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Abstract

We consider the two-party quantum communication complexity of the bit version of the pointer chas-
ing problem, originally studied by Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ01]. We show that
in any quantum protocol for this problem, the two players must exchange Ω( n

k4 ) qubits. This improves
the previous best bound of Ω( n

22O(k) ) in [KNTZ01], and comes significantly closer to the best upper

bounds knownO(n+k log n) (classical deterministic [PRV01]) andO(k logn+ n
k (logdk/2e(n)+log k))

(classical randomized [KNTZ01]). Our proof uses a round elimination argument with correlated input
generation, making better use of the information theoretic tools than in previous papers.

1 Introduction

We consider the following pointer chasing problem in the two-party communication model [Yao79, Yao93].

Let VA and VB be disjoint sets of size n. Alice is given a function FA : VA → VB and player
Bob is given a function FB : VB → VA. Let F ∆

= FA∪FB . There is a fixed vertex s in VB . The
players need to exchange messages and determine the least significant bit of F (k+1)(s), where
k and s are known to both parties in advance.

If Bob starts the communication, there is a straightforward classical deterministic protocol where one of
the players can determine the answer after k messages of log n bits have been exchanged. It appears much
harder, however, to solve the problem efficiently with k messages, when Alice is required to send the first
message. We refer to this as the pointer chasing problem Pk.

Background: The pointer chasing problem has been studied in the past to show rounds versus communi-
cation tradeoffs in classical communication complexity. Nisan and Wigderson [NW93] showed (following
some earlier results of Papadimitriou and Sipser [PS84], and Duris, Galil and Schnitger [DGS87]) that
the players must exchange Ω(n

k − k log n) bits to solve Pk; their bound was improved by Klauck [Kla00]
to Ω(n

k + k). These lower bounds hold even if randomization is allowed. A deterministic protocol with
O(n+ k log n) bits of communication was given by Ponzio, Radhakrishnan and Venkatesh [PRV01], and a
classical randomized protocol with O(k log n + n

k (logdk/2e(n) + log k)) bits by Klauck, Nayak, Ta-Shma
and Zuckerman [KNTZ01]. Thus, the lower and upper bounds are quite close in the the classical setting.

In the quantum communication complexity model, this problem has been studied recently by Klauck,
Nayak, Ta-Shma and Zuckerman [KNTZ01], who, using interesting information-theoretic techniques, showed
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a lower bound of Ω( n

22O(k) ). This bound deteriorates rapidly with k, and becomes trivial for k ≥ log log n.
We improve this lower bound.

Result: In any bounded error quantum protocol for the pointer chasing problem Pk, Alice and Bob must
exchange Ω( n

k4 ) qubits.

Our proof technique: The underlying information theoretic tools we use are, in fact, mainly taken from
the paper Klauck, Nayak, Ta-Shma and Zuckerman [KNTZ01]. Our proofs use the round elimination
method, stated explicitly in the classical communication complexity setting by Miltersen, Nisan, Safra and
Wigderson [MNSW98]. This technique was applied in the quantum setting by Klauck et al., who developed
several tools, notably the average encoding theorem and the local transition theorem. Their argument was
refined further by Sen and Venkatesh [SV98]. Recently, Jain, Radhakrishnan and Sen [JRS02] showed an
optimal Ω(n log(k) n) lower bound for the full version of the pointer chasing problem, where the players
must determine the full description of F (k+1)(s), and not just its least significant bit. This was also obtained
by the round elimination argument. In this paper, we adapt this argument to the bit version of the problem.
For this, we consider a slightly different pointer chasing problem, where the two players are allowed to gen-
erate their own inputs and then proceed to compute the answer. To keep this problem non-trivial we must
impose some restrictions on the way the players behave. First, we insist that the inputs they generate must
be sufficiently rich. Second, the amount of communication before the input is generated, is limited. In pre-
vious round elimination arguments, the inputs were supplied to the two players from ‘outside’. While this
worked well for many problems, for the pointer chasing problem it made things difficult. However, letting
the players generate their inputs gives rise to new technical difficulties, because the inputs they generate are
not exactly what we want, but only close to it. So, we need to apply a correction step, that converts a pro-
tocol whose inputs have a distribution close to the one we desire into one where the inputs are exactly what
we want. Overall, we believe, the main contribution of this work is in showing how existing information
theoretic tools can be better exploited for round elimination in quantum communication protocols.

1.1 Organization of the rest of the paper

In the next section, we define the pointer chasing problem formally and derive our main result assuming a
Round Elimination Lemma. In Section 3, we collect the probabilistic and information theoretic tools that
are required for the proof. Finally, in Section 4, we describe the round elimination argument in detail.

2 Lower bound for the pointer chasing problem

In this section, we formally define the problem and our main result assuming a Round Elimination Lemma,
which will be proved in later section.

Quantum communication protocols: We consider two party quantum communication protocols as de-
fined by Yao [Yao93]. Let E,F,G be arbitrary finite sets and f : E × F → G be a function. There are
two players Alice and Bob, who hold qubits. When the communication game starts, Alice holds |x〉 where
x ∈ E together with some ancilla qubits in the state |0〉, and Bob holds |y〉 where y ∈ F together with some
ancilla qubits in the state |0〉. Thus the qubits of Alice and Bob are initially in computational basis states,
and the initial superposition is simply |x〉A|0〉A|y〉B |0〉B . Here the subscripts denote the ownership of the
qubits by Alice and Bob. The players take turns to communicate to compute f(x, y). Suppose it is Alice’s
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turn. Alice can make an arbitrary unitary transformation on her qubits and then send one or more qubits
to Bob. Sending qubits does not change the overall superposition, but rather changes the ownership of the
qubits, allowing Bob to apply his next unitary transformation on his original qubits plus the newly received
qubits. At the end of the protocol, the last recipient places the answer in a special register Ans.

Definition 1 (Safe transformation, protocols) Let H and K be a finite-dimensional Hilbert spaces, with
bases (|h〉 : h ∈ H) and (|k〉 : k ∈ K). We say that a unitary transformation U on H⊗K acts safely on H
if there exist unitary transformations (Uh : h ∈ H) acting on K such that for all h ∈ H and k ∈ K ,

U : |h〉|k〉 7→ |h〉Uh|k〉.

We say that a protocol acts safely on a register R, if all unitary transformations in the protocol act safely on
R, and R is never sent as part of a message. We say that a protocol is safe if Alice and Bob act safely on
their input registers.

When the inputs are classical, we can always assume that the protocol is safe. This is possible since the
inputs to Alice and Bob are in computational basis states. So, the players can make a secure copy of their
inputs before beginning the protocol.

2.1 The pointer chasing problem Pk

The input: Alice’s input is a function FA : VA → VB . Bob’s input is a function FB : VB → VA. VA and
VB are disjoint sets of size n each. We assume that n = 2r for some r ≥ 1.

The golden path: There is a fixed vertex s ∈ VB . Let F ∆
= FA ∪ FB ; let ans

∆
= lsb(F (k+1)(s)). Here

lsb(x) is the least significant bit of x; we assume that vertices in VA and VB have binary encodings of
length log n.

The communication: Alice and Bob exchange messages M1, . . . ,Mk, having lengths c1n, . . . , ckn, via a
safe quantum protocol in order to determine ans. Alice starts the communication, that is, she sends
M1. The player receiving Mk places a guess for ans in the register Ans. We require that the bit
obtained by measuring Ans in the computational basis1 should be the correct answer (i.e. equal to
lsb(F (k+1)(s)) with probability at least 3

4 , for all FA, FB .

2.2 The predicate QA
k

We will show our lower bound for Pk using an inductive argument. It will be convenient to state our
induction hypothesis by means of a predicates QA

k and QB
k , defined below. Roughly, the induction proceeds

as follows. We show that if there is an efficient protocol for Pk, thenQA
k is true. We then show independently

that QA
` implies QB

`−1 and QB
` implies QA

`−1, and that QA
0 and QB

0 are false. Thus, there is no efficient
protocol for Pk.

We now define QA
k (c1, . . . , ck, na, nb, ε) for k ≥ 1. Then, separately, we define QA

0 . For k ≥ 0, QB
k is

the same as QA
k , with the roles of Alice and Bob reversed. Consequently, all our statements involving QA

k

and QB
k have two forms, where one is obtained from the other by reversing the roles of Alice and Bob. We

will typically state just one of them, and let the reader infer the other.
The predicate QA

k (c1, . . . , ck, na, nb, ε) holds if there is a quantum protocol of the following form.

1From now on, all measurements are to be performed using the computational basis.
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Input generation: Alice and Bob ‘generate’ most of their inputs themselves. Alice has n input registers
(FA[u] : u ∈ VA) and Bob has n input registers (FB [v] : v ∈ VB). There is a fixed vertex s ∈ VB , that is
known to both players. Each of Alice’s registers has log n qubits so that it can hold a description of a vertex
in VB ; similarly, each of Bob’s registers can hold a description of a vertex in VA. In addition, Alice and Bob
have registers for their ‘work’ qubits WA and WB .

When the protocol starts, Alice’s registers are all initialized to 0. On Bob’s side, the register FB [s] starts

off with the uniform superposition |µ〉 ∆
= 1√

n

∑
a∈VA

|a〉; the other registers are all 0.

Alice starts by generating a pure state in M̃1M1, where M̃1,M1 are each c1n qubit registers. Then she
applies a unitary transformation UA on her registers other than M1 to generate a state in registers FA and
WA. Alice then sends M1 to Bob.

Now, Bob generates his input using the message M1 as follows. He applies a unitary transformation UB

on the registers that he owns at this point:

• M1, the message registers just received from Alice;

• FB [s] the register holding the start pointer, which is in the state |µ〉 in tensor with the other register;

• (FB [b] : b ∈ VB − {s}) and the registers WB holding the work qubits of B, which contain 0.

UB must operate “safely” on FB [s]. FB holds the ‘generated input’ to Bob for the pointer chasing problem,
and WB Bob’s ‘work qubits’.

We will use FA, FB also to refer to the actual states of the respective registers; fA, fB will denote the
states that would result, were we to measure FA, FB . Thus, typically FA, FB will be parts of a pure state
(the global state of Alice’s and Bob’s qubits) whereas fA, fB will be mixtures of computational basis states.

For our predicate QA
k (c1, . . . , ck, na, nb, ε) to hold, this input generation process must satisfy some

conditions.

Requirement 1(a): There is a subset XA ⊆ VA of size at most na such that the variables
(fA(u) : u ∈ VA) are independent, and for u ∈ VA −XA, fA(u) is uniformly distributed.

Requirement 1(b): There is a subset XB ⊆ VB − {s} of size at most nb such that the random
variables (fB(v) : v ∈ VB) are independent, and fB(v) for v ∈ VB − XB is uniformly dis-
tributed. Note that fB[s] is automatically uniformly distributed, because initially FB [s] contains
the uniform superposition, and UB acts safely on FB [s].

Communication: After UA, UB have been applied, Alice and Bob follow a quantum protocol exchanging
further messages M2, . . . ,Mk of lengths c2n, . . . , ckn. Bob sends the message M2. The rest of the protocol
is required to act safely on registers FA, FB . At the end of the protocol, the player who receives Mk places
a qubit in a special register Ans. The protocol then terminates.

The probability of error: Once the protocol has terminated, all registers are measured. Let ans denote
the value observed in Ans, and let fA and fB be the values observed in FA and FB ; we treat fA and fB as
functions (from VA to VB and VB to VA respectively). Let f ∆

= fA ∪ fB . Note that ans and f are random
variables.

Requirement 2: Pr[ans = lsb(f (k+1)(s))] ≥ 1 − ε.
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Base case: In QA
0 (ε), there is no input generation phase or communication. Bob and Alice start as before,

with |µ〉 in Bob’s register FB [s]. Alice produces a guess ans for lsb(fB(s)), which must be correct with
probability at least 1 − ε. Clearly, we have the following base case for our induction.

Proposition 1 If QA
0 (ε) is true then ε ≥ 1

2 .

Our goal is to show that if QA
k holds, then c1 + c2 + . . . + ck = Ω(k−4). By the following lemma, this

implies a lower bound n
k4 for PA

k .

Lemma 1 If there is a safe quantum protocol for P A
k with v0 = s ∈ VB , messages of lengths c1n, . . . , ckn,

and worst case error at most 1
4 , then QA

k (c1, . . . , ck, nA = 0, nB = 0, 1
4) is true.

Proof: We are given a safe quantum protocol P for Pk, where Alice sends the first message M1. Consider
the operation of P when uniform superpositions are fed for FA and FB . Consider the state of Alice just
before M1 is sent to B. This state has two parts.

1. The qubits that Alice keeps with herself, FAWA, where FA is n log n qubits long.

2. The c1n qubits that constitute the message M1.

Let M̃1M1 contain a canonical purification of M1, where M̃1 is c1n qubits long. Clearly, it is within Alice’s
powers to first generate the canonical purification in M̃1M1, and then apply a unitary transformation UA on
M̃1 plus some initially zero ancilla qubits in order to generate the correct state of FAWAM1. Alice then
sends M1

In our protocol, on Bob’s side, FB [s] already has a uniform superposition in tensor with the rest of Al-
ice’s and Bob’s qubits. Then, Bob generates the rest of his “input”, FB [v], v 6= s as a uniform superposition
in tensor with everything else. The registers WB are set to |0〉. At this point, the state of FAWAM1FBWB

is exactly the same as it would be in P after Bob receives the first message. From now on, Alice and Bob
operate exactly as in P , which is “safe” on FA, FB . The above parameters forQA

k can now be verified easily.
�

The following lemma is the key to our inductive argument.

Lemma 2 (Round elimination) (a) For k ≥ 2, if QA
k (c1, . . . , ck, nA, nB , ε) holds (with nA < n) then

QB
k−1(c1 + c2, c3, . . . , ck, nA, nB + 1, ε′) holds with ε′ =

(
n

n−na

) [
ε+ 3((2 ln 2)c1)

1
4

]
.

(b) If QA
1 (c1, nA, nB, ε) holds (with nA < n), then QA

0 (ε′) holds, where ε′ is exactly as in part (a).

The next section is devoted to the proof of this lemma. Now, let us assume this lemma and prove our main
lower bound.

Theorem 1 Suppose k ≤ n
1
4 and QA

k (c1, . . . , ck, 0, 0,
1
4) holds. Then c1 + c2 + · · · + ck = Ω(k−4).

Proof: (Sketch) By k − 1 applications of Part (a) of Lemma 2 (a) and one application of Part (b), we

conclude that either QA
0 (ε′) or QB

0 (ε′) holds with ε′ ≤
(

n
n−k

)k [
1
4 + 3k((2 ln 2)(c1 + c2 + · · · + ck))

1
4

]
.

Our theorem follows immediately from this and Proposition 1. �

Now, by using Lemma 1, we can derive from this our lower bound for Pk.

Corollary 1 (Main result) In any protocol for Pk, Alice and Bob must exchange a total of Ω( n
k4 ) qubits.
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3 Preliminaries

We now recall some basic definitions and facts from probability and and information theory, which will be
useful in proving our main result. For excellent introductions to classical and quantum information theory,
see the books by Cover and Thomas [CT91] and Nielsen and Chuang [NC00] respectively.

If A is a quantum system with density matrix ρ, then S(A)
∆
= S(ρ)

∆
= −Tr ρ log ρ is the von Neumann

entropy of A. If A,B are two disjoint quantum systems, the mutual information of A and B is defined as
I(A : B)

∆
= S(A) + S(B) − S(AB).

Fact 1 (see [KNTZ01]) Let X1, . . . , Xn be classical random variables and let M be a quantum encoding
of X ∆

= X1 . . . Xn. Then, I(X : M) ≥
∑n

i=1 I(Xi : M). Also, if M is n qubits long, then I(X : M) ≤ n.

We will be working with various measures of distance between classical and quantum states. For distri-
butions D and D′ on a finite set X , their total variational distance is given by ‖D−D ′‖1 =

∑
x∈X |D(x)−

D′(x)|. We will use the following elementary fact, which we state without proof.

Fact 2 Suppose D,D′ are two probability distributions on the same finite set X , whose total variation
distance is ‖D −D′‖1 = δ. Then, there exists a stochastic matrix P = (pxx′)xx′∈X , such that D = PD′

and
∑

x′∈X P (x′, x′)D(x′) = 1 − 1
2δ. Let H be a Hilbert space with basis (|x〉 : x ∈ X). Let C be a

unitary transformation on H⊗H that maps basis vectors of the form |x′〉|0〉 (where 0 is a special element
of X) according to the rule

|x′〉|0〉 → |x′〉 ⊗
∑

x∈X

√
pxx′ |x〉,

and maps other standard basis vectors suitably. Suppose R′ and R are registers that can hold states in H,
whereR′ contains a mixture of basis states with distribution D ′ andR is in the state |0〉. Apply C to (R′, R),
and then measure the registers in the computational basis. Let the resulting random variables (taking values
in X) be Z ′ and Z . Then, Z ′ has distribution D′, Z has distribution D and Pr[Z 6= Z ′] ≤ 1

2δ. Note, that C
acts safely on R′.

The trace norm of a linear operator A is defined as ‖A‖t
∆
= Tr

√
A†A. The following fundamental

theorem (see [AKN01]) shows that the trace distance between two density matrices ρ1, ρ2, ‖ρ1 − ρ2‖t,
bounds how well one can distinguish between ρ1, ρ2 by a measurement.

Theorem 2 ([AKN01]) Let ρ1, ρ2 be two density matrices on the same Hilbert space. Let M be a general
measurement (i.e. a POVM), and Mρi denote the probability distributions on the (classical) outcomes of
M got by performing measurement M on ρi. Let the `1 distance between Mρ1 and Mρ2 be denoted by
‖Mρ1 −Mρ2‖1. Then

‖Mρ1 −Mρ2‖1 ≤ ‖ρ1 − ρ2‖t

We will need the following “average encoding theorem” of Klauck et al. [KNTZ01]. Intuitively speaking, it
says that if the mutual information between a classical random variable and its quantum encoding is small,
then the various quantum “codewords” are close to the “average codeword”.

Theorem 3 (Average encoding theorem [KNTZ01]) Suppose X , Q are two disjoint quantum systems,
where X is a classical random variable, which takes value x with probability px, and Q is a quantum
encoding x 7→ σx of X . Let the density matrix of the average encoding be σ ∆

=
∑

x pxσx. Then
∑

x

px ‖σx − σ‖t ≤
√

(2 ln 2)I(X : Q)
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We will also need the following “local transition theorem” of Klauck et al. [KNTZ01].

Theorem 4 (Local transition, [KNTZ01]) Let ρ1, ρ2 be two mixed states with support in a Hilbert space
H, K any Hilbert space of dimension at least the dimension of H, and |φi〉 any purifications of ρi in H⊗K.

Then, there is a local unitary transformation U on K that maps |φ2〉 to |φ′2〉
∆
= (I ⊗U)|φ2〉 (I is the identity

operator on H) such that ∥∥|φ1〉〈φ1| − |φ′2〉〈φ′2|
∥∥

t
≤ 2

√
‖ρ1 − ρ2‖t

4 Round elimination: proof of Lemma 2

We consider Part (a) first. Part (b) follows using similar argument, and we do not describe them explicitly.
Suppose QA

k (c1, c2, . . . , ck, nA, nB , ε) is true. That is, there is a protocol P satisfying Requirements 1 and
2 in the definition of QA

k . We need to show that there is a protocol that satisfies the requirements for QB
k−1

with parameters stated in Lemma 2 (a).
In what follows, subscripts of pure and mixed states will denote the registers which are in those states.

For u ∈ VA, we use the subscript u instead of FA[u]. Similarly, for v ∈ VB , we use the subscript v instead
of FB [v]. For example, we say that the register FB [s] is initially in the state |µ〉s = 1√

n

∑
u∈VA

|u〉s.

Let |ψA〉 be the (pure) state of Alice’s registers just before she sends M1 to Bob. At this point the state
of all the registers taken together is the pure state

|ψin〉 = |ψA〉 ⊗ 1√
n

∑

a∈VA

|a〉s|0〉R, (1)

where R is the set of registers corresponding to the rest of B’s input (FB [v] : v ∈ VB − {s}), and work
qubits WB . For a ∈ VA, we may expand |ψA〉 as

|ψA〉 =
1√
`a

∑

b∈VB

|b〉a|ψA
a→b〉, (2)

where `a = 1 if a ∈ XA and `a = n otherwise. Here, |ψA
a→b〉 is a pure state of Alice’s registers (FA(v) :

v ∈ VA − {a}) and WA. Note that |ψA
a→b〉 is precisely the state of these registers when FA[a] is measured

and found to be in state |b〉. (If Pr[fA[a] = b] = 0, then |ψA
a→b〉

∆
= 0.) From (1) and (2), we have

|ψin〉 =
1√
n

∑

a∈VA

1√
`a

∑

b∈VB

|b〉a|ψA
a→b〉|a〉s|0〉R (3)

At this point the first message M1 is sent to Bob. Let the rest of the protocol starting from this point be P ′;
that is, in P ′ Bob starts by generating his input from M1 and FB [s], sends the message M2 to A, to which
Alice responds with M3, and so on. At the end of P ′ we have a register containing the answer which we
measure to find ans, and the input registers of Alice and Bob, which when measured yield fA and fB .

Let εa→b be the probability of error when P ′ is run starting from the state |b〉a|ψA
a→b〉|a〉s|0〉R. Thus, we

have
εa→b = Pr[ans 6= lsb(f (k+1)(s)) | fB[s] = a and fA[a] = b],

in the original protocol P (or in P ′, when it is run starting from |ψin〉). In particular, we have

ε = E
a,b

[εa→b] ≥
n− na

n
E

a∈uVA−XA,b∈uVB

[εa→b]. (4)
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In the first expectation, (a, b) are chosen with the same distribution as (fB[s], fA[fB[s]]) of the given proto-
col P; in the second, they are chosen uniformly from the sets specified.

Overview: We want to eliminate the first message sent by Alice, at the cost of increasing the probability
of error slightly, but preserving the total length of the communication. This is based on the following idea
(taken from [KNTZ01]). Let M1,a→b be the state of the registers holding the first message when the entire
state of Alice’s registers is ψA

a→b; that is, M1,a→b is the state of the message registers corresponding to
message M1, when we measure FA[a] and observe |b〉 there. Note, that ψA

a→b is a purification of M1,a→b.
Also, the state of the first message in P , M1 is the average, taken over the choices of b, of M1,a→b.

Suppose there is an a ∈ VA −XA such that for all b, the message M1,a→b is independent of b, that is,
it is always the fixed sate M ∗. Then, we can eliminate the first message. Informally stated, this amounts
to restricting ourselves to the subcase of the protocol when Bob’s first pointer FB [s] is fixed at |a〉, and
Bob generates M ∗ himself, and sends some small advice along with his message M2, to enable Alice to
reproduce the right entanglement between her registers and Bob’s. Unfortunately, we will not be able to
show that there is an a and an M ∗ such that M1,a→b = M∗, for all b. Instead, we will show that there is an
M∗ that will be close to M1,a→b for typical b. In fact, the message M1 (which is the average of M1,a→b as
b varies) will be our M ∗.

Let (M1, M̃1) be the canonical purification of the first message of the protocol P . Our first goal is to
show that ifM1 is close toM1,a→b, then Alice can create a state close to |ψA

a→b〉 from (M1, M̃1) by applying

a unitary transformation on M̃1. More precisely, suppose ‖M1,a→b −M1‖t
∆
= δa→b. Then, by the Local

Transition Theorem, there is a unitary transformation Ua→b that when applied to M̃1 (together with ancilla
qubits initialized to zero) takes the pure state (M1, M̃1) to a state ψ̃A

a→b such that
∥∥∥|ψA

a→b〉〈ψA
a→b| − |ψ̃A

a→b〉〈ψ̃A
a→b|

∥∥∥
t
≤ 2

√
δa→b. (5)

In particular, if the protocol P ′ is run starting from the state |ψ̃A
a→b〉|µ〉s|0〉R (instead of |ψA

a→b〉|µ〉s|0〉R),
the probability of error is at most εa→b + 2

√
δa→b.

4.1 The protocol Pa→b

Now, we fix a ∈ VA and b ∈ VB and consider the case when fB(s) = a and fA(a) = b. We now describe
a protocol that functions for this situation (see Figure 1) . This is just an intermediate protocol. Later we
will describe how we obtain our final protocol (satisfying the requirements of QB

k−1) from this. It will be
helpful, meanwhile, to keep in mind that in our final protocol, the roles of A and B will be reversed, FB [s]
will be fixed at |a〉 (we will add s to XB), a will be our new s, and the state of FA[a] will not be fixed at |b〉
but will be the uniform superposition |µ〉.

Step 1: Alice generates the canonical purification (M1, M̃1). Alice applies Ua→b to M̃1 (plus
some ancilla) to produce the state |ψ̃A

a→b〉 in the registers (M1, FA,WA).
Step 2: Alice and Bob proceed according to the protocol P ′ starting from the state |ψ̃a→b〉 =
|ψ̃A

a→b〉|a〉s|0〉R, where, as before, R is the set of registers of Bob corresponding to (FB [v] : v ∈
VB − {s}) and work qubits WB .

Figure 1: The intermediate protocol Pa→b
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Revised Step 1:

• Alice generates the canonical purification (M1, M̃1). Alice applies Ua→b to M̃1 (plus some
ancilla) to produce the state |ψ̃A

a→b〉 in the registers (M1, FA,WA). Alice sends M1 to Bob.

• Next, to produce input registers satisfying Requirement 1(a), Alice uses a fresh set of reg-
isters F̂A and sets F̂A[a] = |b〉. Next, Alice applies a unitary transformation to registers
(F̂A[a], FA, F̃A) defined by

|b〉F̂ [a]|ψ〉FA,F̃A
→ |b〉F̂ [a]Ca→b|ψ〉FA,F̃A

.

Before the application of this the registers F̃A are initialized to |0〉 (as in the statement of
Fact 2). Alice then copies (F̃A[u] : u ∈ VA − {a}) into (F̂A[u] : u ∈ VA − {a}). The input
generation for Alice is now complete.

Note that at this point if we measure (FA, F̂A), the resulting random variables
(f ′A,a→b, f̂A,a→b) have distribution precisely D′

a→b and Da→b. Furthermore, (see
Fact 2),

Pr[f ′A,a→b 6= f̂A,a→b] ≤
1

2
· 2

√
δa→b. (6)

Step 2: From this point on, Alice and Bob just follow P ′ described above. On receiving M1,
Bob generates his input and work qubits by appropriately applying the unitary transformation UB .
He then generates message M2 and sends it to Alice.

Let |φa→b〉 denote the state of the entire system just after M2 is sent to Alice.

After this, Alice and Bob continue as before. In particular, the Alice continues to use her old input
register FA (safely) as before. The registers F̂ are not used until the end, when they are measured
in order to decide if the answer returned by the protocol is correct.

Figure 2: The revised protocol Pa→b

Remark on the inputs generated: Suppose we measure registers FA just after Ua→b has been applied in
the above protocol. Let f ′

A,a→b be the resulting random variable with distribution D ′
a→b. On the other hand,

if we were to measure the same registers in the state |ψA
a→b〉, then the resulting random variable is fA,a→b

whose distribution is D; that is, D is the distribution of fA conditioned on the event fA[a] = b. Then, it
follows from (5) and Theorem 2 that

‖Da→b −D′
a→b‖1 ≤ 2

√
δa→b. (7)

We will want Alice’s input registers to satisfy Requirement 1(b). Unfortunately, the distribution D ′ may not
satisfy this requirement automatically, but (7) will help us ‘correct’ this.

Next consider Bob’s input registers. In P , Bob’s register FB [s] contained the uniform superposition µ
and he generated the input in the rest of the registers himself form M1 using the unitary transformation UB .
The input he generated satisfied Requirement 1(b). In Pa→b, Bob applies the same transformation UB on
M1, but FB [s] is now |a〉 and not |µ〉. Suppose FB is measured at this stage resulting in the random variable
fB,a→b : VB → VA. Note that fB,a→b has the same distribution as fB conditioned on the event fB(s) = a.

9



Thus,

B1. fB,a→b is constant on XA ∪ {s} (in fact, fB[s] = a), and

B2. the set of random variables (fB,a→b[v] : v ∈ VB − XB − {s}) are independent and uniformly
distributed over VA.

Probability of error in Pa→b: By (5) and Theorem 2, the probability of error of Pa→b, which we denote
by ε̃a→b, is at most εa→b + 2

√
δa→b.

Correcting Alice’s input registers: The random variable f ′
A,a→b that results from measuring FA has a

distribution D′
a→b which is close to the desired distribution Da→b of fA,a→b (by (7) above). It will be easier

to satisfy Requirement 1(b), however, if we could arrange that the distribution of Alice’s inputs is exactly
Da→b. To do this, we use Fact 2; let Ca→b be the unitary transformation corresponding to D ′

a→b and Da→b.
We revise the protocol Pa→b by including this operation (see Figure 2).

Error probability of the revised protocol: At that end of the protocol, we measure all registers and obtain
the answer ans, and the inputs f̂A,a→b and fB,a→b. We also have fA,a→b corresponding to Alice’s old input
registers FA. Let f̂a→b = f̂A,a→b ∪ fB,a→b and f ′a→b = f ′A,a→b ∪ fB,a→b. This revised protocol makes an

error whenever ans 6= lsbf̂
(k+1)
a→b (s). We then have

ε̂a→b
∆
= Pr[ans 6= lsbf̂

(k+1)
a→b (s)]

≤ Pr[f̂a→b 6= f ′a→b] + Pr[ans 6= lsbf
′(k+1)
a→b (s)]

≤ 1

2
· 2

√
δa→b + εa→b + 2

√
δa→b

= εa→b + 3
√
δa→b. (8)

4.2 The final protocol: Pa

A small modification now gives us our final protocol, which will satisfy the requirements for Qk−1. We
make two changes to the revised version of Pa→b. First, instead of Alice sending M1 and retaining M̃1,
now Bob creates the canonical purification (M1, M̃1) and sends Alice M̃1, while retaining M1. Second, in
Pa→b, the register F̂A[a] is fixed to the value |b〉. Now, however, Alice starts with |µ〉 in F̂ [a]. With these
modifications, Alice’s role in the input generation phase of the new protocol is similar to Bob’s role in the
protocol we started with. The resulting protocol Pa (see Figure 3) depends on the choice of a. Using an
averaging argument we will conclude that there is a choice for a ∈ VA so that Pa satisfies the requirements
for QB

k−1 as needed in Lemma 2(a).

The probability of error of Pa: For a ∈ VA −XA, let ε̂a be the probability of error of Pa. Then, by (8),
we have

ε̂a = E
b∈uVB

[ε̂a→b] (9)

≤ E
b∈uVB

[εa→b + 3
√
δa→b]. (10)
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The new input registers for Alice will be denoted by F̂A. The old input registers will
continue to exist, but they will count as work qubits of Alice. Initially, in the register
F̂A[a] we place a uniform superposition |µ〉. All other registers are initialized to 0.

Step 1: Bob generates the canonical purification (M1, M̃1) of the first message of P . He sets his
register FB [s] to the state |a〉, and using the transformation UB generates his inputs FB and work
qubits WB . Then, he generates the first message of protocol P ′ (this corresponds message M2 of
the P), and sends this message along with M̃1 to Alice.

Step 2: (a) One receiving M̃1, Alice applies a unitary transform on registers (F̂A[a], M̃1, A) to
generate a state in registers FA (the old input registers) and WA (the work qubits of the original
protocol). Here, A is a set of ancilla qubits initialized to 0. This unitary transformation acts
according to the rule

|b〉F̂ [a]|θ〉fM1,A
7→ |b〉F̂ [a]Ua→b|θ〉fM1,A

.

Note that this transformation is safe on F̂ [a].
(b) Since FA is not in the desired state, Alice applies the correction used in the revised Step 1 of
Pa→b. That is, she applies a unitary transformation to registers (F̂A[a], FA, F̃A) defined by

|b〉F̂ [a]|ψ〉FA,F̃A
7→ |b〉F̂ [a]Ca→b|ψ〉FA,F̃A

.

Before the application of this the registers F̃A are initialized to 0. Alice then copies (F̃A[u] : u ∈
VA − {a}) into (F̂A[u] : u ∈ VA − {a}). For the purpose of satisfying Requirement 1(b), F̂A are
to be treated as A’s input register.

The state of entire system at this point is precisely
1√
n

∑

b∈VB

|φa→b〉, where |φa→b〉 is

the state at the corresponding point in the revised protocol Pa→b (see Figure 2). The
rest of the protocol operates safely on FA,F̂A and FB . In fact, no unitary transform
will now be applied to registers F̂A.

Step 3: Alice resumes the protocol P ′. Note that Bob has already executed the first step of P ′

and sent the first message (which corresponds to message M2 of the original protocol). Alice
responds to this message as before.

While executing P ′, the old input registers FA are used. The new registers F̂A are
not touched by any unitary transformation from now on. At the end, however, when
we try to decide if an error has been made, we will measure all registers, and check if
the answer ans

′ agrees with the answer ans(f̂A, fB), where f̂A is the random variable
obtained by measuring the new input registers F̂A.

Figure 3: The protocol Pa
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We need to show that there exists an a such that ε̂a is small. For this we consider the average of ε̂a as a is
chosen uniformly from VA −XA:

E
a∈uVA−XA

[ε̂a] ≤ E
a,b

[εa→b + 3
√
δa→b], (11)

where on the right a is chosen uniformly from VA −XA and b is chosen independently and uniformly from
VB . (From now on, when we average over a and b, we will assume that they are chosen in this manner.) By
(4), we have

E
a,b

[εa→b] ≤
(

n

n− na

)
ε. (12)

It remains to bound Ea,b[
√
δa→b]. Consider the state obtained by measuring Alice’s input registers FA just

before M1 is sent to Bob in the original protocol. As stated earlier, if the value b is observed for FA[a],
then the state of the message registers will be M1,a→b; also, M1 is the average of these states, that is,
M1 = 1

n

∑
b∈VB

M1,a→b.

Claim 1 For a ∈ VA −XA, Eb[δa→b] ≤
√

(2 ln 2)I(fA[a] : M1).

Proof: Consider the encoding of elements of VB given by b 7→M1,a→b by restricting attention the registers
FA[a] and M1. Our claim now follows from the Average Encoding Theorem (Theorem 3) and the definition
of δa→b. �

Claim 2 Ea∈uVA−XA
[I(fA[a] : M1)] ≤

(
n

n−na

)
c1.

Proof: Using Fact 1 and (7), we have c1n ≥ I(fA : M1) ≥
∑

a∈VA

I(fA[a] : M1) ≥
∑

a∈VA−XA

I(fA[a] : M1).

�

By combining these two claims, and noting that the square-root function is concave, we obtain

E
a,b

[δa→b] ≤ E
a
[
√

(2 ln 2)I(fA[a] : M1)] ≤
√

(2 ln 2) E
a
[I(fA[a] : M1)] ≤

√(
n

n− na

)
(2 ln 2)c1.

(13)
This implies, again because the square root is concave, that

E
a,b

[
√
δa→b] ≤

[(
n

n− na

)
(2 ln 2)c1

] 1
4

. (14)

Now we return to (11), and use (12) and (14) to obtain

E
a
[ε̂a] ≤

(
n

n− na

)[
ε+ 3((2 ln 2)c1)

1
4

]
.

Thus, there exists an a ∈ VA −XA such that

ε̂a ≤
(

n

n− na

) [
ε+ 3((2 ln 2)c1)

1
4

]
.

Now, it can be verified, the protocol Pa satisfies the requirements for QB
k−1(c1 + c2, c3, . . . , ck, nA, nB +

1, ε̂a). This shows Part (a) of Lemma 2. Part (b) can be established similarly.
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