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Abstract. We study the following set membership problem in the bit
probe model: given a set S from a finite universe U , represent it in mem-
ory so that membership queries of the form “Is x in S?” can be answered
with a small number of bitprobes. We obtain explicit schemes that come
close to the information theoretic lower bound of Buhrman et al. [STOC
2000, SICOMP 2002] and improve the results of Radhakrishnan et al.
[ESA 2001] when the size of sets and the number of probes is small.

We show that any scheme that stores sets of size two from a universe
of size m and answers membership queries using two bitprobes requires
space Ω(m4/7). The previous best lower bound (shown by Buhrman et
al. using information theoretic arguments) was Ω(

√
m). The same lower

bound applies for larger sets using standard padding arguments. This is
the first instance where the information theoretic lower bound is found
to be not tight for adaptive schemes.

We show that any non-adaptive three probe scheme for storing sets of
size two from a universe of size m requires Ω(

√
m) bits of memory. This

extends a result of Alon and Feige [SODA 2009] to small sets.

1 Introduction

This paper addresses the following set membership problem in the bit probe
model: given a set S from a finite universe U , represent it in memory so that
membership queries of the form “Is x in S?” can be answered by reading a few
bits. This problem was first studied by Buhrman, Miltersen, Radhakrishnan and
Venkatesh [2]. Let (n, m, s, t)-scheme be a solution to this problem that uses s

bits of memory and answers queries correctly for all n-element subsets of an
m-element universe using t probes. Let sN(n, m, t) denote the minimum space
s such that there exists a deterministic (n, m, s, t)-scheme that answers queries
with t non-adaptive probes. (We replace the subscript N by A when we wish to
emphasize that the probes are allowed to be adaptive.) Using this terminology,
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the results of Buhrman et al. [2] can be stated as

sN (n, m, 2t + 1) = O(ntm2/(t+1));

and sA(n, m, t) = Ω(nt(
m

n
)1/t).

In this work, we will primarily be concerned with bounds when n and t are small
(say constants, or at most O(log m)), and focus on the constant in front of 1

t in
the exponent of m; in particular, we would like to know if that constant could
be 1 (matching the lower bound).

The upper bound shown by Buhrman et al. [2] used probabilistic existence
arguments. Explicit constructions were studied by Radhakrishnan et al. [3]. In
particular, they showed that sA(n, m, dlg(n + 1)e + 1) ≤ (n + dlg(n + 1)e)√m.
Note that the dependence on m in this result is in general inferior to the m4/t

dependence in the bound of above. Our first result improves both these results
when t is much larger than n.

Result 1 (a) We give an explicit scheme that shows that sA(n, m, t) ≤ Ctn ·
m1/(t−n+1), for t > n ≥ 2, and a constant C independent of n and t.

(b) Using a probabilistic argument we obtain a deterministic scheme that shows

that sA(n, m, t) ≤ Cntm1/(t−nt2−t+1), for t > n ≥ 2, and a constant C

independent of n and t.

The main point to note is that for small n and t somewhat larger than n, the
exponent of m in these bounds approaches 1

t , as in the lower bound above.
The above results use space close to the lower bound when the number of

probes is large. Are savings possible with a small number of probes? Alon and
Feige [1] studied the “power of two, three and four probes.” They showed the
following upper bounds for adaptive schemes.

Two probes: For n < log m, sA(n, m, 2) = O(
mn log log m

n

log m ).

Three probes: sA(n, m, 3) = O(n
1
3 m

2
3 ).

Four probes: sA(n, m, 4) = O(n
1
4 m

3
4 ).

These three upper bounds are remarkable in that they show that the space re-
quirement can be o(m) even with a small constant number of probes (disproving
a conjecture of [2]).

Even for the simple case of t = 2 and n = 2, the current bounds [2] are not
tight: √

m ≤ sA(2, m, 2) ≤ m2/3.

We conjecture that the upper bound is tight. For non-adaptive probes, Buhrman
et al. determined that sN(2, m, 2) = m; this, in particular, shows that sA(2, m, 2)
= o(sN (2, m, 2)). Our next result shows an improved lower bound even when the
queries are allowed to be adaptive.

Result 2 sA(2, m, 2) = Ω(m4/7).



This implies a similar lower bound as long as n = o(m). This is the first lower
bound for general schemes (previous bounds apply only to non-adaptive schemes)
that beats the information theoretic lower bound of Buhrman et al. mentioned
above.

Alon and Feige [1] showed the following lower bound for non-adaptive three
probe schemes with n ≥ 16 logm.

sN (n, m, 3) = Ω(

√

nm

log m
).

We obtain the following result for n = 2.

Result 3 sN (2, m, 3) = Ω(
√

m).

Note that this result shows that the
√

m dependence on m shows up already for
sets of size 2, and extends the result of Alon and Feige above to sets of size less
than log m. Furthermore, Result 1 (b) shows that sA(2, m, 3) = O(m0.4). Thus,
adaptive schemes are more efficient than non-adaptive schemes for n = 2, t = 3.
A similar result was observed by Buhrman et al. for n = 2, t = 2.

Buhrman et al. [2] showed a non-explicit construction of a non-adaptive t

probe scheme with O(ntm4/t) space. Ta-Shma [4] gave explicit constructions of
non-adaptive schemes. One can using the techniques of Buhrman et al. obtain
an explicit non-adaptive (n, m, s, t) scheme with s = 2tm

n

t+n−1 . For n = 2, 3, this
is an improvement over the O(ntm4/t) scheme of Buhrman et al. The details are
omitted from this version of the paper.

Techniques used

Upper bounds: The two upper bounds results (Results 1 (a) and 1 (b)) are shown
using different methods. Result 1 (a) is elementary, but it uses adaptiveness in a
careful way. It employs schemes for storing sets of various sizes, and distributes
the set to be stored among these schemes. Using the first few probes the mem-
bership algorithm is led to the scheme where this element may be found.

Result 1 (b) uses a probabilistic argument. The query scheme first make t−1
non-adaptive probes and determines the section of the memory it must finally
probe to determine if the given element is in the set. The first t − 1 probes
can be explicitly described, it is only the location of the last probe is assigned
probabilistically.

Lower bounds: The proof of Result 2 uses a graph theoretic formulation of the
problem. It was shown by Radhakrishnan et al. [3] that for certain restricted
schemes, s(2, m, 2) = Ω(m2/3).

While not resorting to the artificial restriction of the previous proof, our
proof only yields a weaker bound of m4/7. As stated the result beats the routine
information-theoretic lower bound of Ω(

√
m) proved earlier, where one shows

that the small data structure leads to a short encoding of sets of size 2; since
any such encoding must use at least log

(

m
2

)

bits, one infers a lower bound on



the size of data structure. The proof in this paper departs from this information
theoretic framework, in that it does not directly derive encodings of sets from
the efficient data structure. The proof in this paper uses the graph theoretic
formulation similar to that of Radhakrishnan et al. [3], but needs a more technical
and complicated argument to deal with what intuitively appear to be easy cases.

Result 3 in contrast applies only to non-adaptive schemes but allows for
three probes. As stated above, Buhrman et al. showed that sN (2, m, 2) = m. We
extend their argument to three probes. This involves considering cases based on
the functions used by the query algorithm. In most cases, we are able to show
that the scheme contains a (2, m′, s, 2)-non-adaptive scheme on a universe of
size m′ = Ω(

√
m); the results of Buhrman et al. then immediately gives us the

desired lower bound.

2 Result 1: Adaptive schemes

In this section, we obtain explicit schemes that come close to the information
theoretic lower bound of Buhrman et al. [2] and improve the results of Radhakr-
ishnan et al. [3] when the size of sets and the number of probes is small. We first
mention a result of Radhakrishnan et al. that we will use to prove Theorem 1
and Theorem 2.

Lemma 1. (Theorem 1 of [3]) There is an explicit adaptive (n, m, s, t) scheme
with t = dlg(n + 1)e + 1 and s = (n + dlg(n + 1)e)√m.

We now present a proof of Result 1 (a) for the case of n = 2.

Theorem 1. For any t > 2, there is an explicit adaptive (2, m, s, t) scheme with

s = t2m
1

t−1 .

Proof: We show how a multiprobe scheme can be built up from some schemes
that use fewer probes.

Claim. Let (1, m2, s1, t−2) and (2, m2, s2, t−1) be two adaptive schemes. Then,
there exists a (2, m1m2, s, t) adaptive scheme such that s ≤ s1 + s2 + 2m1.

We will justify this claim below. Let us first verify that this yields our theorem
by induction. For t = 3, the claim follows from Lemma 1 which tells that there is
an explicit adaptive (2, m, 4m

1
2 , 3) scheme; this gives sA(2, m, 3) ≤ 4m

1
2 . Also, it

is easy to see that sA(1, m, t) ≤ tm
1
t . (To each element of the universe assign a

distinct t-tuple from fx ∈ [m1/t]t. The memory will consist of t tables T1, . . . , Tt,
each with m1/t bits, and the query “Is x in S?” will be answered yes iff Tj [fx[j]] =

1 for all j.) Now, let m1 = m
1

t−1 and m2 = m
t−2
t−1 . Then, the claim gives:

sA(2, m1m2, t) ≤ (t− 2)m
1

t−1 + (t− 1)2m
1

t−1 + 2m
1

t−1 ≤ t2m
1

t−1 for any t > 2.
It remains to justify the claim. Partition the universe into m1 blocks B1, B2,

. . ., of size at most m2 each. We have a table T with m1 rows, each with two bits
(this accounts for the 2m1 term), and space for one (1, m2, s1, t− 2)-scheme N1

and another adaptive (2, m2, s2, t− 1)-scheme N2. To answer the query “Is x in



S?” for an element x ∈ Bi, the query algorithm reads the first bit of T [i], and if
it is 1, it invests the remaining t − 1 probes in N2 assuming a (2, m2, s2, t − 1)-
scheme for Bi is implemented there. Otherwise, it reads the second bit and
if it is 1, invests the remaining t − 2 probes in the scheme N1 assuming an
(1, m2, s1, t − 2)-scheme for Bi is implemented there. If the two bits read from
T are 00, it answers No.

Now, given a set {x, y} the storage is determined as follows.

(i) If there are distinct blocks Bi and Bj with one element each, we set T [i] = 10,
T [j] = 01 and set the other entries of T to 00. We store the elements of Bi

using N2 and the elements of Bj using N1.
(ii) If {x, y} ⊆ Bi for some block Bi, we set T [i] = 10 and set the other entries

of T to 00. The elements in Bi are now represented in the scheme N2. 2

We next generalize this result to larger sets. This will complete the proof of
Result 1 (a).

Theorem 2. For every n ≥ 2 and t > n, there is an explicit adaptive (n, m, s, t)-

scheme with s = tnm
1

t−n+1 .

Proof: We demonstrate a scheme inductively. Lemma 1 shows that there exists
an explicit adaptive (n, m, 2nm

1
2 , n+1) scheme for all n ≥ 2. (Lemma 1 actually

demonstrates a scheme with smaller space and fewer probes, but this scheme is
sufficient for our proof.) Moreover, it is proven in Theorem 1 above that there is

an explicit adaptive (2, m, t2m
1

t−1 , t) scheme for every t > 2. We use these two
schemes as the base cases for our induction argument (note that 2n ≤ (n + 1)2

for all n ≥ 2). We also note that there is an non-adaptive (1, m1, t1m1

1
t1 , t1)

scheme for every m1 and every t1 ≥ 2.

For induction, we assume that an explicit adaptive (i2, m2, t2
i2m2

1
t2−i2+1 , t2)

scheme exists for every m2, and every i2 and t2 satisfying 2 ≤ i2 < n and

i2 < t2 ≤ t. We also assume that an explicit adaptive (n, m3, i3
nm3

1
i2−n+1 , i3)

scheme exists for every m3 and every i3 satisfying n < i3 < t.
We now demonstrate our storage scheme. We divide the universe of size m

into m
1

t−n+1 blocks of size at most m
t−n

t−n+1 each. The first part of the storage

scheme consists of a table T with m
1

t−n+1 entries, each with an entry which is at
most n bits long. Each entry of this table corresponds to a block. Assume that
there are l blocks each of which contain at least one element inside it (note that
l is at most n). We order these blocks by the number of elements inside them; let
the ordering be B1, B2, . . . , Bl where Bk contains at least as many elements as
in Bk+1, for all 1 ≤ k ≤ l− 1. Note that Bk contains at most n− k +1 elements.
At the entry of T that corresponds to Bk, we store a string of (k − 1) zeroes
followed by an 1. If a block does not contain any element, we store n zeroes in
the corresponding entry of the table.

The second part of the storage scheme consists of (n − 1) adaptive schemes
and one non-adaptive scheme. We denote them by S1, S2, . . . , Sn. For every 1 ≤
j ≤ (n−1), Sj is an explicit adaptive (n−j+1, m

t−n

t−n+1 , (t−j)n−j+1m
1

t−n+1 , t−j)



scheme whose existence is guaranteed by the induction hypothesis. Sn is a non-

adaptive (1, m
t−n

t−n+1 , (t − n)m
1

t−n+1 , t − n) scheme. For all 1 ≤ j ≤ l (note that
l is the number of blocks that contain at least one element inside them), Sj is
used to store the block Bj .

Let S{t,n} be the total space required by the above storage scheme. We note

that the first part of the storage scheme takes nm
1

t−n+1 amount of space. Hence,

S{t,n} = nm
1

t−n+1 + (t − 1)nm
1

t−n+1 + (t − 2)n−1m
1

t−n+1 + . . . + (t − n)m
1

t−n+1 .

This number is less than tnm
1

t−n+1 for all n ≥ 2 and t > n.
The query scheme for an element x in the universe is as follows. The scheme

first finds the block x belongs to and then probes the corresponding location
in the table. It sequentially probes the binary string stored at that location till
it either finds an 1 or finds a string containing n zeroes. If it finds an 1 at the
i-th position, it gets directed to the scheme Si. If that scheme returns ”yes”, the
query scheme answers ”yes” to the query x. If it finds a string of n zeroes in the
table, it answers that the element x is not present in the universe. 2

We use a probabilistic argument to show that there exists a scheme which
uses less space than the space in the above theorems. This proves Result 1 (b).

Theorem 3. Suppose n and t are integers satisfying n ≥ 2 and t > n. Then,

there exists an adaptive (n, m, s, t) scheme with s = 8nt · (2m)
2t−1

t2t−1
−(n−1)(t−1) .

This scheme is non-explicit.

Proof: We prove the theorem for n = 2. The proof for n > 2 uses similar ideas.
(See below for the complete proof.)

The storage scheme consists of two parts: the index part and the actual
storage part. Let s′ be an integer (whose value will be determined later) such

that the universe of size m is divided into
(

s′2t−1
)t−1

blocks of size at most
m

(s′2t−1)t−1 each. The index part consists of a (t − 1)-partite complete (t − 1)-

uniform hypergraph H with s′2t−1 vertices in each partition. This hypergraph

has
(

s′2t−1
)t−1

distinct hyperedges. Each block is assigned a unique hyperedge,
called its index hyperedge. The vertices of the hyperedges are used to store either
0 or 1. We say that the index hyperedge of a block contains k if the sequentially
stored bits at the vertices of the hyperedge represent the integer k.

The actual storage part consists of 2t−1 tables T0, T1, T2, . . ., T2t−1−1, each

of size s′. Each of these tables is divided into (s′)t2(t−1)2

m sub-tables of size
m

(s′)t−12(t−1)2
each. For every 0 ≤ i ≤ 2t−1 − 1, each block of the universe is

randomly assigned one sub-table of Ti. We call two blocks to be colliding in Ti

if they are assigned the same sub-table in Ti.
If there is a block B that contains at most two elements (and others contain

none), the storage scheme stores its characteristic vector inside a sub-table in
one of the tables Tj and assigns j to B’s index hyperedge. Any other block is
assigned a number different from j in its index hyperedge and the storage scheme
stores 0 in all locations of the remaining tables. If there are two blocks B1 and B2

that contain one element each, we probabilistically show below that it is possible



to find a table Tk and a scheme Sk such that: (i) the index hyperedges of both
B1 and B2 contain k, (ii) B1 and B2 do not collide in Tk and their sub-tables
store the corresponding characteristic vectors, (iii) the index hyperedges that
are not subsets of the union of the index hyperedges of B1 and B2 contain a
number not equal to k, (iv) neither B1 nor B2 collides with at most 2t−1 − 2
other blocks whose index hyperegdes are subsets of the union of B1’s and B2’s
index hyperedges and therefore contain k in their index hyperedges, and (v) all
tables other that Tk store 0 in all locations inside them. We call (B1, B2) to be
a bad pair if no table Tk satisfies the above conditions. We need to show that
no such bad pair exists in our scheme. From the query scheme described below,
it will be clear that such a storage scheme correctly stores the elements of the
universe.

Given an element x in the universe, the query scheme first finds out the block
B′ it belongs to. It then makes t−1 sequential probes into B ′’s index hyperedge.
If the index hyperedge contains i, then the query scheme looks at Ti’s sub-table
that contains the characteristic vector of B′. The query scheme returns a ”yes”
if and only if it finds an 1 at the location of x in the characteristic vector.

Let us now show that a scheme Sk (as described above) exists. For any i, the
probability that a pair of blocks collide in Ti is at most m

(s′)t2(t−1)2
. Therefore,

the probability that even one of 2 ·2t−1−3 pairs of blocks collide in Ti is at most
2 · 2t−1 m

(s′)t2(t−1)2
. Hence, the probability that (B1, B2) is a bad pair is at most

[

2t m

(s′)t2(t−1)2

]2t−1

. It follows that the expected number of bad pairs of blocks is

at most
[

s′2t−1
]2(t−1)

[

2t m
(s′)t2(t−1)2

]2t−1

. So, there exists an assignment of sub-

tables in which there are at most
[

s′2t−1
]2(t−1)

[

2t m
(s′)t2(t−1)2

]2t−1

bad pairs of

blocks. Even if half of all possible pairs of blocks are bad, we get a scheme for
storing m

2 elements by deleting at most one block from each bad pair of blocks.

If we summarize the above discussion, it follows that s′ has to satisfy the
following inequality.

[

s′2t−1
]2(t−1)

[

2t m

(s′)t2(t−1)2

]2t−1

≤
[

s′2t−1
]t−1

2

This is satisfied when s′ ≥ 32
2t m

2t−1

t2t−1
−t+1 . Thus, the total space required for a

scheme for m
2 sized universe is t · (2t−1)s′ = 16t ·m

2t−1

t2t−1
−t+1 . Hence, there exists

an adaptive (2, m, s, t) scheme with s = 16t · (2m)
2t−1

t2t−1
−t+1 .

Complete Proof of Theorem 3: We use a storage scheme similar to the
one described in the proof for n = 2. The only difference now is that the scheme
has to ensure that any n blocks are stored correctly. Each block can now collide
with at most nt−1 other blocks. This number used to be 2t−1 in the case n = 2.
In summary, we need to find an s′ that satisfies



[

s′2t−1
]n(t−1)

[

n · nt−1 m

(s′)t2(t−1)2

]2t−1

≤
[

s′2t−1
]t−1

2

⇒ 2(t−1)2(n−1)+(2t−1)2t−1

.















m
(

2t(s′)
1−

(n−1)(t−1)

t2t−1

n

)t















2t−1

≤ 1

2
(1)

If

s′ ≥
(

8n

2t

)
t2t−1

t2t−1
−(n−1)(t−1)

· (m)
2t−1

t2t−1
−(n−1)(t−1) , (2)

then the left hand side of the equation (1) is

2(t−1)2(n−1)+(2t−1)2t−1

(8)
t2t−1 =

1

(2)
(t+1)2t−1−(t−1)2(n−1)

.

This is at most 1
2 whenever (t+1)2t−1−(t−1)2(n−1) ≥ 1 (since n ≥ 2 and t > n).

Note that in order to satisfy equation (2) it is enough to find an s′ satisfying

s′ ≥
(

16n
2t

)

(m)
2t−1

t2t−1
−(n−1)(t−1) (this follows from the fact n ≥ 2 and t > n). From

this, we get an (n, m
2 , s′′, t) scheme where s′′ = ts′2t−1 = 8nt (m)

2t−1

t2t−1
−(n−1)(t−1) .

2

3 Result 2: Lower bound for two-probe adaptive schemes

In this section, we show that sA(2, m, 2) = Ω(m4/7); this improves the Ω(
√

m)
bound which follows from a direct counting argument, but it falls short of the
current best upper bound O(m2/3), which we conjecture to be tight.

Preliminaries. Fix an adaptive (2, m, s, 2)-scheme. Our goal is to show that
s = Ω(m4/7). A two-probe adaptive query algorithm is specified using three
access functions a, b, c : [m] → [s], where the query “Is x in S?” is answered by
first probing location a(x), and then probing locations b(x) or c(x) depending
on the bit the first probe returned. For adaptive schemes we may assume (with
at most a constant factor increase in space) that the answer to the query is the
last bit read. Such a scheme can be associated with a bipartite (multi-)graph

G = (B := [s], C := [s], E := {〈b(x), c(x)〉 : x ∈ [m]}).

The edge 〈b(x), c(x)〉 will be labeled by the element x. Note that E is naturally
partitioned into sets E1, E2, . . . , Es, where

Ei = {〈b(x), c(x)〉 : x ∈ [m] and a(x) = i}.
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Fig. 1. (a) The pair {x, y} cannot be stored (left), (b) The pair {x, y′} cannot be stored
(right).

Assumption: Each Ei is a matching. (We may restrict attention to a sub-universe
of size Ω(m), so that this assumption always holds. Details omitted.)

We will label edges from the same partition using variants of the same letter.
For example, in Figure 1 (a), the eight edges come from four matchings: e.g. the
edges labeled x and x′ both belong to a common matching, Eα, edges labeled y

and y′ both belong to a common matching, say Eβ , etc.

The obstruction. The configuration of edges and labels depicted in Figure 1 (a)
has a special significance for us, for if it were to exist in our graph, then the
underlying scheme cannot store all sets of size two. In particular, it is easy to
verify that if this configuration exists, then there is no way to store the set {x, y}.

Goal. Show that if s < 1
10m4/7, then there exists an obstruction to store some

pair {x, y}.
In the rest of the proof we will address this question directly in graph theoretic

terms. We will denote the vertices involved in Eα by Bα ⊆ B and Cα ⊆ C. Let
Fα = Bα×Cα, that is, Fα is the set of pairs in the graph obtained by replacing Eα

by a complete bipartite graph between its end points. For a pair (b, c) ∈ B ×C,
let d(b, c) = |{α : (b, c) ∈ Fα}|. Clearly,

∑

b,c

d(b, c) =
∑

α∈[s]

|Eα|2 ≥ m2

s
, (3)

where we used
∑

α∈[s] |Eα| = m (and the Cauchy-Schwarz inequality) to justify

the last inequality. For α ∈ [s], let ∆α =
∑

(b,c)∈Fα
d(b, c). Then,

∑

α∈[s]

∆α =
∑

(b,c)

d(b, c)2 ≥ m4

s4
,



where we used (3) to justify the last inequality. Thus, there is an α ∈ [s] such

that ∆α ≥ m4

s5 . Fix such an α.

Claim. ∆α − m ≤ 2s2.

If this claim holds, then we have m4

s5 − m ≤ 2s2, which implies that s ≥ 1
10m

4
7 .

It thus remains to prove the claim.

Proof of claim: We will now interpret ∆α in another way. Let Bα,β = Bα ∩ Bβ

and Cα,β = Cα ∩ Cβ ; let C ′
α,β be the subset of Cβ matched to Bα,β in the

matching Eβ , and similarly let B′
α,β be the subset of Bβ matched to Cα,β in the

matching Eβ . Then,

∆α =
∑

β∈[s]

|Bα,β | · |Cα,β | =
∑

β∈[s]

|B′
α,β| · |C ′

α,β |.

Let F ′
α,β = B′

α,β ×C ′
α,β −Eβ . It follows that |F ′

α,β | ≥ |B′
α,β | · |C ′

α,β | − |Eβ |, and
∑

β∈[s] |F ′
α,β | ≥ ∆α −m. Now, suppose ∆α −m > 2s2. Then, by averaging over

all pairs (b, c) ∈ [s] × [s] we may fix a pair (b, c) that appears in F ′
α,β for three

different choices, β1, β2 and β3, of β. (We may assume that β1, β2 6= α.) The
resulting situation is described in Figure 1 (b), where we use x, x′ to label edges
from Eβ1 , y, y′ for edges from Eβ2 and z, z′ for edges from Eβ3 . It is easy to verify
that this results in an obstruction to storing the pair {x, y′}—a contradiction. 2

4 Result 3: Lower bound for three-probe non-adaptive

schemes

In this section, we show that any non-adaptive three probe scheme for storing
sets of size two from a universe of size m requires Ω(

√
m) bits of memory. This

extends a result of Alon and Feige [1] to small sets. The following two lemmas
will be used in the proof of Theorem 4 below.

Lemma 2. Let G be a bipartite graph with v vertices on both sides. If it does
not have a path of length three, then it can have at most 2v − 1 edges.

Lemma 3. (Theorem 8(1) of [2]) sN (2, m, 2) = m.

We now prove Result 3.

Theorem 4. For any m, a non-adaptive (2, m, s, 3) scheme uses s ≥ 1
32

√
m

space.

Proof: We divide the 16 functions from {0, 1}2 to {0, 1} into three classes.

1. OR-type functions: x ∨ y, x ∨ ȳ, x̄ ∨ y, x̄ ∨ ȳ

2. XOR-type functions: x ⊕ y, x ⊕ ȳ

3. AND-type functions: x∧ y, x∧ ȳ, x̄∧ y, x̄∧ ȳ, and 0, 1, x, y, x̄, ȳ (functions
that depend on at most one variable can be assumed to have an 1 as the
other variable of an AND function)



In a non-adaptive scheme S, each z belonging to the universe is assigned three
locations l1, l2, l3 in the storage and a boolean function fz : {0, 1}3 → {0, 1} that
is used to decode whether z is a member or not. We prove that if the functions
are the same for all z in the universe then for this type of (2, m, s′, 3) scheme (let

us call it type-1 scheme), s′ ≥ 1
2m

1
2 . Note that there are 256 different functions

mapping {0, 1}3 to {0, 1} and therefore there must be at least m
256 elements of

the universe which use the same function. This proves that s is at least 1
2 ( m

256 )
1
2

for the scheme S.
In order to prove s′ ≥ 1

2m
1
2 for any type-1 scheme S ′ we prove a lower bound

for the the following type of scheme (let us call it type-2 scheme). In this scheme
all z in the universe use the same function and the 3 probes to determine the
membership of every z are made to 3 distinct storages of size s′′ each. We show
below that s′′ ≥ 1

2m
1
2 . This proves that s′ ≥ 1

2m
1
2 in any type-1 scheme because

otherwise we can copy the storage of (2, m, s′, 3) scheme 3 times to obtain a

type-2 scheme that uses less than 1
2m

1
2 space in each of its three storages.

We assume to the contrary that there exists a type-2 scheme S ′′ that uses
less than 1

2m
1
2 space in each of its 3 storages. Let f(l1, l2, l3) denote the function

for decoding any element of the universe where l1, l2, l3 are the bits stored at the
first, second and third storages respectively. In any such scheme, there exists a
set U of at least 2m

1
2 elements in the universe that probe the same location in

the first probe. The function f is defined as follows. If l1 is 0, f is a function
f0(l2, l3) of the last two bits, and it is f1(l2, l3) otherwise.

We show that in both the following cases, our assumption of S ′′ using less
than 1

2m
1
2 space in each of its 3 storages leads to a contradiction. In each case,

we show that there exists a subset of size 2 that cannot be stored using this
scheme. We define a bipartite graph G on the last two storages of the scheme as
follows: two locations are connected by an edge if and only if they are the last
two storage locations of an element of the universe. Note that each element of L

has a unique edge in this graph (because the first storage location is common).

Case 1. (one of f0 or f1 is either an OR-type function or an XOR-type function)
We first assume that the function is f0 and it is an OR-type function. Let
F be a maximal acyclic subgraph of G and UF be the elements whose edges
appear in F . Then, |UF | ≤ m

1
2 − 1. Let U∗ = U \UF . Then, |U∗| ≥ m

1
2 + 1.

Now, observe that to store any pair {x, y} ⊂ U ∗, the scheme must place an
1 at the location of the first probe, i.e., at l1. This yields a two-probe scheme
for sets of size at most two for the universe U ∗. However, by Lemma 3, any
such scheme needs space at least |U∗| ≥ m

1
2 +1, whereas G has m

1
2 vertices.

This leads to a contradiction.
Let us now assume that f0 is an XOR-type function. Let ei1 be an edge
of G that is not contained in F . Then, ei1 must form an even length cycle
{ei1 = (v1, v2), ei2 = (v2, v3), . . . , ei2u

= (v2u, v1)} which corresponds to the
set of elements C = {i1, i2, . . . , i2u} respectively. Let us first consider the
case when f0 is x⊕ y. We denote by bi the bit corresponding to a vertex vi.
In order to store all elements of C \{i1} as non-members, the bits bi’s has to
simultaneously satisfy the equations b2 + b3 = 0 (mod 2), b3 + b4 = 0 (mod



2), . . ., b2u +b1 = 0 (mod 2). Adding the equations gives us b1 +b2 = 0 (mod
2) which forces the element i1 to be stored as a non-member.
Let us now consider the case when f0 is x⊕ ȳ. In order to store all elements
of C (except i1) as non-members, the bits bi’s have to simultaneously satisfy
the equations b2+b3 = 1 (mod 2), b3+b4 = 1 (mod 2), . . ., b2u+b1 = 1 (mod
2). Since there are odd number of equations, these adds up to b1 + b2 = 1
(mod 2) which forces the element i1 to be stored as a non-member.
Hence, we observe that to store any pair {x, y} ⊂ U ∗, the scheme must place
an 1 at the location of the first probe, i.e., at l1. This leads to a contradiction
as before.

Case 2. (Both f0 and f1 are AND-type functions) From Lemma 2, it follows
that G must have a path of length 3. Let us denote it by {ep, eq, er}, where
p, q, r are the corresponding elements of U . Consider the set {p, r}. If f0 is of
the form x ∧ y, both the endpoints of both ep and er have to be assigned 1.
This makes both the endpoints of eq to be 1, which leads to q being wrongly
stored as a member. It is easy to see that this argument works for other
AND-type functions and for f1. 2

5 Concluding remarks

We have studied the set membership problem in the bitprobe model with the aim
of determining if the exponent of m in these bounds can be made to approach
1
t .

– Even for small n and t, our lower bounds are not tight. We conjecture that
sA(2, m, 2) = Θ(m

2
3 ).

– We have shown that Ω(m
1
3 ) ≤ sA(2, m, 3) ≤ O(m0.4). The upper bound is

probabilistic; it can be implemented using limited independence, but it is
not fully explicit. We believe that a simple explicit scheme should match our
upper bound.

– We conjecture that the information theoretic lower bound is not tight for
any n ≥ 2 and t ≥ 2; we are able to show this for n = 2, t = 2, but believe
this to be true in general.
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