-

gation and an acoustic intensity based method for localising 

acoustic sources using an array of such sensors. Later, 

Hawkes and Neharoi [4] considered the effect of the pres-

ence of a reflecting boundary near the sensor. However none 

of the data models considered so far is applicable to the 

shallow ocean scenario which is characterised by multimode 

acoustic propagation in a channel with reflecting boundaries 

at the top and the bottom.  

In this paper, we present an AVS data model that is ap-

propriate for measurements in a shallow ocean. The ocean is 

modelled as a range-independent channel consisting of a 

horizontally stratified water layer of constant depth overly-

ing a horizontally stratified bottom. The pressure field due to 

a harmonic source is made up of two components, viz., the 

sum of normal modes and an integral of continuous spec-
trum [5]. Since a hydrophone does not measure particle ve-

locity, the particle velocity field generated by the source is 

not considered in the conventional approach to source local-

isation. We derive an expression for the particle velocity 

field, combine it with the acoustic pressure field in a con-

venient vector form and add the measurement noise to ob-

tain the data model of a single AVS. We then proceed to de-

rive expressions for the three Cartesian components of the 

active and reactive acoustic intensity vectors at the AVS. 

The azimuth angle of the source is determined from the es-

timates of the two horizontal components of the active in-

tensity vector. One can then obtain an estimate of the range 

and depth of the source through a 2D search to match the 

computed complex acoustic intensity vector with its esti-

mate obtained from the AVS measurements. Towards this 

end we define an ambiguity function whose maximum 

would correspond to the actual source position, and demon-

strate the application of this method through a numerical 

case study. But this method is highly computation intensive 

and also it may not provide unambiguous estimates of range 

and depth. Next we propose a method, employing a vertical 

AVS array, based on eigen-decomposition of the spatial cor-

relation matrix to estimate the range of the source without 

the need for a numerical search. After estimating azimuth 

and range, the depth can be easily estimated through a one-

dimensional numerical search within a bounded region. 

2. MEASUREMENT MODEL 

Consider an acoustic narrowband point source of centre fre-

quency πω 2  in a shallow ocean. Fig. 1 shows the source-

receiver geometry. Far-field spatial distribution of the result-

ing pressure signal at a range r and depth z, ignoring the 
negligible contribution due to continuous modal spectrum, is 

well approximated by a sum of normal modes given by [5] 
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Figure 1 - Source-receiver geometry 

where, 

r = 22 yx + is the range of the source, 

h is the depth of the water layer, 
zs is the source depth, 
ρ(z) is the density of water layer at depth z (< h), 
c(z) is the sound speed in water layer at depth z (< h), 
ρb(z) is the density of bottom at depth z (≥ h), 
cb(z) is the sound speed in bottom at depth z (≥ h), 
N is the maximum number of normal modes, 

ψn(z) is the eigenfunction and kn is the eigenvalue obtained as 
the solution of the Sturm-Liouville type characteristic differ-

ential equation (with appropriate boundary conditions at z = 0 

and z = h):  [ ] ,0)(ψ)(
)(ψ 22
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and p.(t) is the slowly varying envelope of the narrowband 
signal.  

The expression for particle velocity follows from the 

acoustic vector field equation [1], viz., 
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where r = (x, y, z). 
We shall denote the complex amplitudes of the pressure 

and the x, y and z-components of particle velocity by u, vx, 
vy and vz respectively. Using Eqs. (1) and (2) it can be shown 
that 
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is the complex amplitude of pressure due to n
th
 mode and 

ψn'(z) denotes derivative of ψn(z) with respect to z.  

Thus the narrowband measurement model for a single 

AVS in shallow water due to a point source, along with addi-

tive noise, may be written as 

y(t) = [yu(t) yvx(t) yvy(t) yvz(t)]
T 
= [u vx vy vz]

T p.(t) + n(t),     (8) 
where n(t) is the noise vector, and yu(t), yvx(t), yvy(t) and yvz(t) 
denote the measured pressure and particle velocity compo-

nents respectively. We shall consider the measurements to 

have been sampled at Nyquist rate so that the time index t 
will now on represent the discrete time index. 

3. COMPLEX ACOUSTIC INTENSITY VECTOR 

The real part of the complex acoustic intensity vector (i.e., 

active intensity vector) due to a narrowband source is given 

by [6] 
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From Eq. (9) we obtain the x, y and z-components of active 

intensity as 
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where the vector ααααr,zs and matrices Cr, Sr, J, K are defined as 
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and δm,n is the kronecker-delta. 
Similarly the imaginary part of the complex acoustic 

intensity vector (i.e., the reactive intensity vector [6]) due to 

a narrowband source can be shown to be 

       [ ]. )()(*)(*)(
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From Eq. (13) we obtain the x, y and z-components of reac-

tive intensity as 
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4. ESTIMATION OF SOURCE LOCATION 

It follows from Eqs. (10) and (11) that  

φ = tan-1(y/x) = tan-1(Iy/ Ix). 
Thus if we estimate Ix, and Iy we may unambiguously esti-

mate the azimuth angle as,  
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where Îx, and Îy  are the estimates of Ix, and Iy respectively.  
The components of active intensity vector may be estimated 

consistently from the AVS measurements as [3] 
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while those of reactive intensity may be obtained as 
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where <.>T denotes time averaging over T time samples and 

l=π/2ω is the time delay to effect a phase shift of 90
0
 in ve-

locity measurements. Since l need not be an integer, in gen-
eral it is required to obtain the phase shifted sequence either 

through an appropriate interpolation scheme or using Hilbert 

transform technique [7]. 

In order to find range and depth one may numerically 

search for r and zs trying to match the acoustic intensity vec-

tor computed as a function of these parameters against the 

estimate of the intensity vector obtained from the AVS 

measurements. Towards this end we define an ambiguity 

function as 
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and r0, zs0 represent the true source range and depth respec-
tively. Clearly, the peaks of this ambiguity function corre-

spond to possible source locations. However, this 2-

dimensional search is computationally intensive, especially 

since the range parameter r is unbounded. In the next section 
we propose a method to avoid the search in r. 

5. RANGE ESTIMATION THROUGH EIGEN 
DECOMPOSITON OF SPATIAL CORRELATION 

MATRIX 

We now propose a method to solve for r uniquely by em-

ploying a vertical array of M AVS. Let the sensors of the 

AVS array be located at (0,0,z1), (0,0, z2)…and (0,0, z M). Let 
the composite data vector be denoted by  

d(t) = [yT(t; z1) y
T
(t; z2) … yT(t; zM)]

T∈C4M×1
, 

where 

y(t; zm) = [u( zm) vx( zm) vy( zm) vz( zm)]
T p.(t) + n(t; zm) ∈C

4×1
, 

is the data vector at the mth
 AVS in accordance with Eq. (8). 

The composite data vector can be written in the form 

d(t) = A s(t) + w(t),    (19) 

where 

A = D(φ) ΓΓΓΓ∈C4M×N
,    (20) 
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w(t) = [nT(t; z1) n
T
(t; z2) … nT(t; zM)]

T∈C4M×1
, 

IM denotes M×M identity matrix and ⊗ denotes the kronecker 

product. 

The data correlation matrix is given by,  

Rd = E{dd
H
}= ARsA

H + Rw ∈C
4M×4M

, 

where Rs=E{ss
H
}and Rw=E{ww

H
}. The noise at different 

sensors can be assumed to be uncorrelated. Therefore the 

noise covariance matrix Rw has the block diagonal form 

Rw = diag {Rn(z1) Rn(z2) … Rn(zM)}∈C
4M×4M

, 

where 

Rn(zm) = E{n(t; zm) n
H
(t; zm)}∈C

4×4
 is the noise covariance 

matrix of the mth
 AVS located at depth zm. Using the model of 

ambient noise proposed by Buckingham [8], it can be shown 

that [9]  

Rn(z) =σ
2ϒϒϒϒn(z), 

where 
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and σ2  is a positive scale factor independent of z. Let us de-
fine ϒϒϒϒw = diag {ϒϒϒϒn(z1) ϒϒϒϒn(z2) … ϒϒϒϒn(zM)}∈C

4M×4M
. Therefore, 

through a linear transformation of the data vector d(t), we 
may obtain 

d(t) = ϒϒϒϒw
-1/2d(t) = ϒϒϒϒw

-1/2As(t) + w�(t), 
where now w �(t)= ϒϒϒϒw

-1/2w(t) has the covariance given by 
E{w �w�H}=σ2I. The covariance matrix of the transformed vec-

tor d(t) is given by 
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Noting that the rank of Rs is one, we conclude that rank of 
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where es is a 4Mx1 vector spanning the signal subspace and 

En is a 4Mx(4M-1) matrix whose columns span the noise 

subspace. We have 

es ∈ range{ ϒϒϒϒw
-1/2A}, 

and hence we may conclude from Eq. (20) that  

e�s = D
†
(φ) ϒϒϒϒw

1/2 es  ∈ range{ΓΓΓΓ},     (21) 

where, D†=(DT D)-1DT 
is the Moore-Penrose pseudo-inverse 

of D. It follows from Eq. (21) that there exists a vector 

ηηηη=[η1,… ηN]
T∈CN×1

, such that 

ΓΓΓΓηηηη = e�s.         (22) 

Using the following M equations from Eq. (22), 
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Assuming that at least one element of the set {e�s(4m-3) ; 
m=1,…,M} is different from zero, the least squares solution 

for j/2r parameterised by ηηηη, is obtained from Eq. (24) as 

j/2r = b† ( g - Bηηηη ) = α - ββββTηηηη,    (25) 

where α=b†g and ββββ=(b† B)T∈CN×1
. Now substituting for j/2r 

from Eq. (25) into Eq. (22) and using Eq. (23) we obtain the 

system of linear equations 

Hηηηη = χχχχ,                      (26) 

where 
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T
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T
 … HM
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χχχχm = [e�s(4m-3)  e�s(4m-2) -αe�s(4m-3)  e�s(4m-1) -αe�s(4m-3) e�s(4m)]
T∈ C4×1

, 

and β1, β2,… βM are the elements of the vector ββββ. We assume 

that the matrix H has full column rank. A sufficient condition 
for this to hold is 2M ≥ N, i.e., M ≥ N/2. The least squares 
solution to Eq. (25) is then given by 

                      ηηηη = (HTH)-1HTχχχχ,                                  (27) 
Substituting for ηηηη from Eq. (27) into Eq. (25), we obtain the 

estimate 

r̂  = j (α - ββββTηηηη)-1/2. 

In practice, we estimate R from T snapshots of data vec-

tor as R̂=〈d(t)dH(t)〉T . The eigenvector e�s is estimated by ê�s= 

D†(φ̂ )ϒϒϒϒw
1/2
 ês, where ês is the eigenvector of R̂ correspond-

ing to the largest eigenvalue and φ̂ is the estimate of φ ob-
tained by averaging the estimates determined using Eq. (17) 

at each AVS. To estimate the source depth we need to now 

perform only a 1D search for the parameter 0<zs<h, which 
maximises  the ambiguity function AF( r̂ , zs) given by Eq. 
(18).  

6. NUMERICAL STUDY 

For the purpose of illustrating the approach described above, 

we consider the case of an idealized ocean model comprising 

a homogenous water layer of constant depth 75 m with a 

sound speed of c = 1500 m/s over a rigid bottom. A 25 Hz 

acoustic source is located at an azimuth of 45
0
, range of 10 

km and a depth of 37.5 m. The receiver is placed at z=18.75 

m. For a channel with a hard bottom [5], the eigenfunctions 

and the eigenvalues are ψn(z)=sin(γnz) and  kn
2
=k2-γn

2
 respec-

tively, where γn for n=1,…,N are given by N real roots of the 
equation, γcot(γh)=0. Further, the number of normal modes is 

given by N=2h/λ, λ being the wavelength of the source. In 
the present numerical example, N works out to be 2.  

Fig. 2 shows the ambiguity function plot in a search re-

gion of 1-15 km for range and 0-75 m for depth at an SNR of 

20 dB. The AVS is at a depth of 18.75 m. Fig. 3 shows the 

results of range estimation through eigen-decomposition of 

spatial correlation matrix. Fig. 3 (a)-(c) shows root mean 

square error in the estimation of the azimuth angle, range and 

depth parameters, obtained through 300 Monte Carlo runs at 

various input SNR, employing M=2/2=1 sensor placed at 
18.75 m. Fig. 3 (d)-(f) shows the RMS errors in the estimates 

corresponding to a channel of depth 105 m for which N 
works out to be 3. For this case, a vertical array of M=4 AVS 

was considered. CRB for azimuth and range estimation, com-

puted for the present measurement model, is also shown for 

comparison. To compute CRB, the source is considered as a 

vector source consisting of N scalar sources corresponding to 
each normal mode in the oceanic waveguide [10, Theorem 

3.1]. 

 

 
Figure 2 - Ambiguity Function. Range parameter is discre-

tised into 2048 points from 1 km to 15 km and source depth 

parameter is discretised into 64 points from 0 to 75 m. Re-

ceiver depth is 18.75 m. N=2. SNR= 20 dB. r= 10 km, zs= 
37.5 m. 
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(a) (d) 

 

   
(b) (e) 

 

    
(c) (f)  

 

Figure 3 – RMS errors in azimuth angle, range and depth 

estimates at various SNR. Panels (a)-(c): h=75 m, N=2, and 
M=1. Panels (d)-(f): h=105 m, N=3, M=4. 

7. CONCLUSION 

A method was presented for 3D localisation of a narrowband 

acoustic source in shallow ocean using a vertical array of 

acoustic vector sensors. After developing an AVS measure-

ment model using the normal mode theory of underwater 

sound propagation, it was shown that the horizontal compo-

nent of the active intensity vector at an AVS points in the 

direction of the azimuth angle of the source. Range was then 

shown to be uniquely computable through an eigen-

decomposition of the spatial autocorrelation matrix of the 

data vector from a vertical array of AVS avoiding the need to 

perform a computationally intensive numerical search. It was 

seen from simulation studies that azimuth estimation, with a 

single AVS, is quite accurate (RMS error < 1
0
) above an SNR 

of 0 dB. For the numerical example here, the azimuth estima-

tor achieved CRB for SNR>9 dB. However, range estimation 

error approaches CRB only for SNR above 20 dB. The per-

formance can be improved by increasing the number of sen-

sors in the array. 
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