
I.J. Intelligent Systems and Applications, 2012, 1, 64-76
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijisa.2012.01.08

Self-Organization and Autonomy in
Computational Networks:

Agents-based Contractual Workflow
Paradigm
 E.V.Krishnamurthy,

 Australian National University, Canberra, ACT 0200, Australia.
Evk.krishnamurthy@anu.edu.au

Abstract- We describe an agents-based contractual workflow
paradigm for Self-organization and autonomy in
computational networks. The agent-based paradigm can be
interpreted as the outcome arising out of deterministic,
nondeterministic or stochastic interaction among a set of
agents that includes the environment. These interactions are
like chemical reactions and result in self-organization. Since
the reaction rules are inherently parallel, any number of
actions can be performed cooperatively or competitively
among the subsets of elements, so that the agents carry out
the required actions. Also we describe the application of this
paradigm in finding short duration paths, chemical- patent
mining, and in cloud computing services.

Index Terms- Agents, autonomy, bio-inspired technique,
cloud-computing services, contract -based workflow,
self-organization, shortest path computation, template
matching

I. INTRODUCTION

Self-organization and related emergence are important
topics of study in complex systems and nonlinear
dynamics; for details see Murthy and Krishnamurthy [12].
In a recent paper Prehofer and Bettstetter [14], propose a
method of self-organization in communication networks.
They propose four basic principles (paradigms) and show
how they are reflected in current protocols: design local
interactions that achieve global properties, exploit implicit
coordination, minimize the maintained state, and design
protocols that adapt to changes. However, emergent
properties are more complex and we will not consider
these aspects here; detailed discussion of emergence
requires nonlinear dynamics and associated probabilistic
networks [12]. In a practical sense, in the terminology of
Kephart and Chess [6], self-organization and autonomic
computing have common aims, Ramirez and Cheng [15],
Dobson et al [2], with the ability to self –monitor,
self-configure, self- optimize, self-protect and being self
aware.

A. Prehofer- Bettstetter Principles:
Principle 1: Design local behavior rules to achieve global
properties:
That is the entities involved have only a local view of its
connected neighborhood, and all the rules (regarding
communication and computation) are applied only at the
local level and their effects propagate at global level to
achieve the required properties.

Principle 2: Do not aim for perfect coordination – exploit
implicit coordination:
That is messages among the entities are coordinated at the
local level checking for consistency and conflict
–freedom.
Principle 3: Minimize long-lived state information
organization:
This is achieved by employing mechanisms that know its
neighborhood entities, their capabilities and their
reliability. This enables the system to update global
information through local communication.
Principle 4: Design protocols or algorithmic rules that
can adapt to changes:
Adaptation is the capability of nodes to react to changes in
the network and its environment. The need for such
adaptation typically arises from changed resource
constraints, changed user requirements, node properties,
node mobility, or node failures. Since there are no
centralized entities that could notify the nodes about
changes, each node needs to continuously monitor its local
environment and react in an appropriate manner.
 Our aim in this paper is to describe the agent- based
contractual paradigm that uses the above four principles
with the currently available software tools. In Section II
we describe the agent-based software paradigm. In
Section III we describe the contract- based workflow and
its role in failure detection and prevention. Section IV
describes an example of shortest delay (or path)
determination in a network using local rules on a set of
connected agents. Section V studies the problem of
matching relational structures (e.g., chemical structure)
using a set of cooperating agents using local rules,
exploring and exploiting neighborhood information, thus
minimizing long-lived information. Section VI deals with
the application of agents in cloud computing services and
their patterns. Section VII describes in brief some of the
currently available agent-tools. Section VIII is the
conclusion.

II. AGENT-BASED PARADIGM

 An agent is a system [12,13,19] that is capable of
perceiving events in its environment or representing
information about the current state of affairs and of acting
in its environment guided by perceptions and stored
information, Woolridge [19]. A set of agent system
consists of several single agent-systems (Figure 1),

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291579235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm 65

Murthy and Krishnamurthy [12]. Thus if N agents are
involve i = 1,2, , , N, each of the agents will be denoted
with a label (i). Here, we will restrict ourselves to the
definition that the agent is a software module having the
workflow programming model to be described in next
section.

OM

INTERPRETER

DOMAIN DATA
+

IN

U T

PERCEPT

MXT A

AXU U

EXTRAN

EFFECT

MXT M
INTRAN

ORGANIZATIONAL

KNOWLEDGE
OUT

U

D

 AGENT

RULES P

 Figure 1. Agent Model

(1) Worldly states or environment U:
All those states that completely describe the universe
containing all the agents.
(2) Percept: Depending upon the sensory capabilities
(input interface to the universe or environment) an agent
can receive from U an input T (a standard set of messages),
using a sensory function Perception (PERCEPT):
PERCEPT :U → T.
PERCEPT can involve various types of perception: see,
read, hear,smell. The messages are assumed to be of
standard types based on an interaction language that is
interpreted identically by all agents. Since U includes both
the environment and other agents the input can be either
from the agents directly or from the environment that has
been modified by other agents. We assume that agents that
can communicate directly, as well as, indirectly through
the environment (see also EFFECT).
(3) State of Mind M:
The agent has a state of mind M (essentially a problem
domain knowledge consisting of an internal database D for
the problem domain data and a set of problem domain
rules P). Here, D is a set of beliefs about objects in its
neighbourhood, their attributes and relationships stored as
an internal database. P is a set of rules expressed as
preconditions and consequences (conditions and actions).
When T is received as the input, if the conditions given in
the left-hand side of P match T, the elements that
correspond to the right-hand side are taken from D, and
suitable actions are carried out locally (internally in M) as
well as externally on the environment.
 The nature of internal production rules P, their mode of
application and the action set determines whether an agent
is deterministic, nondeterministic, probabilistic or fuzzy.
Rule application policy in a production system P can be
modified by:
(1) Assigning probabilities/fuzziness for applying the rule
(2) Assigning strength to each rule by using a measure of
its past success
(3) Introducing a support for each rule by using a measure
of its likely relevance to the current situation.
The above three factors provide for competition and
cooperation among the different rules. Such a model is

useful for many applications, Murthy and Krishnamurthy
[12]. Also, we assume that each agent can carry out other
basic computations, such as having memory, arithmetic
capability, comparison, simple control rules and the
generation of random numbers.
(4) Organizational Knowledge (O): Since each agent
needs to communicate with the external world or other
agents, we assume that O contains all the information
about the relationships among the different agents, e.g.,
the connectivity relationship for communication, the data
dependencies between agents, interference among agents
with respect to rules and information about the location of
different domain rules.
(5) INFLOW:
On the receipt of input T, the action in the agent M is
suitably revised or updated by the function called
INFLOW
(6) Revision: Revision means acquisition of new
information about the environment that requires a change
in the rule system P. This may result in changes in the
database D. In a more general sense, revision may be
called “mutation’ of the agent since the agent exhibits a
mutation in behaviour due to change of rules or code.
(7) Update: Update means adding new entries to the
database D; the rules P are not changed. In a more general
sense, the update may be called “Reconfiguration” since
the agent’s behaviour is altered to accommodate a change
in the data.
 Both revision and update can be denoted in set-theoretic
notation by:
INFLOW: M X T → M(D,P)
Both mutation and reconfiguration play important roles in
self-organization. These are achieved in this model by
introducing changes in D and P as required. This can be
interpreted as updating or revising a set of database
instances. Hence, if one or several interaction conditions
hold for several non- disjoint subsets of objects in the
agent at the same time, the choice made among them can
be nondeterministic or probabilistic. This leads to
competitive parallelism. The actions on the chosen subset
are executed atomically and committed. In other words,
the chosen subset undergoes an 'asynchronous atomic
update'.
As a result of the actions followed by commitment, we
may revise or update and obtain a new database for each
agent; this may satisfy new conditions of the text and the
actions are repeated by initiating a new set of
computations. This set of transformations halt when there
are no more actions are executable or the databases does
not undergo a change for two consecutive steps indicating
a new consistent state of the databases.
 However, if the interaction condition holds for several
disjoint subsets of elements in the database at the same
time, the actions can take place independently and
simultaneously. This leads to cooperative parallelism; e.g.
vector parallelism, pipeline parallelism.
(8) EXFLOW: External action is defined as an external
workflow (EXFLOW) that maps a state of mind and a
partition from an external state into an action performed
by the agent. That is: EXFLOW: M X T → A. That is, the
current state of mind and a new input activates an external
action from the action set A.

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

66 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm

(9) EFFECT: The agent also can affect the universe U by
performing an action from a set of actions A (ask, tell, hear,
read, write, speak, send, smell, taste, receive, silent), or
more complex actions. Such actions are carried out
according to a particular agent’s role and governed by an
etiquette called protocols. The effect of these actions is
defined by a function EFFECT that modifies the world
states through the actions of an agent:
EFFECT: A X U → U;
EFFECT can involve additions, deletions and
modifications to U. Thus an agent is defined by a set of
nine entities, a 9-tuple:
(U,T,M(P,D),O,A,PERCEPT,INFLOW,EXFLOW,EFFECT).
The interpreter within an agent repeatedly executes the
rules in P until no rule can be fired.
 An agent-based software system is a collection of agents
interacting through messages among themselves and the
environment. Each agent maintains its own share of data
and has its own program piece to manipulate it. The agents
are active and behave like actors in a movie, each
following its own script and interacting with other agents.
Accordingly agents can model the changing world by
perceiving the changes themselves at any specific time.
Thus agents can adequately provide distributed-service for
a given request in a particular scenario by monitoring,
decision making and executing required actions through
the functional logic. In addition they have built in local
rules, adapt to changes, monitor the environment and be
proactive when anticipating failures.

III. AGENT-BASED CONTRACTUAL WORKFLOW

We now describe an agent-based contractual workflow
paradigm to support long and short duration transactions
in communication, control and commercial environment.
In this environment, we use a model called a “workflow
model” between the agents (peers) that interact, compete
and cooperate, to realise a distributed program [10], [11].
The various types of task patterns that arise in
communication, control and commercial environment
require a “what if” programming approach consisting of
intention and actions for trial-error design, before an
actual commitment is made. Such an approach enables us
to connect partners anywhere and anytime and take care of
the unpredictable nature of connectivity among the
devices and the networks. It also provides for seamless
integration of differing applications and communications
and the trial and error program design required. Thus it
helps to design protocols required by principle 4 in
selforganization.
 We define an agent-based workflow-service thus: Given
an input set I= (I1,I2,I3.....) the agent -based service
execution W (I1,I2,..In) is an execution of a sequence of
valid agent-based states (s0,s1,s2,...sn) that represent a
meaningful state transition from s0 to achieve a desired
final state sn which satisfies the context specified by the
invoker, subject to the condition that all the elements of
the input set I are valid objects that exist during the state
transformation. A workflow is a distributed task that can
be executed partly within that agent as an internal
workflow (Inflow) and partly in other agents as external
Workflow (Exflow).

We illustrate some of the important applications and the
design of suitable protocols. We also classify some
workflow patterns that arise in cloud computing services
in E-business and the language support needed.
A global workflow (we call it an External workflow or
Exflow) T(ij) is defined as a workflow between two agents
A(i) and A(j) ; this consists of a message sent from A(i) to
execute a desired workflow in A(j); this message is
received by A(j). A(j) has a behaviour specified by:
Pre(T(ij)), G(j), C(j), Post (T(ij))S(j), where Pre() and
Post() are respectively the pre and post states of the world
that are active before and after the workflow T(ij). G(j) is a
guard of A(j) to signal when the required precondition is
met, and C(j) is the command function ; S(j) signals when
the post condition is achieved. Here the script specifies
what message A(j) can accept and what actions it
performs when it receives the message while in state
Pre(T(ij)) to satisfy the post condition post(T(ij)). The
Exflow T(ij) can trigger in A(j) numeric, symbolic or
database computations.
 Each Exflow T(ij) from agent i to agent j triggers a set
of serializable computations in A(j) either in a total order
or in a partial order depending upon whether parallelism,
concurrency and interleaving are possible locally within
A(j). If the agent A(j) is "made up" of sub-agents, we may
have to execute a workflow consisting of several local
workflows (called internal workflow - Inflow). After
executing Inflow, each agent reaches a new state from an
old state using its internal command set C(j); before
executing the commands, the required precondition is met,
and after completion of the command set , the post
condition is ensured in the new state. This is the design by
contract approach, Kramer [7], Little [8], Meyer [9], and
widely used in the language Eiffel. The precondition is
specified by “require” and post condition by “ensure”.
 The principal aim of the contractual paradigm is to
ensure that every action is evaluated in terms of the
requirements on the state of the world before the execution
of the service in a given context (user, time, location, type
of data, ordering actions) so that the collaboration,
communication and action framework take place infallibly.
This paradigm was first suggested by Smith [17].
The concept of a contractual workflow paradigm is quite
simple. A contract is a consistent and fault tolerant
execution of an arbitrary sequence of predefined actions
carried out according to an explicitly specified control
flow description called “script”. The script has a condition
event structure that describes a stereotyped sequence of
event in a particular context. Events form a causal chain
and during the execution of a workflow, a contractual
obligation should take the program from one consistent
state of the world to another. That is the precondition and
post condition of a contract holds at every elementary
contextual step ensuring a consistent and fault tolerant
execution of any task.
Remark: The contractual workflow paradigm thus
provides a particular design pattern, Jezequel et al. [5],
Shalloway, and Trott [16]. See Section VI for examples.

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm 67

A. Chemical reactivity -like properties
The Exflow and Inflow have general properties called
“chemical Reactivity properties”, since they resemble
chemical reactions: Molecularity, Contractual obligation,
Opacity during a molecular action, and retry or rescue
through a recovery protocol bringing the system back into
the invariant state.
These are defined as below:
(i) Molecularity: If there is a crash during a composite
operation all the effects of the sub-operation are lost. If
there is no crash the composite or molecular operation is
complete. That is a molecule is synthesised fully or not at
all.
(ii) Contractual obligation: Invocation of a single
composite operation takes the program from one
consistent state to another. This means precondition and
post condition of a contract holds. Thus conventional
consistency is replaced by contractual obligation.
(iii) Opacity: The results of the sub-operations of
composite operation should not be revealed until the
composite operation is complete.
(iv)Durability: If a crash occurs and contract fails and a
component cannot meet its obligation and fails in its
contract, an exception is raised. Then we have three
possibilities:
a. Exception is not justified: it is a false alarm; we may
ignore.
b. If we have anticipated the exception when we wrote the
routine and provided an alternative way to fulfil the
contract, then the system will try that alternative. This is
called resumption.
c. If, however, we are still unable to fulfil the contract we
go into graceful degradation or surrender with honour.
Then bring all the objects to an acceptable state (pre-
committed- state) and signal failure. This is called
organized panic. This should restore the invariant. At this
point we initiate retry. The effect of retry is to execute the
body of the routine again.
Remark: In Eiffel Jezequel et al. [5] Meyer [9], the rescue
clause does all the above (this is essentially RESTART
after recovery).
 Also the chemical reactivity properties are generalized
further: Since a number of remote objects are invoked, the
agents should ensure all the remote actions and the local
actions are complete. If any one fails the whole program
has to be abandoned, and we need to retry, rescue and
bring the system to its invariant state. Contractual
obligation is extended to all agents under concurrent
invocation and partial failures. No results are revealed
from any agents until all the actions are complete and
committed.
(v) Retry /Rescue and Reset :If false alarm then retry; else
rescue and restart so that all the invariants in all objects are
rest to their pre-action state.
 Recall that we have two types of transactions - Exflow
between peers, and inflow within each peer. We split the
Exflow into Intention and Action transactions, where the
intention transactions satisfy the ACID properties:
Atomicity: All or none of transaction happens;
Consistency: A transaction preserves the consistency in
database before and after its execution;
Isolation: Intermediate results are not externally made
visible until commitment;

Durability: The effects are made permanent when a
transaction succeeds and recovers under failure.
The Action transactions are long duration transactions
supported by a recovery protocol. The intention
transactions are again local to each agent and based on the
decision in this phase, the action transaction takes place
through a protocol (called Intention -Action Protocol -IAP)
provided with a time-out strategy and recovery to cope up
with failures of disconnection.

B. Multiagent System
 A multi-agent system can be defined as a loosely coupled
network of agents that interact among them and through
the environment to solve a problem. The multiagent
system carries out distributed computation by sending,
receiving, handshaking and acknowledging messages and
performing some local computations and has the
following features:
1. An agent has the structure as described in Figure 1 and
can carry out elementary computations and can generate
random numbers
2. There is a seeding agent who initiates the solution
process.
3. Each agent can be active or inactive.
4. Initially all agents are inactive except for a specified
seeding agent that initiates the computation.
5. An active agent can do local computation, send and
receive messages and can spontaneously become inactive.
6. An inactive agent becomes active if and only if it
receives a message.
7. Each agent may retain its current belief or revise its
belief as a result of receiving a new message by
performing a local computation. If it revises its belief, it
communicates its revised state of belief to other concerned
agents; else it does not revise its solution and remains
silent.
8. Agents are proactive in the sense of being anticipatory
and taking charge of situations. Proactive behavior
involves acting in advance of a future situation, rather than
just reacting. It means taking control and making things
happen rather than just adjusting to a situation or waiting
for something to happen. Proactive agents do not need to
be asked to act, nor do they require detailed instructions.
Hence the basic agent model can realise:
(i)Reactive or proactive agent that make decisions at run
time with a limited amount of local information,
(ii) Deliberating agent that has an internal representation
of the environment and has a logical inference mechanism
for decision making and planning and
(iii) Interacting agent that is capable of coordinating the
activities with other agents through communication and
negotiation.

C. 1nteraction among Agents
 In order to use the multi-agent paradigm to realise
cooperative and competitive computational tasks, we need
to consider how the agents can interfere with each other.
1. Enabling dependence (ED): Agent A(i) and agent A(j)
are called enable dependent
(or dataflow dependent) if the messages from A (i) creates
the required precondition in A(j) to carry out a specific
action. These messages can be chemical concentration,
voltages or communication messages.

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

68 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm

2.Inhibit dependence (ID): Agents A (i) and A (j) are
called inhibit dependent, if the actions of A (i) creates the
required precondition in A(j) to prevent it from executing
a specific action. Inhibition may be due to negative
weights in connective links or stop signals or other
computable entities.
3. INFLOW Conflict (IC) : Agents A (i) and A (j) are
opposition dependent (also called data-output dependent)
through A(k)), if the order in which A (i) and A (j) enable
A(k) and update A(k) produce different results in A(k);
that is the objects A(i) and A (j) perform operations on
A(k) that are not order reversible. That is, local
serializability (or commutability) is not ensured in the
INFLOW within A(k), if the actions are carried out within
an agent in different partial order. Exception is raised in
this case.
4. EXFLOW Conflict (EC): Agents A (i) and A(j) are data
antidependent through A(k) if the order in which A(i)
enables (inhibits) A(k), and A(j) enables (inhibits) A(k)
result in different external actions (EXTRAN) by A(k) on
the environment. That is the temporal order in which
information arrives from the environment and other agents
affects the global serializability (commutability) of the
actions of an agent. Exception is raised in this case.

Remark: ED and ID:
The two properties ED and ID are crucial in
self-organization.These rules permit an agent to enable
itself and also an agent A(i) to enable A(j) and A (j) to
enable A(i) cyclically. For example, A(i) can create the
required precondition in A(k), so that A(j) can enable A(k).
Also, A(i) can inhibit the required precondition in A(k) so
that A(j) is prevented from enabling A(k).

D. Concurrency and Conflicts
 In distributed computing and transaction processing: we
require that the following two conditions be satisfied for
global serialization when concurrent operations take
place:
1. At each agent the actions in local actions are performed
in the non-conflicting order (Local serializability or
commutativity).
2. At each agent the serialization order of the tasks dictated
by every other agent is not violated. That is, for each pair
of conflicting actions among transactions p and q, an
action of p precedes an action of q in any local schedule, if
and only if, the preconditions required for p do not conflict
with those preconditions required for execution of the
action q in the required ordering of all tasks in all agents
(Global serializability).
 The above two conditions require that the preconditions
for actions in different agents A(i) and A(j) do not
interfere or cause conflicts. These conditions are necessary
for the stabilization of the multi-agent systems that the
computations are locally and globally consistent.
Termination: For the termination of agent –based program,
the interaction among the agents must come to a halt.
When the entire set of agents halt we have an equilibrium
state (or a fixed point) also called stability while dealing
with exact computation in a deterministic system.
Conflicts: Resolution or compromise? In agent -based
modelling of behaviour, under concurrency, the conflicts
arising in INFLOW and EXFLOW may require resolution

or to an agreeable compromise. These rules should be
based on the problem domain.

IV. SHORTEST DELAY OR PATH

We now illustrate how to design the multiagent paradigm
for the problem of finding a lowest cost path between any
two vertices in a directed graph whose edges have a certain
assigned positive costs (Figure 2). We use only local rules
and communication among neighbours. In the algorithm,
we evaluate the goodness of each path chosen by each
agent, as well as, those chosen by neighbours. This process
is then reiterated until we reach a (stable) fixed point. The
likeness of this algorithm with the Swarming intelligence
scheme [12] can be inferred. There are very close
connections between stabilization, fixed points, chaotic
attractors and emergence, see [12]; also see remarks in
Section IV B.
The lowest cost path (or shortest delay) problem requires
the entity set of vertices, the relationship set of ordered
pairs of vertices (x,y) representing edges, and the attribute
of cost c for each member of the relationship set, denoted
by (x,y,c). Given a graph G the program should give for
each pair of vertices (x,y) the smallest sum of costs path
from x to y. The vertex from which the lowest cost paths to
other vertices are required is called the root vertex r
(vertex 1 in this example). Let s denote the sum of costs
along the path from the root to y; we assume that c (and
hence s) is positive. The ordered 4-tuple describes this
information: (x,y,c,s): (vertex label, vertex label, cost,
sum of costs from root).
 The fourth member of the 4-tuple, namely the sum of
costs from a specified root remains initially undefined and
we set this to a large number *.We then use the production
rules to modify these tuples or to remove them.
To find the lowest cost path to all vertices from a specified
root r, we use tuple processing and let the 4-tuples interact;
this interaction results in either the generation of modified
4-tuples or the removal of some 4-tuples of the
representation.

 1

 3 4

2 2

 5

15

 35

30

 45

 50

15 20

10

 3

10

6

ure 2

Shortest Path

 Fig

Rule-based protocol to find the shortest path
Let C(i,j) be the cost of path (i,j). A better path is one that
can pass through some vertex k such that:
 C(i,k) +C(k,j) < C(i,j)
That is our production rule is: If C(i,k) +C(k,j) < C(i,j)
then delete C(i,j) and set
C(i,j) = C(i,k) +C(k,j).

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm 69

The invariant is: if C(i,j) is the initial cost then all the costs
are always less than or equal to C(i,j). We refine this by
using the rule : If C(i,k) < C(p,k) , delete C(p,k) and retain
C(i,k). Thus the following three production rules result:
Rule 1: If there are tuples of the form (r,r,0,0) and (r,y,c,*),
replace (r,y,c,*) by (r,y,c,c) and retain (r,r,0,0).
Rule 1 defines the sum of costs for vertices adjacent to the
root, by deleting * and defining the values.
Rule 2: If there are tuples of the form (x,y,c1,s1) and
(y,z,c2,s2), where s2 > s1+c2 then replace (y,z,c2,s2) by
(y,z,c2,s1+c2); else do nothing.
Rule 2 states that if s2 > s1+c2 we can find a lower cost
path to z through y.
Rule 3:If there are tuples of the form (x,y,c1,s1) and
(z,y,c2,s2) and if s1< s2 , then remove (z,y,c2,s2) from the
tuple set; else do nothing.
Rule 3 states that for a given vertex y which has two paths,
one from x and another from z, we can eliminate that
4-tuple that has a higher sum of costs from the root. The
above three rules provide for local computation by many
agents and we are left with those tuples that describe
precisely the lowest cost path from the root.
For simplicity, we assume that there are n agents with
names identical to the nodes in the graph and each agent is
connected to other agents in an isomorphic manner to the
given graph. Such an assumption on the topology of the
network simplifies the organizational knowledge O. Thus
each agent knows the identity of its neighbours, the
direction and cost of connection of the outgoing edges.
Thus for the given directed graph the outdegree of each
node is the number of sending channels and the indegree is
the number of receiving channels.
The revised local rules for multi-agent computation are as
follows:
a. Initialization of beliefs: Agent 1 (root) sends to all its
neighbours x the tuple (1,x,c,c) describing the name of the
root, and the distance of x from the root (c); all the
neighbours of the root handshake, receive, and store it.
This corresponds to the initialization of beliefs.
b. Initial set of beliefs: Each agent x sends its neighbour y
at a distance c1 from it, the tuple (x,y,c1,c+c1) describing
its name, its distance to y and the distance of y from the
root through x using its distance to the root c. This is the
initial set of beliefs of the agents.
c. Update of Beliefs: Each agent y compares an earlier
tuple (x,y,c1,s1) got from a neighbour x, or the root, with
the new tuple (z,y,c1',s1') from another neighbour z. If
s1< s1', then y retains (x,y,c1,s1) and remains silent; else it
stores (z,y,c1',s1') and sends out the tuple (y,w,c2,s1'+c2)
to its neighbour w at a distance c2, advising w to revise its
distance from the root. That is, each agent updates its
beliefs and communicates the beliefs to concerned agents.
d. Stability and Halting: An agent does not send messages
if it receives a message from another agent that tells a
higher value for its distance from the root and ignores the
message, i.e., it does not revise its beliefs. Thus it contains
only the lowest distance from the root. All the agents halt
when no more messages are in circulation and the system
stabilizes. An algorithm to detect the termination of
negotiation is described in the next section.
 Consider the directed graph in Figure 2, in which the
edge costs are as shown; we denote this graph by the
triplet , a pair of nodes (x,y) followed by the cost c of the

edge ,thus: (x,y,c). The graph in Figure 2 is then given
by:(1,2,50); (1,3,10); (1,5,45); (2,3,15); (2,5,10); (3,4,15);
(4,2,20); (4,5,35); (5,4,30); (6,4,3).
We choose the vertex 1 as the root; we use the following
format for representing the distances in the graph:(vertex
label, vertex label, cost, sum of costs from root). Thus the
graph is encoded in the form:
(1,1,0,0);(1,2,50,*);(1,3,10,*);(1,5,45,*);(2,3,15,*);
(2,5,10,*);(3,4,15,*);(4,2,20,*);(4,5,35,*);(5,4,30,*);
(6,4,3,*).
 We then apply the three rules systematically. This results
in the following tuples that describe the lowest cost path
subgraph: (1,1,0,0); (1,3,10,10); (1,5,45,45); (3,4,15,25);
(4,2,20,45). Note that the 4-tuple (6,4,3,*) gets eliminated
as vertex 6 cannot be reached from the root vertex 1.
Figure 3 shows the computation and communication tree,
and its termination.

Self-Evaluation of Stabilization
An important property of self organization is its ability to
test the fitness through self-awareness, i.e. the individual
who does the work evaluates itself, ensuring that the
global fitness is guaranteed. This is widely prevalent in
Nature for activities such as: nest building (stigmergy),
food searching (foraging). We imitate this process here, so
that the agents self-evaluate themselves to determine the
stabilization.
 We now describe an algorithm, called
“Commission-Savings-Tally Algorithm ”, for the global
stabilization detection of a Multi-agent computation. This
is a general algorithm. For simplicity of illustration we use
this algorithm to find the shortest path in a graph of Figure
2.The agent negotiation algorithm terminates or stabilizes
with appropriate distances as shown in Figure 3. Let us
assume that the N agents are connected through a
communication network represented by a directed graph G
with N nodes and M directed arcs, as in Figure 3. Let us
also denote the outdegree of each node i by Oud(i) and
indegree by Ind(i). Also we assume that an initiator or a
seeding agent exists to initiate the transactions. The
seeding agent (SA) holds an initial amount of money C.
When the SA sends a data message to other agents, it pays
a commission:
C/(Oud (SA) + 1) to each of its agents and retains the same
amount for itself.
When an agent receives a credit ,it uses the following
rules:
Rule a. Let agent j receive a credit C(M(i)) due to some
data message M(i) sent from agent i . If j passes on data
messages to other agents j retains C((M(i)) / (Oud(j)+1)
for its credit and distributes the remaining amount to
other Oud(j) agents. If there is no data message from
agent j to others, then j credits C(M(i)) for that message in
its own savings account; but this savings will not be
passed on to any other agent, even if some other message
is received eventually from another agent.
Rule b. When no messages are received and no messages
are sent out by every agent, it waits for a time-out and
sends or broadcasts or writes on a transactional blackboard
its savings account balance to the initiator.
Rule c. The initiator on receiving the message broadcast
adds up all the agents' savings account and its own and
verifies whether the total tallies to C.

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

70 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm

Rule d. In order to store savings and transmit commission
we use an ordered pair of integers to denote a rational
number and assume that each agent has a provision to
handle exact rational arithmetic. Note that, if we choose
C=1, it is sufficient to store the denominator of the rational
number remembering that the actual value is a reciprocal
for summing over the credits.
 We prove the following theorems to describe the validity
of the above algorithm:

Theorem 1: If there are cycles present among the agents
(including the initiator itself) then the initiator cannot tally
its sum to C within a finite time period. Hence negotiation
fails and the algorithm has to abort after a properly chosen
time-out period.
Proof: Assume that there are two agents i and j engaged in
a rule dependent cycle. This means i and j are revising
their beliefs forever without coming to an agreement. Let
the initial credit of i be x. If i passes a message to j, then i
holds x/2 and j gets x/2. If eventually j passes a message to
i, then its credit is x/4 and i has a credit x.3/4; if there is
continuous exchange of messages for ever then their total
credit remains (x - x/2k) with x/2k being carried away by
the message at the k-th exchange. Hence the total sum will
never tally in a finite time period.
Theorem 2: The stabilization terminates within a finite
time-out period, if and only if, the initiator tallies the sum
of all the agents savings to C. In other words, there is no
situation in which the sum has tallied to C but stabilization
is incomplete, or sum has not tallied to C but the
stabilization is reached.
Proof:
If part: If the initiator tallies the sum to C within a finite
time out period, it implies that all the agents have sent their
savings and no message is in transit carrying some credit
and there is no chattering among agents.
Only if part: The credit assigned can be only distributed
in the following manner:
a. An agent has received a message and credit in a buffer;
if it has sent a message then a part of the credit is lost; else
it holds the credit in savings.
b. Each message carries a credit; so, if a message is lost in
transit or communication fails then total credit cannot be
recovered.
Thus stabilization is reached within a properly chosen
time-out period when the total sum tallies to C; then all the
agents have reached an agreement on their beliefs.

A. Example
The collective agent communication protocol and
computational tree of Figure 3 is obtained from Figure 2,
using the rules 1, 2, 3. At initiation, the node labelled 1 is
the root and the seeding agent. It contains the pair (0,0)
indicating that it is the root and its distance to the root
through itself is zero. It transmits the information to each
neighbour its distance from the neighbour and the distance
of its neighbour to the root through itself. Also it starts
with a credit 1and retains a credit of (1 / Oud (SA)+ 1) to
itself, and transmits the same amount to its neighbours 2, 3,
5 which in this case is 1/4. Along each edge from each
node x to node y the credits transmitted are indicated. The
retained credit for each transmission is indicated near the

node. Then the algorithm proceeds as indicated generating
the communication tree of Figure 3. Note that in this
process, agent node 2 revises its earlier belief from the
new message received from 4 ; but the other nodes 3, 4, 5
do not revise their initial beliefs and remain silent , since
the later message received by them contained a longer
distance path than what they received earlier from node 1.
Finally as indicated in the rules a,b,c,d in this section we
sum over all the retained credits after each transmission.
These are respectively: Node 1: 18/72; Node 2: 7/72; Node
3: 16/72; Node 4: 12/72; Node 5: 19/72.Note that the sum
tallies to one. Also the shortest distance to the root from
each node is: Node 1: 0; Node 2: 45; Node 3: 10; Node 4:
25; Node 5: 45.

2 3 5

3
5

4 4

2 5

3 5

0 , 0

50, 50 1 0 , 1 0 45, 45

15, 65
1 5 , 2 5

3 5 , 6020, 45

10, 5 5 15, 60

10, 60

s s

s

s

s

s= si l ent

30 , 75

Figur e 3

M U L T I - A G E N T C O M P U T A T I O N

1/ 4

1/ 12

1 / 4
1/ 4

1 / 4

1 / 12

1/ 12

1/ 12
1/ 12

1/ 8
1/ 8

1 / 8 1 / 8

1/ 8

1 / 2 4

1 / 2 4
1 / 24

1/ 24

1/ 72
1 / 7 2

1 / 7 2

1/ 72 1 / 7 2

1

s

(I n i t i a l)

Cr e d i t = 1 a t s t a r t

 B. Relation to Swarming
 Swarming tactics are widely used in nature by ants,flock
of birds and in warfare. A set of agents that uses inferences,
beliefs and computation can evolve into self-organizing
swarms [12]. We can use two different forms of
communication to enable (connect) or inhibit (disconnect)
agents to form interactive networks.
 1.Tacit (Indirect) communication: Agents with simple
intelligence (e.g., ants): Use of markings similar to a
chemical gradient or diffusion mechanism or a
communication field. This provides a common spatial
resource, where each agent can leave a mark that can be
perceived by other agents. This requires minimal amount
of memory and communication overhead.
2. Explicit (Direct) communication: Agents with more
complex intelligence: Use of voice, signals, radio
resulting in a positive feed-back or nonlinear response to

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm 71

the information available from knowledge other agents
may possess (by connecting or disconnecting with other
agents). This involves a greater amount of memory and
communication overhead. Also this would require that
each agent knows what other agents know, and how much
they know measured in a taxonomic scale so that each
agent can have a score about its neighbours to link, de-link
and revise its belief. The system dynamics is formulated
using the rules:
(1) Stepping (or local coupling) rule:
The state of each individual agent is updated or revised in
many dimensions, in parallel, so that the new state reflects
each agent’s previous best success.
(2) Landscaping (or global coupling) rule:
Each agent assumes a new best value of its state that
depends on its past best value and a suitable function of the
best values of its interacting neighbours, with a suitably
defined neighbourhood topology and geometry.
 All agents in the universe or selected chunks are updated
using rules (1) and (2).
 The above two rules permit us to model self-avoiding,
self-repelling, communicating, and active random-walker
models. This can result in various kinds of attractors
having fractal dimensions presenting swarm-like, bacterial
colony-like appearance.

V MATCHING TEMPLATES

One of the essential problems encountered in dealing with
the information in chemical patents is the matching of
chemical structures (templates). In this section we
describe an efficient screening and matching procedure
suitable for implementation in a distributed multiagent
system so as to gain speed in the template matching
process. This scheme is bio-inspired in the sense the
agents mark their presence in a territory (as animals do) to
mark their territorial presence in an environment. These
bio- markings are then checked for consistency and
conflict freedom so that each place is marked at most once.
In this scheme, we connect each piece of new information
with the available known information in memory to
increase our prior knowledge and integrate this new
knowledge into a knowledge network. This happens
iteratively.
The multi agent scheme is a concurrent self-organizing
iterative method for matching any type of relational
structures. This procedure can be used for matching
structures drawn from several domains. Also, it can be
used for exact matching or similarity matching of
structures, according to the requirement and the
availability of the data on exactness or similarity. The
exact (or identity) matching problem can be described as
follows:
Suppose we have a structure (called W, the “world”)
described in terms of its parts, their properties, and the
relations between them. For example, W could be a
chemical structural formula the parts being atoms, their
properties being their elemental identities (and possibly
other features such as oxidation state), and the relations
would be the various sorts of chemical bonds between the
atoms. These bonds could be single, double, or triple
bonds between pairs of atoms or higher order bonding
among groups of atoms as occurs, for example, in a

benzene ring. In W we are searching for instances of a
given substructure (called M, the “model” or a “template”)
which is described in the same terms as W.
 In the agent –based scheme, we build an actual or
simulated network of agents based on the structure W.
Here, we assign one agent to each node (atom) in the
structure and make inter-agent connections, which
correspond to the relations (chemical bonds). Each agent
contains a complete description of the sought substructure
M, although it can communicate only with those
neighboring agents to which it is directly connected. The
complete description, that is local with respect to each
atom in M consists of substituent variation, possible atom
lists, bond lists, link nodes (atoms that can repeat between
two of their designated bonds called outer bonds, denoted
by brackets), position variation bonds, homology groups),
Since each agent has adequate memory, and reasoning
power based on rule-based systems and they can
communicate with neighbors, the multiagent scheme turns
out to be efficient in patent datamining. .
 In each iteration, the agents match the concepts in their
long-term memory with the perception. When a concept
matches, the agent adds an instance of the concept to its
short-term memory making it available to support other
inferences. The system operates in a bottom-up manner,
starting from primitive concepts which match against
percepts, and working up to higher level concepts, which
matches with lower level concepts. The iterations continue
until the agents have deduced all inferences that are
implied from the conceptual knowledge base and
immediate perception. Using the above principle, each
agent maintains a list of labels, the labels referring to the
atoms of M with which this atom of W might possibly be
identified. This list is initially set to contain those matches
that are possible considering only intrinsic properties of
each atom. Then, in each iteration, each agent eliminates
from its current list, those labels for which there is no
possible consistent labeling of neighboring nodes. That is
each agent checks for consistency of its local
neighborhood as to the global structure W. These
iterations continue until no further eliminations can be
made only checking for local consistency.
To illustrate the process, we consider a very simple
example.
Example 1.
W: structure : CH2OH-CHCl-CH2-CH2OH
M : substructure : > COH-C C1 <
Ignoring hydrogen atoms, and unspecified bonds, and
numbering the other atoms for reference, we have

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

72 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm

The initial labeling of W with possible matches gives (iii)
below, since only carbon can be matched with C, O with O,
and Cl with Cl.

To bear label a, an atom must be bonded to an atom with
label b and to an atom with label c. In the first iteration, we
can eliminate the label a from carbons 2 and 3. However,
carbon 4 retains this label. Similarly, label b can be
eliminated from carbons 1, 3, and 4.No other eliminations
are possible now and after the first iteration we have (iv):

On the second iteration, we can eliminate the label a from
carbon 4, since it has lost support from carbon 3. On the
third and last iteration, oxygen 7 loses the label c, because
carbon 4 has now lost label a. No further eliminations are
possible, leaving the structure W correctly labeled with the
names of the matching atoms of M; see (v) below:

 The World W and Model M for this example are shown in
Figs, 4a, and 4b. The results after the initial labeling in Fig.
4c, and the results after the first and second iterations are
shown in Figs. 4d, and 4e. Notice that this final labeling is
the union of the three overlapping instances of M in W so
that a subsequent case analysis would be needed to
separate these three instances.

Notice that while the computations at each node are purely
local, during successive iterations of the process,
information is able to propagate through the structure as in
ant swarming. Because the computations at each node can
proceed concurrently, as in an ant swarm, this process is
suited to implementation on a properly configured
multiagent system permitting many-fold reductions in
computation time. However, note that the substructure
matching is an NP-complete problem and so the speed of
computation grows exponentially on the size of the
problem with only marginal reduction.
In the above example, the loss of label b on carbon 3 in the
first iteration causes the loss of label c on Oxygen 7 two
iterations later. One should be aware, however, that the
scheme provides only a screening process. There are
certain circumstances under which the results of the
process indicate that a match may be possible when in fact
no match exists.
 Selecting a “False match”: If the molecules look identical
at a local level (e.g. as in a lattice structure with no node
distinction) the scheme cannot make any eliminations.
However, the scheme is a safe screening procedure in that

its failures will all be of the above type, of suggesting a
match that cannot exist. It is impossible for it to fail in the
other way by rejecting a match that does exist. That is it
can select false matches but cannot reject true matches. In
these situations we need more than the local information
based on computing higher order resemblance matrix.
Stabilization: The labels generated by the agents in the
iterative procedure can stabilize only in the following
three types:
1. Firstly, we have the situation in which all atoms in W
lose all labels. In this case we can safely conclude that no
match exists.
2. Secondly, if every node in W has at most one label and
every label from M is used just once, then that labeling
describes the unique embedding of M into W.
3. Thirdly, if there are results with some remaining
ambiguity, then some atom in W may bear more than one
label or some labels from M may occur more than once.
This third situation can arise either when there are multiple
embeddings of M into W (from actual multiple instances
or from internal symmetries of M) or when no match exists,
but its refutation requires the use of global evidence. Such
ambiguity cannot be resolved by this scheme and other
methods must be used.
 One way is to select a single ambiguous labeling and split
the matching problem into several sub-problems identical,
except that in each the ambiguous labeling is resolved in a
particular way. If the original problem had a solution, then
it must exist in one of the sub-problems, and the relaxation
process can be applied to them, with recursive use of the
splitting technique if any of the sub-problems remain
ambiguous after applying the scheme.
We now give a larger example to illustrate the above
concepts.

Example 2

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm 73

Fig. 4(a). World structure (W) for matching; (b) model
M with atoms arbitrarily labeled, (c) world structure W
initially labeled; (d) world structure W after first
iteration (e) world structure after second iteration W

VI. APPLICATION TO CLOUD COMPUTING
SERVICES

Recently, Garcia and Sim [3] have described the
application of self-organization for service composition
in cloud computing. The basic idea here is assign special
purpose agents for web-services, resources,
service-providers, brokers and clients (consumers).
These agents have well defined acquaintances
(connected neighbouring agents) and all the agents use
the contractual paradigm to execute any task. That is,
such special agents form a cluster or a specific pattern
that can be used for failure-free composition for cloud
service requirements using the contractual paradigm.
 Certain common behavioural patterns of workflows
occur in Commerce and control applications, Jezequel
et al.[5], Ramirez and Cheng [15], Shalloway, and Trott
[16]. A Pattern enforces a problem solving discipline
for a design architecture. It consists of three parts: a
context, a problem and a solution. The context is a
description of the environment before the pattern is
applied. It outlines the preconditions under which the
problem and its solution appear. The context shows
where and when the pattern will work. It is usually
introduced with the help of a scenario. Problem
describes the goals and objectives of a situation.

Solution describes the means to achieve the goals and
objectives through a suitable protocol. In cloud
computing, it is possible to choose clusters or patterns of
various types for resource providers, service providers,
brokers and clients that can avoid node failures, increase
throughput, and enable quick connections based on the
property of the individual networks. This is a meeting
point between large scale graph networks and cloud
computing, and a potentially useful application area for
cloud computing services and multimedia web services
under random failures or deliberate attacks ,Murthy and
Krishnamurthy [12].
The various types of task patterns that arise in
E-business e.g. Purchasing, manufacturing and
negotiation) require a “what if” programming approach
consisting of intention and actions for trial-error design,
before a commitment is made. This approach enables us
to take care of the unpredictable nature of connectivity
among the devices and the networks and also provide
for the trial and error program design. We now describe
several agent-based task patterns that arise in
E-business and how the contract-based workflow
patterns is useful for modeling and realising cloud
computing services; there can be other workflow
patterns which are combinations of these patterns.
We will formalize the description of the patterns using
set-theoretic notation.
The behaviour of the workflow depends upon two
factors: the control and dataflow between each other. In
general, workflows can be sequential, repetitive,
concurrent or a combination of these depending upon
the problem, as described below:

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

74 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm

a. Conventional service transactions with ACID
properties: These occur at the lowest level of a
workflow.
b. Supply- chain service pattern: Here the context is a
sequence of conventional transactions between a
customer and a seller through a set of intermediary
agents.
This pattern can arise in manufacturing problem too
where a workstation can request different other
workstations for parts and the movement of these parts
are transactions. Here the workflow is successful, if and
only if each individual transaction in a chain is
successful. An abort in any transaction will be
considered unsuccessful, restoring the consistency of
the initial state. Here the total task is partitioned into
mutually disjoint sub-workflows each with its own pre
and postconditions. The total workflow is successful, if
and only if, each sub-workflow satisfies the
precondition and post condition. Also for each
subworkflow W(j) its predecessor W(j-1)’s post
condition is included in the precondition of W(j). Thus
any abort in the sequence W(1),W(2),...W(n) restores
the system back to its consistent state . Also let A(i) and
C(i) refer to boolean flags for abort and commit
respectively for each workflow W(i).Then there is a
control flow between two successive workflows W(j)
and W(j+1); if W(j) is aborted then W(j+1) does not
proceed.
Then we may write formally the supply chain workflow
pattern by three conditions:
(i) W = W(1)∪W(2) ∪ W(3)... ∪W(n) where
W(j)∩ W(j+1) = A(j) or C(j) for 1≤ j ≤ n.
(ii) Pre (W(j+1)= Post W(j) and
(iii) the boolean OR of flags A(i) satisfies:
 [A(1)OR A(2).OR .A(n)] = 0 ;or the boolean AND of
boolean flags C(i) satisfies:
[C(1) AND C(2)...AND...C(n)] = 1
at the completion of every workflow W(i) in the
sequential composition..

c. Mutually exclusive- collectively exhaustive service
pattern:
Here, the context is a single buyer trying to acquire
goods from several suppliers to complete a given task
through several mutually exclusive transactions and
collectively exhaustive transactions. This pattern is
required in control and manufacturing where a total
assembly of parts are required from several component
parts. As the name indicates there is no control or
dataflow among the different workflows. This is
different from supply chain in the sense, there need not
be a sequential or chain condition imposed among the
workflows, namely each post condition of a preceding
workflow is included in the precondition of the
subsequent workflow as they are time independent.
However, all the workflows need to be committed
successfully eventually after a finite time of completion.
If any one is aborted this workflow is unsuccessful and
the initial states are restored.
Thus we may formally write the mutually
exclusive-collectively exhaustive pattern by:
(i) W = W(1)∪W(2) ∪ W(3)... ∪W(n) where

W(i)∩ W(j) = ∅ for 1≤ i,j ≤ n.
 and
(ii) the boolean OR of flags A(i) satisfies:
 [A(1)OR A(2).OR .A(n)] = 0 ;or the
boolean AND of boolean flags C(i) satisfies:
[C(1) AND C(2)...AND...C(n)] = 1 at eventual
completion of all the workflows W(i)

d. Negotiated choice service pattern- inviting tenders):
Here, the context is that a Single customer bargains and
negotiates with several suppliers simultaneously to
obtain a particular product at a bargain price, usually a
function of the price and quality of the product (optimal
choice). Here, the competition among the suppliers do
not arise, since each one does not know the prices
quoted by others. In manufacturing sector, this pattern
arises, when a workstation is negotiating with other
workstations for parts at different levels of completion.
This workflow is successful, if and only if one of the
workflows is committed and soon after that time the rest
of the workflows are aborted respecting the contract. In
the latter case the states are properly restored.
The negotiated choice pattern can be formalized by:
 (i) W = W(1)∪W(2) ∪ W(3)...∪W(n) where
W(i)∩ W(j) = ∅ for 1 ≤ i,j ≤ n.
 and
(ii) Optimal W(i) = C(i)
(iii)after committing W(i) all other W(j), j≠ i are
aborted.
e. Auction Pattern
Auction process is a repetitive or iterative controlled
competition among a set of clients and a Single
auctioneer for selling a specific object, coordinated by
the auctioneer. In the auction pattern, the workflows
happen between an auctioneer and several clients
through communication and these are successively
revised. The difference between the auction process and
the negotiated choice is that in the auction process all
the clients know each others bid, while in negotiated
choice the sellers do not know other sellers quotes. Thus
in auction there is dataflow among the successive
workflows, namely the price quoted at the earlier bid.
The rules of the English auction pattern are as follows:
1. The auctioneer begins the process by a bid W(bid i=1)
with a price P(1) and opens the auction.
2. At every succeeding bidding step 2 ≤ i ≤ M , decided
by a time stamp i , only one of the clients k among the N
clients (1≤ k≤ N) is permitted to bid with a price P(i,k) ;
the auctioneer relays this information.
The bidding client k is called active and this client
becomes inactive until a new round begins.
3.Then the auctioneer relays the information and opens
a new bid; receives a response from another (or same)
client j who bids a price P(i+1,j) strictly greater than a
finite fixed amount of the earlier bid. P(i,k). (This is
English auction; it can be modified for other auctions) .
4.If within a time-out period no client responds, the final
bid is committed for the sale of the goods. The auction is
closed by aborting earlier bids.
The English auction pattern can be formalized by
workflow W(bid i)

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm 75

(i) W(bid (1)) for price P(1) and await response ; then
for from client k with a price P(i, k).
(ii) Then for each 2≤ i ≤ M and 1≤ k ≤ N , the auctioneer
examines P(i,k) , aborts W(bid (i-1)) and opens a new
bid W (bid (i+1), and waits. If no response, commits
W(bid (i) at price P(i,k) and ends.
Thus
 (i) W* = iterative workflow =

W(1)followed byW(2) followed by W(3).followed
by. W(i), 1 ≤ i ≤ M.
(ii) Bid W(i) = P(i,k)
(iii) Post W(i)= Pre W(i+1)= P(i,k)
(iv) If P(i,k) ≥ P(i-1,j) abort client j of W(i-1)
(v) bid W(i)+1)= P(i,k);
(vi) If no response after W(i+1),commit W(i) at price
P(i,k) and end.
Table 1 summarizes all the above patterns.

TABLE 1: WORKFLOW PATTERNS IN COMMERCE AND CONTROL

Name of Pattern Properties
Conventional Transaction Has ACID properties: one customer, and one supplier ;

commitment. or abort.
Supply Chain Workflow between a customer and several sellers consisting

of a set of transactions through intermediary agents. The
workflow is successful if and only if each individual
transaction in the chain is successful.

Mutually Exclusive-Collectively Exhaustive Workflow consisting of several mutually exclusive and
collectively exhaustive transactions between a customer
 (workstation) and several suppliers (workstations) (to
acquire different items(during manufacture). The
workflow is successful if and only if all the transactions are
committed.

Negotiated Choice Workflow takes place between a customer and several
suppliers or peer a workstations negotiating for parts at
different stages in manufacturing; the customer bargains and
negotiates with several suppliers simultaneously to obtain a
particular product at a bargain price. This workflow is
successful, if and only if one of the transactions is
committed.

English Auction A controlled competition among a set of clients and an
auctioneer coordinated by the auctioneer. Here the last bid
with the highest value is chosen for the sale of the goods and
the auction is closed with one successful bidder.

VII. MULTI-AGENT TOOLKITS

Shakshuki et al. [18], evaluate multiagent tool kits, such as:
Java Agent development framework (JADE), Zeus Agent
building toolkit and JACK Intelligent Systems. They
consider Java support, and performance evaluation. The
number of agents they consider is of the order of 32. For
the implementation of the paradigm described here,
further developments are needed in Agent technology,
since we need a very large number of agents to simulate
many real-life scientific applications.
 Gorton et al [4] have evaluated agent architectures:
Adaptive Agent architecture (AAA), Aglets developed by
IBM, and the Java based architecture Cougaar. The
paradigm described here is well-suited for implementing
in Cougaar, a Java based agent architecture, since Cougaar
is based on human reasoning. A Cougaar agent consists of
a blackboard that facilitates communication and
operational modules called plug-in that communicate with
one another through the blackboard and contain the logic
for the agent’s operations. The use of blackboard and
direct communication are useful for simulating the
problems in Synthetic biology. Many other recent
developments include Repast and other agent based
software tools, Adamsky and Komosinski [1]. Repast is
object oriented and has a discrete event scheduler, 2D
visualization, and can be used with a variety of languages:

java, C#, managed C++, Prolog etc and is available for
several Platforms. Swarm Software is a mixture of Object
oriented C and Java and can be very useful for swarming
and related simulations.
Yet another tool is Star Logo, in [1]. Eiffel, Java , and
UML are powerful languages to implement Mobile Object
Programming Systems. They provide for software
contract that captures mutual obligations through program
constructs such as:“ require [else]” for precondition and
“ensure [then]”for post condition, assertions, invariants.
Eiffel provides for a good semantics for exception
handling through a “rescue” clause and “retry” clause for
dealing with the recovery and resumption .The tool called
“iContract”, Kramer [7], provides developers with
supports for design by contract using Java.
Jini and JXTA are currently being studied as useful to
support agent based computing (see Web).

VIII. CONCLUSION

We described an agent based programming paradigm for
self-organization and autonomy in computational
networks. With the presently available tools in agent
technology and large communication networks, several
important advances can be made in choosing suitable
topology of various types of networks (or patterns) used to
achieve reliable communication and computation that are

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

76 Self-Organization and Autonomy in Computational Networks: Agents-based Contractual Workflow Paradigm

failure proof, robust against attacks and capable of
adaptation and self-organization. In our examples we
illustrated only static examples. Time varying examples
need further research and belong to the area of complex
systems.

REFERENCES

[1] Adamsky,A and Komosinski, M. (2006), Artificial life
Models in Software, Springer, New York.
[2] Dobson, S et al., (2010), Fulfilling the vision of Autonomic
computing, IEEE Computer,January, pp.35-41.
[3] Garcia, J.O-G., and K-M Sim,(2010) Self-organizing agents
for service composition in cloud computing, IEEE International
Conference on Cloud computing Technology and Sciences,
IEEE Computer Society, pp.59-66.
[4] Gorton,I, et al., (2004), Evaluating agent Architectures:
Cougaar, Aglets and AAA, Lecture Notes in Computer Science,
Vol.2940, pp.264-274, Springer Verlag, New York
[5] Jezequel, M., Train,M, and Mingins,C.(2000). Design
Patterns and contracts, Reading: Addison Wesley.
[6] Kephart,J.O and Chess,D.M (2000),The vision of Autonomic
computing, IEEE Computer, January, pp. 41-50
[7] Kramer,R (1998).“iContract-The java Design by contract
tool,, 26 th Conference on Technology of object oriented
Systems,(TOOLS USA’98) Santa Barbara.
[8] Little, M, Transactions and Web services (2003),
Communications of the ACM, Vol.46, No 10, pp.49-54,., 2003.
[9] Meyer, B. (1992). Applying design by contracts, IEEE
Computer 25(10), 40-52.
[10] Murthy, V.K. (2005), Contextual-knowledge management
in peer to peer computing, International Journal of
Knowledge-Based & Intelligent Engineering Systems, 9,
pp.303-314.
[11] Murthy,V.K. and Krishnamurthy, E.V. (2005), Contextual
information Management using Contract-based workflow, Proc.
ACM Computing Frontiers, CF’05, Iscia, Italy.
[12] Murthy,V.K., and Krishnamurthy,E.V (2009). Multiset of
Agents in a Network for Simulation of Complex Systems,
Chapter 7 in Recent advances in Nonlinear dynamics and
synchronization(NDS-1)-theory and applications,
Eds.Kyamakya , K, et al, Springer Verlag, New York
[13] Odell,J.J., Objects and agents compared, (2002) , J. Object
technology, Vol.1, No.1, pp, 41-53,May-June .
[14] Prehofer ,C and Bettstetter,C (2005), Self-organization in
communication networks: Principles and design paradigms,
IEEE Communication Mag,July,pp.78-85.
[15] Ramirez,A,R and Cheng, B.H.C,(2009), Design Patterns for
developing dynamically adaptive systems,ICAC 09, Spain
[16]Shalloway, S and Trott,J.R. (2002),Design patterns
Explained, Addison Wesley, New York.
[17] Smith,R.G., (1980),The Contract net Protocol:High level
communication and Control in a distributed Problem
Solver,IEEE Transactions on Computers, Vol.C29, 1104-1113.
[18] Shakshuki,E and Jun,Y,(2004), Multi-agent development
toolkits: An Evaluation, Lecture notes in Artficial intelligence,
Vol.3029, pp.209-218,Springer Verlag, New York
[19] Woolridge, M. (2002), An Introduction to Multi-Agent
Systems, New York, John Wiley.

Professor E.V. Krishnamurthy is with the Computer Sciences Laboratory,
Australian National University. He is the author of several books and
papers in Computer Science and Information technology.

Address:

Australian National University,Canberra,ACT,0200,Australia

 email: Evk.Krishnamurthy@anu.edu.au

Copyright © 2012 MECS I.J. Intelligent Systems and Applications, 2012, 1, 64-76

mailto:Evk.Krishnamurthy@anu.edu.au

