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Abstract. We develop a class of models for inference about abundance or density using
spatial capture–recapture data from studies based on camera trapping and related methods.
The model is a hierarchical model composed of two components: a point process model
describing the distribution of individuals in space (or their home range centers) and a model
describing the observation of individuals in traps. We suppose that trap- and individual-
specific capture probabilities are a function of distance between individual home range centers
and trap locations. We show that the models can be regarded as generalized linear mixed
models, where the individual home range centers are random effects. We adopt a Bayesian
framework for inference under these models using a formulation based on data augmentation.
We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India,
collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras
were only operational at 30 locations during any given sample occasion. Movement of traps is
common in many camera-trapping studies and represents an important feature of the
observation model that we address explicitly in our application.
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INTRODUCTION

Much of the theory and methodology underlying

inference about population size from closed capture–

recapture models is concerned with animal populations

that are well defined in the sense that one can randomly

sample individuals that are associated with some

location or area and, usually, uniquely identify them.

However, for many populations, the spatial area over

which individuals occur (and are exposed to capture)

cannot be precisely delineated. Movement of individuals

onto and off of a putative sample unit induces a

violation of the key assumption of ‘‘geographic closure,’’

which impacts our ability to interpret the estimates of

population size, N, derived from closed population

capture–recapture models.

One area of application where this problem is

profoundly important is the use of ‘‘camera traps’’ to

study secretive animal populations. In particular, the use

of arrays of camera traps for estimating abundances of

large felids is widespread. They have been used in studies

of tigers (Karanth 1995, Karanth and Nichols 1998,

Karanth et al. 2004), ocelots (Trolle and Kéry 2003,

2005), jaguars (Wallace et al. 2003, Maffei et al. 2004),

and other species which are individually identifiable

from their spot or stripe patterns. In the typical

situation, an array of cameras is distributed over the

landscape. Over time, the cameras provide encounter

history data indicating the occasions of captures of

individuals, as well as auxiliary data on spatial location

of captures.

The conventional approach to the analysis of density

from these systems is to apply closed population models,

and then attempt to convert those estimates to densities

using a wide range of heuristically motivated but

essentially ad hoc methods. For example, ecologists

have used auxiliary location information to estimate the
mean or maximum distance moved to adjust the

effective sample area, or used various other heuristic

‘‘adjustments.’’ (Wilson and Anderson 1985a, b, Kar-

anth and Nichols 1998, Parmenter et al. 2003, Trolle and

Kéry 2003). The standard approach (Karanth and

Nichols 1998) places a buffer strip around the trap

array (or a convex hull containing the array) that is

equal to half the mean maximum distance moved by

individuals captured in more than one trap. While these
procedures seem to work adequately in practice, the

model or range of conditions for which they might work

is poorly understood and difficult to characterize

theoretically, and there is no basis for their extension.

Formalization of the use of auxiliary spatial information

requires the precise definition of a model: the linkage of

encounter location to some notion of territory or home

range (and perhaps movements, see Royle and Young

2008).
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In this paper, we describe a general class of

hierarchical models for encounter data from studies

that use camera traps and related methods. By con-

sidering an array of traps in which each trap functions

independently of all other traps, individuals in the

population may be captured in multiple traps during any

capture occasion and even multiple times in the same

trap. This is realistic in studies based on camera trapping

and other sampling methods which do not physically

capture individuals. We describe a hierarchical model

for the observed spatial encounter history data which

recognizes that individual trap encounter histories are

the outcome of two processes: distribution of individuals

across the landscape and an encounter process that

describes whether or not individuals are encountered by

traps as a function of their location. We specify a model

for the distribution of individuals in space in terms of a

simple binomial point process, where si, i¼1, 2, . . . , N, is

the realization of such a process for the N individuals in

the population. We interpret the point locations as

individual activity centers (or home range centers, or

centroids; Borchers and Efford 2008, Royle and Young

2008, Gardner et al. 2009, Royle et al. 2009). We

consider two distinct observation models that are

defined conditional on the underlying point process

realization: In the most general model, we allow that an

individual can be caught an arbitrary number of times in

each of an arbitrary number of traps. In principle, this is

a reasonable model for camera trapping and other

situations (e.g., hair or dung sampling to obtain DNA

data), except that data, for processing reasons, are often

reduced to single encounters for each trap. Moreover,

when sample intervals are short (e.g., nights), it seems

likely that multi-trap encounters should be highly

correlated with one another, and so there may be little

loss of efficiency in discarding such data. Therefore, we

consider a second model in which individuals can be

caught at most one time per trap, but in an arbitrary

number of traps. This model is a formal restriction of

the more general model, which can be obtained by

imposing an explicit restriction on the observed random

variables.

We demonstrate that these spatial capture–recapture

models have simple formulations as classical generalized

linear models with random effects (i.e., generalized

linear mixed models; GLMMs). Analysis of the models

is technically challenging because there are many latent

variables (random effects) in the model. In particular,

the activity centers of each individual are unknown.

Moreover, the number of such activity centers (i.e., the

population size N ) is also unknown. To attack inference

under these models, we adopt a Bayesian analysis of the

model based on data augmentation (Royle et al. 2007),

which has been applied to a number of related models

(e.g., Royle and Dorazio 2008, Gardner et al. 2009,

Royle 2009). Using data augmentation, the spatial

capture–recapture models are formulated as zero-inflat-

ed Poisson or binomial regression models with random

effects. The models may be implemented in the freely

available software WinBUGS (Gilks et al. 1994), which

we believe yields an accessible platform for extension of

the models described in our paper.

CAMERA TRAPPING: THE NAGARAHOLE DATA

Photographic captures of felid species that possess

individually unique spot or stripe patterns, permit

estimation of their abundance and density using closed

capture recapture models. Such surveys have been

conducted for tigers (Karanth and Nichols 1998,

Karanth et al. 2004), leopards (Henschel and Ray

2003), jaguars (Wallace et al. 2003, Maffei et al. 2004,

Soisalo and Cavalcanti 2006), and ocelots (Trolle and

Kéry 2003), for example. These surveys are typically

conducted over a short period of 30–60 days to ensure

demographic closure, and involve photo-capturing both

flanks of the cat in order to assign a unique identity to

the individual. To increase capture probabilities, the

traps are placed at ecologically optimal sites chosen

based on the expertise of biologists, resulting in an

irregular pattern of trap locations across the sampled

area.

The tiger population in Nagarahole Reserve in the

state of Karnataka, southwestern India, has been

studied via camera trap methods by Karanth and

associates from 1991 until the present (e.g., Karanth

1995, Karanth and Nichols 1998, Karanth et al. 2006;

see Plate 1). The specific data set examined here was

obtained in 2006 from sampling at 120 trap stations,

each referenced by latitude and longitude and by UTM

coordinates (Fig. 1). Two camera traps (unambiguous

identification requires photographs of both flanks of

each detected animal) were placed at each location. The

sampling took place over 48 nightly intervals between 24

January and 16 March 2006.

All photographic captures of tigers obtained were

labeled with auxiliary data such as date, time and

location of capture, and the two corresponding flank

images were linked using these data to establish the

identity of each tiger. Multiple independent captures of

individuals in the same night and trap is generally rare

(fewer than four such events). As a result, in earlier

published analyses of these data based on classical

(nonspatial) closed population capture–recapture mod-

els (e.g., Karanth et al. 2004), multiple captures of the

same individual at different trap locations or multiple

captures at one location, during the same night, were

combined into single binary ‘‘capture’’ events. We

consider models that could accommodate capture both

in multiple traps and also multiple captures in the same

trap. However, we only address the former in our

analysis of the data because our data have been

processed into binary encounter history data. In

addition, as we noted previously, we believe that

within-trap recaptures in the same night are liable to

be highly correlated (e.g., due to individuals moving past

a camera multiple times in quick succession), and this
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may introduce an additional model selection/sensitivity

issue while providing information that is less informative

about density than captures among traps (see Discus-

sion).

Sampling over this period resulted in encounter

history data on 44 individuals during the 48 nightly

sampling occasions. Thus, each encounter history was a

J 3 K (120 traps 3 48 nights) matrix, where a 0 was

recorded for each occasion and trap location where the

animal was not detected and a 1 was recorded for each

occasion and trap location where a detection occurred.

The number of distinct traps and capture occasions in

which each of the 44 individuals was captured is shown

in Table 1. We see that 15 individuals were captured in

more than one trap. There were 65 unique individu-

al/occasions and a total of 68 encounter events. Thus

there were only three ‘‘extra-trap captures’’ during the

study, that is, individuals captured in .1 trap on the

same sampling occasion (night). In both instances, this

corresponds to individuals captured in a single occasion:

one individual captured at two traps and another

individual captured at three traps.

An important feature of the study design is that not

all 120 trap stations were operated simultaneously.

Instead, the reserve was subdivided into four blocks of

approximately 30 trapping stations each, and each block

was run for 12 consecutive days. Then, cameras were

moved to the next block for another 12 days and the

process repeated until all four blocks were sampled. This

design follows sample design four of Karanth and

Nichols (2002:133). Thus, some of the zeros are

structural zeros (as opposed to sampling zeros), which

we accommodate in the analysis of these data as

described in Spatial capture–recapture as a GLM with

individual effects.

In a previous analysis of these data (Royle et al. 2009)

a multinomial capture model was applied, assuming that

individuals could be captured in at most one trap per

survey occasion. However, this model mis-specifies the

true observation process. Because camera traps do not

physically retain individuals, an individual tiger can be

captured in multiple traps during any night. Failure to

accommodate this information in the model induces

some loss of efficiency in estimating density (see Analysis

of Nagarahole data). We also note that in the analysis of

Royle et al. (2009) there were n ¼ 45 individuals.

Subsequent reanalysis of the photographs revealed that

one of these individuals represented only a recapture.

Thus, the data analyzed here has one fewer individual,

but one additional recapture compared to the analysis in

Royle et al. (2009).

MODEL FORMULATION

The basic deficiency with the application of closed

population models to data from trapping arrays is that

space and movement have no explicit manifestation in

such models. i.e., the models are not ‘‘spatial.’’ Under

these traditional models, N is just an integer-valued

parameter that has no spatial context whatsoever. Thus,

we seek to formalize the manner in which spatial

organization of individuals is relevant to how they are

observed.

State process model

A natural framework for developing spatial models of

abundance is based on point process models, and point

processes have been considered as the basis for spatial

capture–recapture models in a number of recent efforts

(Efford 2004, Borchers and Efford 2008, Royle and

Young 2008). To develop this notion, we suppose that

each individual in the population has a fixed point

associated with it, its center of activity, si ¼ (s1i, s2i ), a

two-dimensional coordinate representing a point in

space about which the movements of individual i are

FIG. 1. Nagarahole Reserve tiger camera-trapping study
area, Karnataka, southwestern India, with 15-km buffer
outlined and non-habitat whited out.

TABLE 1. Summary encounter frequency data on tigers in the
Nagarahole Reserve, India, camera trapping study during 48
nightly sampling occasions using 120 camera trap locations
(e.g., nine tigers were captured on two nights and at two
distinct camera trap locations).

Number of
distinct traps

Number of occasions

1 2 3 4 5

1 28 1 0 0 0
2 1 9 1 0 0
3 1 0 1 0 1
4 0 0 0 1 0
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concentrated. We suppose that these point locations

represent the realization of a binomial point process.

That is, we suppose there exists a population of N

independent centers si, i ¼ 1, 2, . . . , N, distributed

uniformly over some region, say S, the state-space of the

point process. We denote this assumption by

si ;
ind

UniformðSÞ:

In practice, S will be prescribed (e.g., by specifying

coordinates of some polygon that contains a trapping

array).

The basic inference problem is to obtain an estimate

of density, the number of activity centers per unit area of

S, that is equivalent to an estimate of N under the point

process model. We may also wish to estimate the

number of activity centers in specific subsets of S, say

some polygon P 2 S. For example, P might be a national

park, a reserve, or some block of contiguous habitat. We

describe the model in some detail and then address this

inference problem explicitly in Estimating derived

parameters.

This uniform point process model represents a prior

distribution for individual activity centers. While the

assumptions of independence and uniformity are bio-

logically untenable in many cases, we will see in our

analysis of the tiger data that independence and

uniformity of point locations in the prior does not

preclude clustering or patchiness of point locations in

the estimated posterior density of s.

Observation models

Next we describe the juxtaposition of individual

activity centers with the camera trapping array. We

suppose that sampling is carried out by a network of J

camera traps, having locations fxj, j ¼ 1, 2, . . . , Jg.
Further, we suppose that cameras function indepen-

dently of one another. In particular, encounter by

cameras is not mutually exclusive so that individuals can

be encountered by multiple cameras. In the subsequent

development of the observation models we will suppose

that the probability of an individual being encountered

by some camera j is a function of the distance from the

camera to its activity center, and one or more

parameters that will be estimated. Let dij ¼ ||si � xj|| be

the distance between an individual i’s activity center and

camera j where ||�|| is the normal Euclidean distance.

In an ideal situation where cameras are operational

continuously and individual encounter events are

independent in time, an individual may be captured an

arbitrary number of times yielding encounter frequen-

cies yijk for individual i, in trap j, during interval k. One

possible model for such encounter frequency data is the

Poisson model:

yijk ; Poissonðk0gijÞ ð1Þ

where k0 is the baseline encounter intensity and gij is

some function of distance between individual i and

camera trap j which we will suppose equals 1 for dij¼ 0.

Thus, for a trap that is located precisely at an

individual’s activity center, k0 is the expected number

of captures in that trap. For example,

gij ¼ expð�d2
ij=rÞ ð2Þ

which is a common ‘‘detection function’’ used in distance

sampling and in the model described by Efford (2004). It

can also be related explicitly to movement in some

situations (Royle and Young 2008). In our analysis

(below), we will also consider an exponential form for

gij, i.e., gij¼ exp(�dij/r) in order to assess the sensitivity

to choice of model relating encounter to distance.

For the case where individuals can be captured at

most once per trap, the observations are binary: yijk¼ 1

if individual i is captured in trap j during sample

occasion k, and yijk ¼ 0 otherwise. We will view the

binary observations conceptually as reductions of the

counts that we could have observed in the more general

case. This might be most realistic for bear hair snare

studies (and other DNA-based sampling) where an

individual might be encountered a number of times

during any period, and the biological material (hair, and

so on) accumulates but cannot be partitioned into

distinct visits after it is collected. In addition, as in our

case, while camera traps may yield multiple captures

during each occasion, it is difficult to imagine that such

multiple captures are independent. Instead of either

applying an arbitrary and subjective rule to determine

how to partition events into independent recaptures, or

devising a model of within-trap dependence, it is natural

to reduce such data into binary encounter events. To

formalize this, suppose we obtain binary observations

yijk which are Bernoulli outcomes,

yijk ; BernoulliðpijÞ ð3Þ

with success probability that arises as the positive mass

of the Poisson model described above:

Prðyijk ¼ 1Þ ¼ 1� expð�k0gijÞ: ð4Þ

We will refer to the two models in Eqs. 1 and 3 as the

Poisson and Bernoulli encounter models, respectively.

Note that the parameters of the two distinct models are

fundamentally equivalent, but the observable data under

the second model is a reduced-information summary of

what we would prefer to observe, the actual trap

frequencies (see Royle and Nichols [2003] and Royle

[2004] for a similar pairing of models).

SPATIAL CAPTURE–RECAPTURE AS A GLM

WITH INDIVIDUAL EFFECTS

Note that the Bernoulli observation model, with yijk ;

Bernoulli(pij) and pij¼ Pr(yij¼ 1)¼ 1� exp(�k0gij), can
be viewed as a logistic-regression type of model.

Specifically, with the choice of g from Eq. 2 we have

cloglogðpijÞ ¼ logðk0Þ � ð1=rÞd2
ij
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where cloglog(argument) ¼ log[�log(1 � argument)] is

the complementary log–log transform. For Poisson

observations, we have a standard Poisson regression

formulation:

logðkijÞ ¼ logðk0Þ þ ð1=rÞd2
ij:

This specification reveals the essential simplicity of

spatial capture–recapture models as GLM type models,

and it elucidates a number of important aspects of this

model.

(1) The model is closely related to both ‘‘individual

heterogeneity’’ (Link 2003, Dorazio and Royle 2003)

models and also individual covariate models (Royle

2009) with individual covariate ‘‘distance’’ being a

deterministic function of the latent variable si. The

model is not precisely an individual covariate model

because the variables si are unobserved even for the

captured individuals. However the model is not entirely

an individual heterogeneity model because they are

partially observed for the captured individuals. In a

sense, spatial capture–recapture models represent a

conceptual intermediate between the two classes of

models.

(2) We see that factors that influence k0 are linear

effects on the cloglog pij scale. Thus, very general models

can be represented as simple logistic-regression type

models.

(3) We see that the (squared) distance between each

trap and si is also a linear effect on the complementary

log–log scale. Changing the distance function to be

exponential produces a linear distance effect. Thus, in

general, choice of distance function determines a

transformation applied to the individual covariate.

Covariates that may influence detectability among

individuals, or traps or through time may be modeled

directly on the parameter k0 (regardless of the observa-

tion model under consideration). One situation that we

will consider is the possibility of a behavioral response.

In this case, we allow k0 to vary by individual and

occasion so that

logðk0;ikÞ ¼ aþ bcik

where cik is an indicator covariate of previous encounter.

Under this model, an individual’s encounter probability

may increase or decrease after initial encounter. The

general model that we consider in our application (see

Analysis of Nagarahole data) is of the form:

cloglogðpijkÞ ¼ aþ bcik � ð1=rÞd2
ij:

A special kind of covariate is effort. In the context of

camera trapping studies, this might be the time that a

camera was operational, which could be modeled as

described above (as a covariate on k0). In the Nagara-

hole study, traps were moved around such that only 30

of the 120 locations contained a trap on any particular

night. This is a standard design both for camera trap

studies, as well as so-called ‘‘hair snares’’ used for

obtaining DNA, and other methods of detecting

individuals. In this case, the parameter k0 has to be

forced to 0 for such instances so that Pr(y¼ 1)¼ 0. This

is simple to handle in the analysis by defining

Prðyijk ¼ 1Þ ¼ 1� expð�k0mjkgijÞ

where mjk ¼ 1 if trap j is operational during occasion k

and mjk ¼ 0, otherwise. Thus, whenever a trap is not

operational, Pr(yijk ¼ 1) ¼ 0, as it should.

ANALYSIS OF THE MODEL WITH KNOWN N

If we knew s and N then the models are simple

Poisson or logistic regression models and inference

would be no more difficult than under those conven-

tional models. To introduce readers to analysis of the

models, we provide the basic specification of the models

in WinBUGS for this situation. This ‘‘conditional-on-s’’

formulation of the model reveals the simplicity of the

hierarchical model for camera trap array data. Further,

the extension of the model to allow for s to be unknown

is technically and conceptually straightforward. We

formally address that situation in the following section.

As our analysis of the Nagarahole data makes use of

the Bernoulli model, we consider that model here. The

WinBUGS model specification for the Poisson model is

provided in the Appendix. The implementation of this

model in WinBUGS is given in Fig. 2 where the model is

described in the standard WinBUGS pseudo-code. We

can improve the efficiency of fitting the model in some

restricted cases (e.g., when k0 is not time varying) by

recognizing that the total number of captures of each

individual in trap j is a binomial random variable based

on a sample of size K. Then, the data can be reduced to

the n 3 J matrix of capture frequencies (number of

captures out of K samples).

INFERENCE WHEN N IS UNKNOWN

While we have described the models conditional on

the variables si, i ¼ 1, 2, . . . , N, they are unobservable

quantities. Conceptually, these can be thought of as

random effects in the usual sense of the concept as it is

used in classical statistics. For analysis of random effects

models, we adopt a prior distribution (‘‘random effects

distribution’’) for s and proceed with standard methods

for analyzing such models. Precisely how we proceed

depends in large part on whether we adopt a classical

approach to the analysis of random effects or a Bayesian

approach. In the classical treatment of random effects,

we would remove them from the likelihood by integra-

tion. This was the strategy recently adopted by Borchers

and Efford (2008) in a similar class of spatial capture–

recapture models. Alternatively, Bayesian analysis of the

random effects model is relatively straightforward. We

have previously specified this random effects distribu-

tion under the binomial point process as

s ; UniformðSÞ:
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Whereas when N is known, the model is just a form of

generalized linear mixed model (with random effects si ),

the difficulty in analyzing the model with unknown N is

that the dimension of the parameter space (the number

of ‘‘random effects’’) is itself an unknown quantity. It is

this problem that motivated the analysis of similar

models using the method of data augmentation (Royle

et al. 2007, Royle and Dorazio 2008). In effect, data

augmentation allows us to analyze a version of the

‘‘complete data’’ model: the model with a fixed number

of activity centers.

To implement data augmentation, we physically

augment the n observed encounter histories with some

large number of ‘‘all-zero’’ histories, say M � n such

histories. In the present case, the encounter history for

each augmented individual is the two-dimensional array

of J 3 K zeros. We assume that this list of M pseudo-

individuals includes the actual N individuals in the

population as a subset. We must choose M sufficiently

large so as that the posterior of N is not truncated. This

can be achieved by trial and error with no philosophical

or practical consequence. Given the augmented data set,

the key result (Royle et al. 2007) is that the model for the

augmented data is a zero-inflated version of the ‘‘known-

N’’ model, i.e., that corresponding to the case where N is

known. There are no additional parameters to estimate,

but the parameter N is replaced by a zero-inflation

parameter, say 1� w. The parameter w is the probability

that an individual on the list of size M is a member of

the population of size N that was exposed to sampling

by the trap array.

Analysis by data augmentation has a formal Bayesian

development, which can be motivated by the assumption

of a discrete uniform prior for N on the integers 0, 1, . . . ,

M. This prior can be specified hierarchically in the form

of a Binomial prior for N: N ; Bin(M, w) and a uniform

prior for w: w ; Unif(0, 1). Integration of the binomial

prior for N over the uniform prior for w yields the

discrete uniform prior for N. This hierarchical specifi-

cation is useful because it yields a convenient Bayesian

implementation. Namely, we introduce M � n observa-

tions of yi ¼ 0 for i ¼ n þ 1, n þ 2, . . . , M. For these

individuals, there is no trap information and thus the

encounter history record is yijk¼ 0 for all j and k as well.

Given the augmented data set, we now introduce a set of

latent indicator variable wi, i¼ 1, 2, . . . , M, such that wi

¼ 1 if the ith element of the augmented list is a member

of the population of size N, and wi ¼ 0 otherwise (an

‘‘excess zero’’). We impose the model wi ; Bern(w). With

a uniform(0, 1) prior on w, the induced prior distribu-

tion on N¼Ri wi is uniform on the integers 0, 1, . . . , M,

as noted above.

Estimating derived parameters

In some instances, there will be interest in derived

parameters. That is, parameters that are not canonical

or structural parameters of the model (i.e., k0, r, and w
introduced by data augmentation). For example,

NðSÞ ¼
XM

i¼1

wi

is the population size of individuals on the set S and

D(S ) ¼ N(S )/A(S ) is the density on S (here, A(S )

denotes the area of S ). Similarly, the number of activity

centers in any prescribed polygon, say P, is the quantity

denoted by N(P). This is calculated by simply tallying up

the number of si contained in P, and for which wi ¼ 1

(the data augmentation indicator variable), at each

iteration of the Markov chain Monte Carlo (MCMC)

algorithm. The resulting sequence of N(P) (one value for

each iteration of the MCMC algorithm) constitutes a

sample from the desired posterior distribution. In

addition, density, say D(P) ¼ N(P)/A(P), is also a

derived parameter.

FIG. 2. WinBUGS model specification for the Bernoulli encounter model when si are known for i ¼ 1, 2, . . . , N independent
centers (where si is a two-dimensional coordinate representing a point in space about which the movements of individual i are
concentrated). In this model description, sx and sy are the x- and y-coordinates of each individual activity center, respectively.
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Implementation

While developing the MCMC algorithm for analysis

of the augmented data under the models is straightfor-

ward, we avoid those technical details because the model

can also be implemented in WinBUGS. Applications of

data augmentation in similar models can be found in

Royle and Young (2008), Royle (2009), and Gardner et

al. (2009). One detail that we have avoided discussion of

is that Bayesian analysis requires that we specify prior

distributions for model parameters. In the analyses

below, we used a uniform(0, 1) prior for the data

augmentation parameter w, and flat normal priors for

any regression coefficients in the model, including the

intercept, behavioral response and log(1/r) (as this is

essentially a regression coefficient on the distance

covariate). The WinBUGS specification of the Bernoulli

model for unknown N is shown in Fig. 3. As shown in

Fig. 3, the encounter histories have been aggregated over

the number of sampling occasions. In that case, the total

number of encounters of each individual, and in each

trap, is a binomial random variable with sample size K,

as indicated in Fig. 3. Additional models for the Poisson

encounter model are given in the Appendix.

ANALYSIS OF NAGARAHOLE DATA

For the analysis of the Nagarahole data, we excluded

areas that were judged to be non-habitat within a 15 km

buffer area containing the trap array (Fig. 1). This

renders the definition of a uniform prior for the activity

centers difficult because the polygon is highly irregular.

As such, we described this region of suitable habitat by a

grid of 9961 equally spaced points, each representing

approximately 0.336 km2 over the buffered region. Of

these, 4898 (1645.7 km2) were judged to represent

suitable habitat. The activity centers si were therefore

assumed to be uniformly distributed over this discrete

space of 4898 points, an area of approximately 1645.7

km2. We developed an implementation of the model for

this discrete state-space situation in the R programming

language. The coordinate system was scaled so that a

standard unit was 5 km, and thus also are the units of r.
As described in Spatial capture–recapture as a GLM

with individual effects, we considered the Bernoulli

encounter model which allows a single capture per trap

in each occasion. The general model considered was of

the form

cloglogðpijkÞ ¼ að1� cikÞ þ bcik � ð1=rÞd2
ij ð5Þ

where cik is an indicator covariate that takes on the value

cik ¼ 1 if individual i was encountered in a sample

occasion prior to k. Here, we have reparameterized the

intercept a in order to interpret a and b as the log-

encounter intensity parameters for individuals pre- and

post-encounter, respectively. Bayesian analysis of this

model was carried out using flat priors for the regression

coefficients a and b and for log(1/r). We considered also

a model with a linear distance term, which corresponds

to an exponential detection function as noted previous-

ly.

Given the simple formulation of the model for

encounter probability as a generalized linear mixed

model, we could conceivably extend the model to

arbitrary levels of complexity. For example, time effects

or individual heterogeneity (Dorazio and Royle 2003)

could also be considered. However, because of the

sparsity of our data set and low encounter rate (24 total

recaptures), we made several intentional decisions to

limit the complexity of the model. In particular, we have

more sampling occasions than individuals (48 vs. 44),

and they are short intervals (nightly), and so we opted

FIG. 3. WinBUGS model specification for the Bernoulli encounter model for unknown si and N. In this model description, sx
and sy are the x- and y-coordinates of each individual activity center, respectively.
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not to consider the additional complexity of temporal

variation in detectability. We also did not consider

individual heterogeneity in detection probability. Such
models would be poorly identifiable with only 44

individuals (Dorazio and Royle 2003), and exhibit
extreme sensitivity to model choice (Link 2003). We

believe that spatial proximity of individuals to traps

should be the predominant mechanism responsible for
heterogeneity and seek to effectively model that

phenomenon using the spatial covariate. In light of

Link (2003), we believe that researchers should make
their own judgment as to whether individual heteroge-

neity should be fit in addition to a spatial covariate
because this is a decision that cannot be made

objectively in small samples.

Results

Posterior summaries from fitting the model with the
half-normal detection function (i.e., corresponding to a

quadratic distance effect) and ‘‘behavioral response’’ to

capture are given in Table 2. Recall that the number of
unique individuals observed was 44. The estimate

(posterior mean) of tiger density over S is 13.4 tigers/100
km2, with a 95% posterior interval of (9.3, 19.6). We

contrast these estimates with those reported for a mis-

specified multinomial observation model (Royle et al.
2009) who reported an estimated density over S of

approximately 14.30 with a 95% posterior interval of

(2.8, 20.5). We observe a similar estimate of density but
a substantial increase in precision. The result suggests

that the ‘‘non-encounters,’’ which are independent
observations under the Bernoulli model considered here,

provide considerable information about model param-

eters. Note that the data set analyzed here has one fewer

individual, and so this contributes to the lower estimated

density.

Fig. 4 shows the posterior density of the point process
s. Each pixel is marked with log(E [N(s) j data]) where

N(s) is the number of activity centers located in pixel s.

We note the extreme spatial variation and the high
density in the western corner of the trap array which is

an area known to have high prey densities (S. Kumar,
unpublished data). The scale in Fig. 4, roughly�4 to�2,
equates to a density range from approximately 0.14 to

0.018 (tigers per 0.336-km2 pixel), respectively. Scaling
these figures to 100 km2 yields a density range between

5.35 and 42 tigers per 100 km2. Thus the highest density
areas have a density of eight times that of the lowest

density areas.

The distance covariate appears to be highly impor-
tant. The posterior mean of the coefficient, 1/r is very

positive and the posterior mass is concentrated away

from 0 (95% interval: (2.017, 4.974)). There appears to
be a moderate behavioral response to encounter in this

model. The encounter probabilities (posterior means)
for individuals pre- and post-initial encounter are p1 ¼
0.0157 and p2¼ 0.0292, respectively. These are related to

a and b according to 1� exp(�a) and 1� exp(�b). Thus,
once individuals are captured, there appears to be

almost a doubling of encounter probability in subse-
quent occasions. The estimated difference is imprecise,

however. The posterior probability of a positive

response is Pr(b � a . 0) ¼ 0.92. While a positive trap
response (‘‘trap-happiness’’) is indicated, this is not

realistic biologically. We believe that this is likely a
result of some non-independence among encounters.

For example, if space usage (i.e., movement) is not

random for individuals, we think this could appear as a

TABLE 2. Posterior summaries of model parameters for the tiger camera trapping data.

Parameter Mean SD 2.5% Median 97.5%

Half-normal model

r 0.3130 0.0761 0.2010 0.3006 0.4957
a 0.0159 0.0043 0.0083 0.0150 0.0246
b 0.0297 0.0088 0.0149 0.0289 0.0478
1/r 3.3734 0.7710 2.0172 3.3261 4.9742
w 0.4970 0.1008 0.3364 0.4839 0.7335
p1 0.0157 0.0042 0.0082 0.0149 0.0243
p2 0.0292 0.0086 0.0148 0.0285 0.0467
D 13.4132 2.6484 9.2968 13.0641 19.5658

Exponential model

r 0.2348 0.0328 0.1808 0.2317 0.3093
a 0.0435 0.0130 0.0224 0.0419 0.0688
b 0.0451 0.0187 0.0245 0.0379 0.0939
1/r 4.3407 0.5925 3.2333 4.3159 5.5299
w 0.5078 0.1041 0.3367 0.4965 0.7521
p1 0.0425 0.0124 0.0221 0.0411 0.0665
p2 0.0440 0.0176 0.0242 0.0372 0.0897
D 13.7066 2.7508 9.3576 13.3679 20.2340

Notes: Summaries in the top half of the table correspond to the half-normal detection function,
and summaries in the bottom half of the table correspond to an exponential distance function; 2.5%
and 97.5% are posterior percentiles. The parameters p1, p2, and density, D, are derived parame-
ters. Density units are individuals per 100 km2, p1 is the encounter probability for individuals that
have not previously been encountered, and p2 is the encounter probability for individuals
subsequent to their initial encounter.
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positive behavioral response. This might happen if

individual tigers favor certain trails for moving about

their territory.

We also fitted the exponential detection model (Table

2). We see that the summaries of N and density are little

changed, and we don’t have any intuition as to whether

or not we would expect sensitivity in this regard.

Interestingly, the behavioral response appears much less

important (the posterior was nearly centered at 0).

Assessment of model adequacy

We evaluated the fit of each model using a Bayesian P

value (Gelman et al. 1996). The basic idea is to describe

a metric of model adequacy and then compare posterior

draws of that metric to those obtained from data sets

simulated from the posterior distribution. If we denote a

posterior sample of this metric for the observed data set

as D
ðobsÞ
i for posterior sample i and for a data set

simulated from the posterior distribution as D
ðnewÞ
i , then

the Bayesian P value is Pr(D
ðobsÞ
i . D

ðnewÞ
i ). For a model

that provides an adequate description of the data this

should be near 0.50. Thus, extreme values (near 0 or 1)

indicate a lack of model adequacy.

A practical problem with this approach in the context

of the model under consideration is the lack of an

obvious omnibus fit statistic. For our analysis we

considered two distinct measures of model adequacy:

One to assess the model’s ability to describe the

encounter frequency distribution and another statistic

to evaluate the clustering of individual captures in space.

For the former we considered a sum-of-squares between

the observed trap and occasion encounter frequencies

and their fitted values. That is, FIT1 ¼ Rk (nk � E [nk])
2

where nk is the number of individuals captured k times

(or in k traps). We aggregated the sum of squares of

both components (traps and occasions). For the

assessment of clustering (say FIT2), we used recaptures

of individuals to compute within-individual sum of

squares of capture locations (this is analogous to the

SSE of an ANOVA with individuals as blocks).

The spatial model with either half-normal or expo-

nential detection functions showed about the same fit

by both fit statistics. For the half-normal model the

P values for FIT1 and FIT2 were 0.48 and 0.47,

respectively. For the exponential model, the P values

were 0.52 and 0.61. For comparison, we also computed

the Bayesian P values for model M0 which is the model

described previously setting 1/r and b to 0. The statistic

based on encounter frequencies suggested a fit of that

model as well (P¼ 0.58), which is perhaps not surprising

given the sparsity of the observations (see Table 1).

Conversely, the assessment of spatial clustering using

FIT2 indicated inadequacy of model M0 (P , 0.001).

DISCUSSION

One of the fundamental objectives of many camera

trapping studies is the estimation of abundance and

density of the species under study. Historically, this

estimation problem has been addressed using a large

number of essentially ad hoc or heuristic methods based

on closed population capture–recapture estimators of

population size applied to individual encounter history

data. The conceptual limitation of closed population

estimators is that, while the estimate of N may be valid

in the sense of estimating the size of a population

exposed to sampling, the effective sample area of the

trapping array is unknown. Conventional methods have

sought to estimate effective sample area using methods

not formally linked (by a statistical model) to the

observed spatial encounter history data. For example, N

might be estimated by a conventional estimator of

population size for closed populations, and then a buffer

applied to the trapping grid based on observed

movements of individuals. Because the underlying

models are not specified precisely, they are not

sufficiently flexible or extensible. For example, the

formal treatment of multiple captures has not been

integrated directly into such analyses.

Here we described a hierarchical modeling framework

for inference from spatial capture–recapture data for

FIG. 4. Logarithm of the estimated posterior density of
tigers in the Nagarahole reserve. Each pixel is marked with
log(E [N(s) j data]) where N(s) is the number of points at pixel s.
Lighter colors (yellow) indicate higher densities, while darker
colors (blue) correspond to lower densities.
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trapping methods wherein the traps function indepen-

dently of one another such that multiple encounters of

an individual may occur during each sampling occasion.

This is typical of camera trapping studies as well as other

methods including DNA sampling from arrays of ‘‘hair

snares.’’ The spatial capture–recapture model is devel-

oped by conditioning the encounter history data on the

realization of an underlying point-process that describes

the distribution of individuals in space. This concept was

first adopted in the context of spatial capture–recapture

models by Efford (2004), and also exploited recently by

Royle and Young (2008), Borchers and Efford (2008),

and Royle et. al. (2009) for estimating density in the

context of a multinomial observation model wherein an

individual can be captured in only a single trap.

We noted that models in which traps function

independently of one another can be formulated as

generalized linear models (GLMs) with random effects

(i.e., generalized linear mixed models; GLMMs), similar

to other classes of models in capture–recapture including

individual heterogeneity models (‘‘Model Mh’’) and

individual covariate models. For models in which

individuals can be captured .1 time in a single trap, a

natural model for the count frequencies is a Poisson

model but obviously other models for count frequencies

could be considered (see discussion below). A binary

encounter model can be derived as a reduction of the

model for the frequency encounter model (i.e., as the

event that y . 0). Technically, these spatial capture–

recapture models are GLMMs only when N is known.

In this case, the activity centers, s, are the random

effects. When we allow for N to be unknown, the

resulting models (when reformulated using data aug-

mentation) are essentially zero-inflated versions of the

corresponding generalized linear mixed models. Analysis

of these models can be achieved in WinBUGS, which we

believe makes them generally accessible to practitioners.

However, in our analysis of the Nagarahole camera

trapping data, we developed an implementation of the

models in R for the case where the point process has a

discrete state-space, allowing us to distinguish between

suitable and unsuitable habitat. In addition to the

conceptual and technical relationships between spatial

capture–recapture models and generalized linear models,

there is one other class of models that are similar in form

to spatial capture–recapture models. If we consider

aggregating total detections by trap, the Poisson model

has a structural similarity to the Poisson-Gamma

convolution models described by Wolpert and Ickstadt

(1998) for modeling spatially indexed counts. However,

in this case we have a single intensity parameter and

allow the ‘‘support points’’ si to be unknown. Thus,

potentially, the model developed here could be em-

ployed in similar contexts to that of Wolpert and

Ickstadt (1998), perhaps permitting a lower-dimensional

set of support points that adapts to the data.

PLATE 1. Camera trap data from tigers in Nagarahole Reserve, India, have facilitated the development of spatially explicit
capture–recapture models. Photo credit: WCS/K. U. Karanth.
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While the Poisson model (or other model for count

frequencies) might be applicable for some camera

trapping studies because individuals can potentially be

encountered multiple times at the same camera location

during any particular sampling occasion, the data are

often reduced to binary encounter events either for

convenience or because recaptures are seldom indepen-

dent within short sampling periods (i.e., nights).

Another reason to reduce within-occasion recaptures

to binary events is that attention to modeling the within

trap/occasion variability becomes necessary. Moreover,

this information may not be directly informative about

density. Heuristically, information in spatial capture–

recapture data originates from spatial clustering of

recaptures. Thus, an individual that is only ever

captured in the same trap is providing no information

about the parameter that governs detection as a function

of distance (r in our model). Another reason to be

concerned with modeling this extra source of variability

is related to the results of Link (2003) who argued that N

is not an identifiable parameter in individual heteroge-

neity models when the mixture distribution is not

known. Consider adding an extra source of noise to

the linear predictor (Eq. 5) in order to allow for extra-

Poisson variation in trap-specific encounter frequencies.

This type of heterogeneity, while seemingly natural to

try to model, leads immediately to a model that

resembles the classical individual heterogeneity model

of the type that Link (2003) addressed. Thus, for most

practical situations involving a small number of

individuals, a priori limiting the complexity of the

model is probably advisable.

We have adopted a Bayesian formulation of spatial

capture–recapture models in this paper. However, these

models could also be analyzed by integrated likelihood

which is the technical approach adopted by Borchers

and Efford (2008). However, we believe the hierarchical

formulation adopted in our analysis (and in Royle and

Young 2008) will prove more flexible in the development

of model extensions. For example, a fundamental

component of the hierarchical model is the underlying

point process model that governs the distribution of

individual activity centers. The models have been

developed here under the assumption that individuals

are distributed uniformly in space. As the underlying

point process model is made more complex (e.g.,

containing interactions and conditional dependencies)

the integration required for inference by integrated

likelihood may become computationally prohibitive.

However, Bayesian analysis of the hierarchical formu-

lation only requires (in principle) the capability to carry

out conditional simulation of the activity center

locations. That is, we need only be able to simulate

from general point processes in order to carry-out

inference within a Markov chain Monte Carlo frame-

work.

While extensibility of the point process model is a

potential virtue of the Bayesian formulation of spatial

capture–recapture models, we feel that the biggest

practical advantage apparent at this time has to do with

the validity of inferences achieved by Bayesian analysis.

In particular, classical inference procedures are asymp-

totic and as such their relevance to small sample

situations is questionable. Conversely, Bayesian infer-

ences do not rely on asymptotic arguments and are valid

regardless of the sample size. There seems to be a

prevailing view in statistical ecology that classical

likelihood-based procedures are virtuous because of

the availability of simple formulas and procedures for

carrying out inference, such as calculating standard

errors, doing model selection by AIC, and assessing

goodness of fit. In large samples, this is an important

practical benefit of classical likelihood-based inference.

However, the practical validity of these procedures

cannot be asserted in most situations involving small

samples. In the study which motivated our analysis,

there were a total of 68 encounter events on 44

individuals. Only 24 of these are recaptures, from which

the information about the encounter process is obtained.

Reliance on conventional asymptotic procedures seems

difficult to justify in this context. We note that the size of

our data set is similar (or even larger) than many spatial

capture–recapture studies on carnivores that we are

familiar with, including a study of ocelots (Trolle and

Kéry 2003), black bears (Gardner et al. 2009), Pampas

cats in Argentina (B. Gardner, J. Reppucci, M.

Lucherini, and J. A. Royle, in review), European

wildcats in Switzerland (M. Kéry, B. Gardner, T.

Stoeckle, D. Weber, and J. A. Royle, unpublished

manuscript) and wolverines in Alaska (Magoun et al.

2008). We also believe that some restraint should be

exercised in developing many (or overly complex)

models for small data sets. While our framework is

quite general and flexible in terms of model development

(as a generalized linear mixed model) the ability to fit

models of arbitrary complexity should not be perceived

as a requirement to do so.

Modern technology has greatly advanced our ability

to obtain information about the demography and

population dynamics of secretive animal populations.

Photographic identification, DNA from dung, and hair

snares, or identification of individuals from scent dogs

are now widely used in studies of many taxa. Almost

universally these methods generate spatial encounter

histories and also data which deviate from the standard

multinomial structure of one capture per sample

occasion. For such data, generalizations of the cap-

ture–recapture modeling framework, such as those

models we have presented here, are necessary to make

efficient use of sparse data that is typically expensive of

both time and effort to obtain.
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