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Losses in pendular suspensions due to centrifugal coupling
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Abstract. We present an analysis of the centrifugal coupling of a simple pendulum to a
dissipative support. We show that such a coupling leads to an amplitude dependent quality
factor. For amplitudes which could be present in laser interferometer gravitational wave
detector suspensions, this mechanism could limit the quality factor of the test mass suspension
significantly to 10'? and should be considered in the design of advanced LIGO type detectors.
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1. Introduction

Large scale laser interferometric gravitational wave detectors are being planned [1-5]
and constructed [6]. Such detectors require extremely low amplitudes of vibrational
noise in their mirror suspensions. The chief sources of noise are seismic vibrations
and thermal noise. The former can, in principle, be reduced to arbitrarily low levels
by suitable filter design. Thermal noise however, is generated internally by the acoustic
losses in the mirror and by the losses in the mirror suspension. Internal mirror losses
generally give rise to a thermal noise peak in the kHz range (assuming a suitable
shape for the mirror). Pendulum losses give rise to a noise amplitude which, in the
frequency range ~ 1-100 Hz, is generally expected to dominate the noise of a large
scale detector.

In figure 1 we show the predicted thermal noise of a 100kg, 1 Hz pendulum for a
range of Q-factors. There would clearly be a great advantage in using pendula with
Q-factors > 10*° (see [7]). Losses in such pendula are normally considered to arise
from elastic losses in the flexure or hinge from which the pendulum is supported.
The elastic losses can be substantially reduced, due to the fact that the majority of

_ the elastic stored energy is in the gravitational potential energy. Practical pendulum
designs can use thin foil flexures in which typically only one part in 10* of the elastic

stored energy is in the lossy foil. It has been shown by Saulson [8] that under these
circumstances the pendulum Q-factor is given by,

K, |
Q=Q°Z’ , (1.1)

where K /K, is the ratio of the elastic spring constants and Q, is the intrinsic Q of
the foil. Since materials such as niobium have an intrinsic Q ~ 10° at room temperature,
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Figure 1. The frequency dependence of the thermal noise predicted for a 1 Hz
pendulum for various Q-factors. A pendulum with Q = 10'° would allow a strain

sensitivity of about 10723/, /Hz at 35Hz in a 1 km laser interferometer gravitational
wave detector.

pendulum Q-factors limited by linear losses in the suspension exceeding 10'° are
possible [9]. ‘ ’

However, even if the elastic loss was reduced to nearly zero using suitable materials
and configurations, losses in practice can remain due to the coupling of the pendulum
to its support structure. There are two ways in which this coupling can arise:

(a) One is a simple linear horizontal coupling of the suspension point to its support
structure. This can be modelled by conventional linear analysis and is accounted for
in most isolation system designs. These recoil losses are difficult to overcome. However,
Hough et al [10] and Braginsky [11] have demonstrated Q factors ~ 107 and 108
respectively. The thermal noise associated with recoil losses is filtered by the suspension.
Thus a significant’level of recoil losses is tolerable as shown by Saulson [8].

(b) The second is a loss which arises from ‘the centrifugal (vertical) coupling of the
pendulum to vertical losses in the support structure. This is a non-linear problem,
surprisingly difficult to solve. Here we present the solution to this problem, and give
examples of the limiting Q-factor in various situations.

The dominant and relevant effect of a high quality factor is to reduce the thermal
noise of the pendulum suspension. The dependence of the thermal noise spectral
density on the quality factor has been derived earlier [1]. The thermal noise is given
in terms of the quantity i where the tilde denotes the Fourier transform of the
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quantity below it. The quantity h is the metric perturbation of the gravitational wave
one is trying to detect. The thermal noise is given in terms of this metric perturbation.
Thus,

~  16kTw,

P e
thermal Q 4 !2
eff

(1.2)

Here k is the Boltzmann constant, T the absolute temperature, ! the length of the
arm of the laser interferometric detector Q. the effective quality factor, w, the
pendulum frequency and o the frequency of the thermal noise. The k falls off as

{1*) and therefore a higher Q . has the effect of reducing the thermal noise. If we
observe the noise profiles for burst or continuous wave sources [1] of laser inter-
ferometric gravitational wave detectors, the thermal noise is present at the lower end
of the band of detectable frequencies. Increasing the Q.. will push this thermal curve
‘downwards’ reducing the noise at lower frequencies near the seismic cut-off. This
will have the effect of increasing the signal to noise ratios for sources which emit
gravitational waves predominantly at lower frequencies. For example coalescing
binaries which radiate more power at lower frequencies will have their signal to noise
enhanced if the quality factor is boosted.

2. The equations of motion

We consider here a simple model of a seismic isolator which consists of a pendulum
attached to a spring. The spring motion has a dissipative element in it while the
dissipation in the pendular motion is neglected. We set up the classical equations for
the system which turn out to be non-linearly coupled. We then solve this system of
equations numerically and find that under the assumption that the amplitudes of the
motion are small, analytic approximations are possible and an analytic but approximate
solution can be derived. We finally compute an effective quality factor for the pendular
motion which now depends on amplitude (or time) because the motion is not damped
according to the usual exponential law.

Consider the system as shown in figure 2. In terms of the two dynamical variables,
x the extension of the spring beyond its normal length and 6 the angular displacement
of the pendulum, the Lagrangian & for the system is given by,

&= %M(xz — w2x* 4 [26?) — Mlsin 636 + Mg(x + I cos6), e

where M is the mass of the bob of the pendulum, I the length of the pendulum, w;
the natural frequency of the spring and g the acceleration due to gravity. We assume
that the damping of the spring is proportional to the velocity which means that the
damping force Q. is of the form,

0, = — 2%—»&, | ' ' 22)

where 7 is the damping time constant. We assume that the damping for the 6 motion.
can be neglected (Q, = 0). In terms of the dimensionless .variables,

a=_aip_, sz__az’ Q’—':}'CUST, T = wt, ’ (23)
w, 1 2 ‘
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Figure 2. A schematic diagram of a simple model for a seismic isolator is shown
which consists of a pendulum attached to a spring. The spring motion is damped
with the damping force proportional to the velocity.

where, w, = (g/)'/?, the Euler-Lagrange equations can be reduced to the following
equations of motion, for the two dynamical variables z and 6:

' 2+é—z’+z=95+92, 1 ' (2.4a)

b+ a’0 =03, (2.4b)

where the dot is the time derivative with respect to the dimensionless time T. The
aim is to compute the quality factor Q .. of the 6 motion.

The equations are too complex to solve in full generality. They are nonlinearly
coupled and do not possess any exact solutions. There are basically only two parameters,
namely, & and Q. All the other quantities have been thrown into the background by
resorting to dimensionless units. However, if the actual values are known for these
parameters it is possible to obtain approximate analytic solutions. We may guess
approximate analytic solutions by first solving the equations numerically.

3. The solutions

3.1 General features

Many of the qualitative features of the solutions can be seen by examining the nature
of the equations themselves, but in order to get a quantitative idea of the timescales
of oscillations and damping we resorted to numerical computations. Although the
parameters used in the numerical solutions did not correspond to actual situations,
they had the advantage of providing us with useful guidelines in assuming the form

of the analytic solutionT We experimented with several values for the initial parameters.
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(for instance, zo =2y = 6, =0, 6, = 0-05, where the subscript ‘0’ denotes the values of
the variables at the initial time t,) and came up with the following salient features:

(i) The 6 motion is oscillatory with period a and the amplitude of the oscillations is
damped over a much larger timescale (this is for a sensible choice of the parameters).
We have taken the computation far enough up to T = 10* so that the damping is
appreciable. '

(ii) For lower values of « and 6, the damping is milder and is not easily seen. For
such values we have taken the computation till T ~ 10%. However the results are not
qualitatively different.

(iii) The z-motion consists of two superimposed oscillations:

(a) The cycles are at a frequency 2. This is due to the quadratic nonlinearity, namely,
6? forcing the z motion.

(b) On these oscillations is superimposed a transient of about unit frequency which
is damped at the rate e~ T/22, At late times the transients die out and the spring
oscillates with the frequency 2a. \

At late times both the 6 and z oscillations are slowly damped. The damping is not
exponential but slower and is quantified in the next section. It is remarkable that in
the regime of interest, analytic solutions to this system of equations are possible. The
above mentioned features are observed in the analytic solution.

3.2 The transients and the particuldr solution
Since the 6 displacement is small, we start with a trial solution
6(T)=6,cos(aT), (3.1)

so that at T =0 the 6 displacement is maximum, namely, 0, = 8,. 6, here is assumed
to be constant although it happens to be a slowly varying function of time on the
time scale of the damping rate. For a few cycles this assumption is alright during
which little decay in the amplitude occurs. The oscillation time scale is of course of
the order of o~ L. This solution assumes that 87 ~ 0 which is justified later. We further
proceed to compute the right hand side of the z equation from equation (3.1). Thus,

1
2+—Q—z'+z= —a?62cos 20T, (3.2)

which means that the z motion is forced at twice the frequency of the 6 oscillation,
which is at the second harmonic of the 8 oscillation. The total solution for z(t) is
obtained as a superposition of the transient solution and the forced solution. Thus,

'z(t) = ztransient(t) + zforced(t)’ - (33)
where,
=e"T1?(A4, cos BT + A, sin fT), (3.4

Z i ansient —

where, f = (1 —(1/4Q%))!/?,and 4, and A, are to be determined from initial conditions
imposed on the full solution. The forced solution is, :

Zioreed = 210820 T + @), (3.5)
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where,
20
= —a202/A, tan®, =—————, A=[(1—40?)? +40?/Q*]"2.
z a*0y/ 1 0(1 — 4a?) [( ) /0]

(3.6)

Again here the behaviour of z, is analogous to 6,. The transient solution dies out
in the timescale Q ~! so that at late times (T > Q ') only the forced solution survives.

The trial solution for 8( T) as given in equation (3.1) can be justified in the following
way. We observe that if we choose a~ 1 or less and Q ~1 to 100 then z ~a*63.
Since the z motion is also sinusoidal with frequency 2a, # ~ a*63. Thus, the term 0
is of the order of 2*6 which is very small. Therefore the assumptlon of neglecting
this term in our trial solution for 8 is not unjustified.

3.3 Damped motion

The motion is damped since the system loses energy because of the dissipation in
the spring. We analyse the damping from energy considerations. We need to evaluate
first the total average energy of the system and then relate it to the rate of loss of
average energy. Since the dissipative element is in the spring, the system loses energy
only through the z-motion. However, the 8-motion will also be damped because of

the coupling. The instantaneous energy is the Hamiltonian of the system and is given
in dimensionless units by,

1 1. o1 1
E=-3*4+-0%—007 +=-2> + -a?0> 3.7
2z +2 7 22 +2oc 3.7

We now substitute the late time solutions,
=z,(T)cos(2aT +@,), 6=0,(T)cosaT, (3.8)

where 6, and z, are ‘slowly’ varying functions on the timescale of &~ ! in equation (3.7)

and compute the average energy per cycle (E) of the oscillations. The calculation
leads to,

1
<E>.-=(a501—2a49‘;+2a69‘;)A‘2+—;—a20f. (3.9)

Since 8, has been assumed to be small, the higher order terms in 8, may be neglected
and to the lowest order in 6, we have, (E) ~ 30?62, The rate of loss of energy is

computed by first differentiating the expression for the Hamiltonian and then using
the equations of motion. We then have,

d 1,

The average loss of energy per unit time can then be computed from equations (3.6)
and (3.8) and averaging the trigonometric functions over unit time. Thus,

200607

———<>— AQ'

(3.11)
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The milder damping rate, i.e. milder than the exponential rate, is evident from the
above analysis and can be seen in the following way:

The dominant contribution to the energy comes from the § motion and is quadratic
in ;. On the other hand, the rate of energy loss is quadratic in z; since the damping,
which is proportional to the velocity, is in this vertical mode. But since the § mode
is coupled quadratically to the z mode the rate of energy decay depends on the fourth
power of 8, . This is a much milder decay rate than the one compared to the exponential
case, where the energy of the system as well as the energy decay rate, scale quadratically
in the amplitude. Also since the rate of the decay of energy is governed by the amplitude
of the oscillations in the above manner, the damping is less for lower amplitudes.
This was one of our observations in subsection 3.1.

From (3.9) and (3.11) we get a differential equation for the decay of the average
energy, or equivalently for the amplitude 6,:

d P 4o* 0%

—f = ——, 3.12
Tt A2Q 612
Solving this equation with the initial conditions T =0, 6 = 8,, we have,
6
0,(T)=—>, 3.13
1(7T) B(T) (3.13a)
where,
4ot 62
B(T)=(1+¢T)*?, &= 9,
(T)=( ) E=—0 0
The decay of the z-motion is obtained from equation (3.6). Thus,
a?8?
z, (1) = — e, 3.13b
1(T) AB(T) (3.13b)

Therefore we notice that the z motion is damped at a faster rate than the § motion.
This behaviour remains true for various values of o, Q and 6, as has been verified
on the computer and cross checked with the above formulae. But if « and 0 are very
small then enormous amount of time is required on the computer to produce ap-
preciable damping as can be seen from the foregoing discussion. The analytic solution
then is useful in predicting the damping profile.

4. The effective Q for the pendular motion

Consider a damped simple harmonic oscillator with natural frequency w, and
damping time constant 7. Then the time dependence of the amplitude is ~ e~ "/*% oo,
The quality factor Q is then given by the formula: Q = ;w,7. In terms of the dimension-
less time T the effective quality factor Q_, for general damped motion, which is not
necessarily an exponential decay, is given by,

1 d -t
Qet‘f:Ea _'&71_,(1“91(T)) -‘ | 4.1)
Using equation (3.13a), the above expression leads to the result,
1+¢T ~ ‘
Qur=a 0, | “2)
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Therefore in this case the quality factor is a function of time which is to be expected
since the damping is not exponential. We observe that, the Q .. increases with time.
At early times, i.e. when T « 1 the Q. is given by,

o A%Q
Qe ~ -

e 4362

4.3)

We observe that at early times Q. is a constant and hence in this regime the system
behaves like a normal damped harmonic oscillator ie. the amplitude 6, decays
exponentially with time 8, ( T) ~ e~*T/22 However when T ~¢~' the decay of the
amplitude is slower than the exponential rate. Figure 3 compares the decay of the
amplitudes of the two oscillators:

(a) exponentially damped,
(b) pendular, which corresponds to the system under consideration.

10 T T T T T T T T T T T T T T

Pendular

—Log,, ( —Logy, ( 8, ))

Exponential

L 1 1 e | L L | L | 1 ! L ]
-10

0 5 10 15
Log,q (r )

Figure 3. The figure depicts the decay of the amplitudes with time for the standard
exponential case and for the model considered here (pendular). The parameters
have the following values 0. = 0-3, =2 and 8, = 0-01. (a) exponential: The amplitude
is damped exponentially with time. This appears as a straight line with slope = — 1
in the logarithmic scale. (b) pendular: In the model considered the amplitude
decays slower than in the standard case (a).
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In figure, « = 0:3, Q = 2 and 6, = 0-01 which corresponds to & ~ 10 °. It is convenient
to use logarithmic scales for depicting the behaviour. We plot —log, ,(—log,,0,)
verses log,, T. The usual case of the exponentially damped oscillator appears as a
straight line with slope = — 1. This curve is labelled as exponential. The intercept on
the vertical axis turns out to be log, , Q. — log, , (G log, ,€) — log, ,(—log, ,6,) which
increases with Q.. We observe that when T~ ¢™* ~ 10° the pendular curve departs
from the exponential and the decay is slower. Although the parameters used here are
not realised in actual situations, they have the advantage of bringing out the difference
in the behaviours of the two types of damping.

For the case of the spring constant k~ 10"kg's™2, M ~ 10°kg, | ~ 1 m and Q say
10, we have the following values for the relevant parameters: @, ~ 100, @, ~ 3, & ~ 0-03
and 4 ~ 1. From the equations (3.13) and (4.2) we get an amplitude dependent quality
factor for the pendular motion. Thus, .

420 1
YA TY 44

1

chf =

1og,(Qu)

log,,(8,)

Figure 4. The figure shows that the quality factor @ is amplitude dependent
for the model considered here. The Q_, is plotted versus the amplitude 6, in a
logarithmic scale. We find that the @ increases as the inverse square of the
amplitude. In this figure the relevant parameters have the values Q = 10, a = 0-03
and hence the constant A2Q/4a* ~ 10°.
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Figure 4 displays this behaviour in which log, Q. is plotted against log, ,68,. For
the values of the parameters mentioned above, the constant A*Q/4oa> ~ 10°. The
tendency is for the Q.. to increase with the decrease of amplitude. Therefore a value
of Q. ~ 10'° is not impossible under the circumstances.

5. Conclusions

We have shown that the coupling of a pendulum to a lossy support structure can
create an amplitude dependent Q-factor and this can significantly degrade the Q of
an intrinsically high Q pendulum if care is not taken in the design. Since metal and
rubber vibration isolator elements have intrinsically low Q, these can contribute
particularly large amplitude dependent losses. The coupling of noise into such a
suspension will occur through parametric amplification type processes more familiar
in optical and radio frequency parametric amplifiers. Some interferometer designs
have proposed a suspension point servo which uses a secondary interferometer to
lock together the pendulum suspension points. Such a suspension does not eliminate
seismic noise, but forces it into common mode so that there is no differential motion.
In such a situation residual seismic amplitudes could be large enough to degrade the
suspension Q through the mechanism discussed here.
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