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We propose a simple procedure to identify the collective coordinate Q which is used to generate the
isochronous Hamiltonian. The new isochronous Hamiltonian generates more and more isochronous
oscillators, recursively.

In recent years considerable interest has been shown to identify and classify isochronous

systems. In this direction Calogero and his coworkers have introduced a number of sys-

tematic procedures to generate isochronous oscillator systems [1–7]. In a different direc-

tion the existence of amplitude independent frequency of nonlinear oscillators have been

identified using nonlocal transformations [8, 9]. Recently Calogero and Leyvraz [6, 7] pro-

posed a new powerful technique to generate isochronous Hamiltonian systems. In this tech-

nique they have shown that the real autonomous Hamiltonian H(p, q) can be transformed

to an Ω-modified Hamiltonian, that is, H(1) = 1
2(H(p, q)2 + Ω2Q(p, q)2), which has the

isochronous property. Here H behaves as the new momentum and Q is the canonically con-

jugate/collective coordinate conjugate to the Hamiltonian, such that the Poisson bracket

{H,Q}=1. Ω is an arbitrary constant. Due to the nature of the Ω-modified Hamiltonian

system, now the new momentum H and coordinate Q evolve periodically with period

T = 2π/Ω, and so the momentum p and coordinate q also evolve periodically with the

same period. In [10], the authors have shown the interesting connection between symplectic

rectification and isochronous Hamiltonian systems.

In this brief communication, we propose a simple procedure to identify the collective

coordinate Q which is used to generate the isochronous Hamiltonian. We also point out

the further interesting possibility to generate recursively more isochronous oscillators from

the newly constructed isochronous Hamiltonian. We also illustrate this possibility with an

example. To identify Q we start with the following theorem:

Theorem 1. If H = H(p, q) is the Hamiltonian of a given system such that it can be

inverted to find a single valued q or p in terms of the other variable and H explicitly, then

the system admits at least one integral of the form I = −t + Q(p, q), and Q(p, q) is a
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collective coordinate conjugate to the Hamiltonian in an appropriate phase space (avoiding

multivaluedness and singularities).

Proof. The Hamilton equations of the Hamiltonian H(p, q) are

q̇ =
∂H

∂p
= f1(p, q), ṗ = −∂H

∂q
= f2(p, q). (0.1)

Now inverting the Hamiltonian H(p, q) in terms of p or q and substituting the resultant

expression into the right hand side of the q̇ or ṗ equation we get

q̇ = f1(p, q) = f3(q,H), or ṗ = f2(p, q) = f4(p,H). (0.2)

Integrating the above equation we get

I + t =

∫

dq

f3(q,H)
= Q1(p, q), or I + t =

∫

dp

f4(p,H)
= Q2(p, q) (0.3)

where I is the integration constant and Q1 and Q2 are two of the possible collective coor-

dinates (where the phase space chosen such that the coordinates are single valued and

non-singular). The latter fact can be easily proved by noting that the total differentiation

of any one of the Q(p, q) yields on using (0.1),

dQ

dt
= q̇

∂Q

∂q
+ ṗ

∂Q

∂p
= {H,Q} = 1. (0.4)

Thus Q1 or Q2 is canonically conjugate to H and can serve as the required collective

coordinate.

Now considering the above HamiltonianH as a new momentum and Q as a new collective

coordinate and substituting these into the Ω-modified isochronous Hamiltonian H(1) given

by Calogero and Leyvraz [6, 7],

H(1) =
1

2
(H(p, q)2 +Ω2Q(p, q)2), (0.5)

one can show that the dynamical system in p and q is indeed isochronous. This has been

proved in [6, 7].

Example:1

Let us consider H = pq, then Q = log q. Then the Ω-modified Hamiltonian H(1) =
1
2 (p

2q2+

Ω2(log q)2) is isochronous.

Next we note that the collective coordinate Q(1) = 1
Ω tan−1

(

ΩQ
H

)

, confined to the

principal branch of the right hand side, is conjugate to the Hamiltonian H(1) which is

obtained using Theorem 1, and Eq.(0.3). Then we note the following theorem.

Theorem 2. Let H(1) − a(1) and Q(1) =
1
Ω tan−1

(

ΩQ
H

)

, where the latter is confined to the

principal branch of the arctan function, be the new momentum and the collective coordinates,

respectively, then the Ω(1)- modified Hamiltonian H(2) =
1
2 [(H(1)−a(1))

2+Ω2
(1)Q

2
(1)] also has

isochronous dynamics, where a(1) and Ω(1) are suitable arbitrary positive system parameters.
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Proof. From the nature of H(2), the solutions for H(1) − a(1) and Q(1) are written as

H(1) − a(1) = A(1) cos[Ω(1)t+ δ(1)], Q(1) =
A(1)

Ω(1)
sin[Ω(1)t+ δ(1)], (0.6)

where A(1) and δ(1) are arbitrary constants. Substituting equation (0.6) into the expressions

for H(1) (equation (0.5)) and Q(1) and inverting we get the solutions for H and Q in the

forms

H =
√

2a(1) + 2A(1) cos(Ω(1)t+ δ(1)) cos[
ΩA(1)

Ω(1)
sin(Ω(1)t+ δ(1))]

Q =
1

Ω

√

2a(1) + 2A(1) cos(Ω(1)t+ δ(1)) sin[
ΩA(1)

Ω(1)
sin(Ω(1)t+ δ(1))]. (0.7)

These solutions evolve periodically with period T = 2π/Ω(1), for a(1) > |A(1)| so that the

quantity inside the square root remain positive for all times. The expressions for p and q

can be obtained upon inverting H and Q. Now, as we already know that H and Q evolve

periodically, it is obvious that p and q must also evolve periodically with the same period,

namely T(1) = 2π/Ω(1), but in general different from T(0) = 2π/Ω.

From the above Theorem 2, one can identify recursively the Ω(i) modified Hamiltonian

from H(i+1) = 1
2 [(H(i) − a(i))

2 + Ω2
(i)Q

2
(i)], i = 0, 1, 2......n, where H(0) = H, Q(0) = Q,

Ω(0) = Ω, and a(0) = 0. Here H(i) − a(i) and Q(i) are the new momentum and its corre-

sponding canonically conjugate/collective coordinate, respectively. All the above systems

yield periodic solutions with period T(i) = 2π/Ω(i) and they can be deduced using the

relations,

H(i) = a(i) +
√

2H(i+1) cos[Ω(i)Q(i+1)], Q(i) =
1

Ω(i)
(
√

2H(i+1) sin[Ω(i)Q(i+1))], i = 0, 1, ...n

and also

H(n) = a(n) +A(n) cos[Ω(n)t+ δ(n)], Q(n) =
A(n)

Ω(n)
sin[Ω(n)t+ δ(n)]. (0.8)

Here A(n) and δ(n) are arbitrary constants, Ω(i) and a(i), i = 0, 1, 2......n, are

system (arbitrary) parameters. Note that for the solution to remain real, one has to impose

the condition ai−1 >
√

2(ai +Xi) = Xi−1 and a(n) > |An| = Xn, i = 1, 2, ...n. Using the

above periodic solutions, one can easily see that the canonical variables p and q also evolve

periodically with period Tn = 2π/Ω(n).

We now illustrate the above recursive procedure with an example.

Example:2

Let us consider the Hamiltonian H = png(q), where g(q) is an arbitrary function of q, for

which the Hamilton’s equations can be written as

q̇ =
∂H

∂p
= npn−1g(q), ṗ = −∂H

∂q
= −png′(q). (0.9)
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Here g′(q) = dg
dq . Note that the integration of the equation dp/dq = −pg′(q)/(ng(q)) (vide

equation (0.9)) gives the integration constant I = png(q) which is nothing but the Hamilto-

nian H. From the Hamiltonian we get p = (H/g(q))
1
n and substituting this expression into

the q̇ equation, we obtain

q̇ = n(H/g(q))
n−1
n g(q) = n(H)

n−1
n g(q)

1
n . (0.10)

Integrating (0.10) we get

I + t =
g(q)

1−n
n

npn−1

∫

g(q)−
1
n dq. (0.11)

Now the collective coordinate Q(p, q) is of the form

Q(p, q) =
g(q)

1−n
n

npn−1

∫

g(q)−
1
n dq, (0.12)

which is conjugate to the Hamiltonian, that is {H,Q} = 1. This is in conformity with

Theorem 1.

For simplicity let us consider the case n = 1 and g(q) = q. In this case the new momen-

tum and the collective coordinate are written as H = pq and Q = log(q). Substituting these

into the Ω - modified Hamiltonian H(1) given in (0.5) we get

H(1) =
1

2
((pq)2 +Ω2 log(q)2). (0.13)

Using the procedure given in [6, 7] or following our procedure given above the solution for

p and q now become

p(t) = A cos(Ωt+ δ)e−
A
Ω
sin(Ωt+δ), q(t) = e

A
Ω

sin(Ωt+δ) (0.14)

which are periodic with period T = 2π/Ω, so the system for p and q is isochronous.

Now consider the Ω - modified Hamiltonian H(1) − a(1) as the new momentum and

Q(1) =
1
Ω tan−1

(

ΩQ
H

)

as the collective coordinate in the Ω(1)- modified Hamiltonian H(2),

that is,

H(2) =
1

2

([

1

2
((pq)2 +Ω2 log(q)2)− a(1)

]2

+Ω2
(1)

[

1

Ω
tan−1

(

Ω log(q)

pq

)]2)

. (0.15)

Now we can obtain the solutions for p and q as

p(t) =
√

2a(1) + 2A(1) cos[Ω(1)t+ δ(1)] cos[
ΩA(1)

Ω(1)
sin(Ω(1)t+ δ(1))]/q(t),

q(t) = e
1
Ω

√
2a(1)+2A(1) cos[Ω(1)t+δ(1)] sin[

ΩA(1)
Ω(1)

sin(Ω(1)t+δ(1))]
. (0.16)

Choosing the arbitrary parameters such that a1 > |A1|, the system for p and q is isochronous

since the solution (0.16) is periodic with period T = 2π/Ω(1). This is in conformity with

Theorem 2.
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Then we may extended the above analysis to the Ω(2) modified Hamiltonian. In this

case H(2) − a(2) can be taken as the momentum and Q(2) =
1

Ω(1)
tan−1

(

Ω(1)Q(1)

H(1)−a(1)

)

as the

conjugate coordinate and therefore

H(3) =
1
2

[

Ω2
(2)

Ω2
(1)

tan−1[
2Ω(1) tan

−1[Ω log(q)
pq

]

Ω((pq)2+Ω2 log(q)2−2a(1))
]2 + 1

4

(

Ω2
(1)

Ω2 tan−1[Ω log(q)
pq ]2

−2a(2) +
1
4 ((pq)

2 +Ω2 log(q)2 − 2a(1))
2

)2]

. (0.17)

The solutions for p and q can now be written as

p(t) =

(√
2
√

a(1) + f(1) cos(f(2)) cos(f(3))

)

/q(t),

q(t) = e
1
Ω

√
2
√

a(1)+f(1) cos(f(2)) sin(f(3)), (0.18)

where f(1) =

(

2(a(2)+A(2) cos[Ω(2)t+ δ(2)])

)1/2

, f(2) = A(2)Ω(1) sin[Ω(2)t+ δ(2)]/(Ω(2)) and

f(3) = (Ω/Ω(1))f(1) sin[f(2)]. We assume here again that a2 > |A2| and a1 >
√

2(a2 +A2)

so that p and q are real. Here also the canonical variables p and q are periodic with period

T = 2π/Ω(2) confirming the isochronous character of the dynamics. Following a similar

analysis, one can generate more and more isochronous Hamiltonians.

To conclude, we have proposed a simple procedure to identify the collective coordinate

Q which is conjugate to the given Hamiltonian H in order to generate isochronous systems.

Using the known Hamiltonian H and collective coordinate Q, we have proved the possibility

of generating more and more isochronous oscillator systems recursively.

The work is supported by a Department of Science and Technology (DST), Government

of India, Ramanna Fellowship program and a DST–IRHPA research project, Government

of India.
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