
Long Path ProblemsJe�rey Horn, David E. Goldberg, and Kalyanmoy DebPREPRINT(camera-ready)as accepted for �nal publication inParallel Problem Solving from Nature{PPSN IIIInternational Conference on Evolutionary ComputationThe Third Conference on Parallel Problem Solving from NatureJerusalem, Israel, October 1994Proceedingsvolume 866 of Lecture Notes in Computer ScienceEdited by Y. Davidor, H.-P. Schwefel, and R. M�annerPublished by Springer-VerlagBerlin, Germany(pp. 149{158)cSpringer-Verlag Berlin-Heidelberg 1994This work is subject to copyright. All rights reserved, whether the whole or part ofthe material is concerned, speci�cally the rights of translation, reprinting, re-use ofillustrations, recitation, broadcasting, reproduction on micro�lms or in any other way,and storage in data banks. Duplication of this publication or parts thereof is permittedonly under the provisions of the German Copyright Law of September 9, 1965, in itscurrent version, and permission for use must always be obtained from Springer-Verlag.Violations are liable for prosecution under the German Copyright Law.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291576952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Long Path ProblemsJe�rey Horn1, David E. Goldberg1, and Kalyanmoy Deb2 ?1 Illinois Genetic Algorithms Laboratory, University of Illinois atUrbana-Champaign, 117 Transportation Building, 104 South Mathews Avenue,Urbana, IL 61801-2996, USA, (e-mail: je�horn@uiuc.edu, deg@uiuc.edu)2 Department of Mechanical Engineering, Indian Institute of Technology, Kanpur,UP, PIN 208016, India, (e-mail: deb@iitk.ernet.in)Abstract. We demonstrate the interesting, counter-intuitive result thatsimple paths to the global optimum can be so long that climbing thepath is intractable. This means that a unimodal search space, whichconsists of a single hill and in which each point in the space is on asimple path to the global optimum, can be di�cult for a hillclimber tooptimize. Various types of hillclimbing algorithms will make constantprogress toward the global optimum on such long path problems. Theywill continuously improve their best found solutions, and be guaranteedto reach the global optimum. Yet we cannot wait for them to arrive.Early experimental results indicate that a genetic algorithm (GA) withcrossover alone outperforms hillclimbers on one such long path problem.This suggests that GAs can climb hills faster than hillclimbers by ex-ploiting building blocks when they are present. Although these problemsare arti�cial, they introduce a new dimension of problem di�culty forevolutionary computation. Path length can be added to the ranks of mul-timodality, deception/misleadingness, noise, variance, etc., as a measureof �tness landscapes and their amenability to evolutionary optimization.1 IntroductionIn this paper we present a class of problems designed to be di�cult for random-ized search procedures that exploit local search space information. In particular,these problems challenge hillclimbers and mutation algorithms. The problemsare di�cult not because they contain local optima that capture the attention ofthe search procedure. Indeed, these problems are unimodal and \easy" in thesense that the simplest hillclimber will always �nd the global optimum, no mat-ter where in the space it starts searching. Rather, these problems are di�cult forhillclimbers because the only \path" up the hill to the global optimum is very? The �rst author acknowledges support by NASA under contract number NGT-50873.The second and third authors acknowledge the support provided by the US Armyunder Contract DASG60-90-C-0153 and by the National Science Foundation underGrant ECS-9022007. We thank Joseph Culberson for pointing us to the literatureon di�erence-preserving codes. Both Culberson and Greg J.E. Rawlins participatedin early discussions with the second author on hillclimbing hard problems.

2 (camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158)long and narrow. The length of the path grows exponentially with the size ofthe (binary) problem, `.Constructing hard problems for a class of algorithms is part of a recognizedmethodology for analyzing, understanding, and bounding complex algorithms.Three types of di�culties for hillclimbers are well-known [3]:- Isolation or needle-in-a-haystack (NIAH)- Full deception- MultimodalityAll three types of di�culties are also known to pose sti� challenges to geneticalgorithms (GAs), and have been used to understand GAs [2, 1].We propose a fourth type of problem that speci�cally targets the hillclimber'suse of local information. We construct a path that leads a hillclimber to theglobal optimum, but on a path that is so long that for large problems (`� 20)we simply cannot wait for the algorithm to terminate. We might sit and watchour hillclimber making constant progress for years on an 80-bit problem.We are motivated to construct and analyze these long path problems byseveral observations:- Computational di�culty of an apparently easy problem- Utility in analyzing hillclimbers and mutation algorithms- Possible distinguishing problem for GAs versus hillclimbers- Possible distinguishing problem for crossover versus mutationThese problems represent a dimension of di�culty that has been less obviousthan noise, deception, local optima, etc. Unimodal, and with every point on apath to the global optimum, these problems are still intractable for hillclimbersof bounded step size. They might also be intractable for various kinds of muta-tion algorithms, and for algorithms incorporating recombination, such as GAswith high crossover rates. If they do o�er as sti� a challenge to recombinativealgorithms as they do to hillclimbers (and apparently to mutation algorithmsas well), then we have found yet another class of GA-di�culty. If, on the otherhand, the recombinative GA can perform signi�cantly better (faster) on theseproblems than local-search procedures, then we have found a class of functionsthat distinguish these two types of algorithms. From this we can learn somethingabout their di�erent strengths and weaknesses relative to each other [6].2 De�nitions: Optima, Paths, and AlgorithmsWe use the paradigm of a �tness landscape, which consists of a search space, ametric, and a scalar �tness function f(s) de�ned over elements s of the searchspace S. Assuming the goal is to maximize �tness, we can imagine the globallybest solutions (the global optima, or \globals") as \peaks" in the search space.For the purposes of this paper, we de�ne local optimality as follows. We �rstassume a real-valued, scalar �tness function f(s) over �xed length `-bit binarystrings s, f(s) 2 <. Without loss of generality, we assume f is to be maximized.A local optimum in a discrete search space S is a point, or region, with �tnessfunction value strictly greater than those of all of its nearest neighbors. By

(camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158) 3\region" we mean a set of interconnected points of equal �tness. That is, wetreat as a single optimum the set of points related by the transitive closureof the nearest-neighbor relation such that all points are of equal �tness. Thisde�nition allows us to include at plateaus and ridges as single optima, and totreat a at �tness function as having no local optima. The \nearest neighbor"relation assumes a metric on the search space, call it d, where d(s1; s2) 2 < is themetric's distance between points s1 and s2. Then the nearest neighbors of a points0 are all points s 2 S; s 6= s0 such that d(s0; s) � k, for some neighborhood radiusk. In this paper we use only Hamming distance (number of bit positions at whichtwo binary strings di�er) as the metric, and assume k = 1. Thus a point s with�tness f(s) greater than that of all its immediate neighbors (strings di�eringfrom s in only one bit position) is a local optimum.Although the term \hillclimber" denotes a speci�c set of algorithms for someresearchers, we will use the term more loosely here to describe all algorithmsthat emphasize exploration of a local neighborhood around the current solution.In particular, we assume that our hillclimber explores a neighborhood of radiusk-bits much better than it explores outside that neighborhood. Therefore, ourhillclimber is much more likely to take \steps" of size � k than it is to takesteps > k. Examples of hillclimbers include steepest ascent [12], next ascent [4],and random mutation [10, 1, 8, 9]. GAs with high selective pressure and lowcrossover rates also exhibit strong local hillclimbing.A path P of step size k is a sequence of points pi such that any two pointsadjacent on the path are at most k-bits apart, and any two points not adjacenton the path are more than k-bits apart:8pi; pj 2 P; d(pi; pj)8<:� k; if ji� jj = 1> k; otherwise:where d(pi; pj) is the Hamming distance between the two points and pi is the ithpoint on the path P . Thus, our hillclimbing algorithm that takes steps of size� k would tend to follow the path without taking any \shortcuts". The step sizehere is important, because we want to lead the algorithm up the path, but tomake the path wind through the search space as much as possible, we will needto fold that path back many times. Earlier portions of the path may thus passquite closely to later portions, within k + 1 bits, so we must assume that ouralgorithm has a very small, if not zero, probability of taking steps of size > k.3 A Simple Construction: the Root2pathIn this section we construct a long path that is not optimally long, but doeshave length exponential in `, the size (order, or dimension) of the problem, andis simple in its construction. We call it the Root2path. Here we choose the smalleststep size k = 1 to illustrate the construction. Each point on the path must beexactly one bit di�erent from the point behind it and the point ahead of it, whilealso being at least two bits away from any other point on the path.

4 (camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158)The construction of the path is intuitive. If we have a Root2path of dimension`, call it P`, we can basically double it by moving up two dimensions to `+ 2 asfollows. Make two copies of P`, say copy00 and copy11. Prepend \00" to eachpoint in copy00, and \11" to each point in copy113. Now each point in copy00 isat least two bits di�erent from all points in copy11. Also, copy00 and copy11 areboth paths of step size one and of dimension ` + 2. Furthermore, the endpointof copy00 and the endpoint of copy11 di�er only in their �rst two bit positions(\00" versus \11"). By adding a bridge point that is the same as the endpointof copy00 but with \01" in the �rst two bit positions instead of \00", we canconnect the end of copy00 and the end of copy11. Reversing the sequence ofpoints in copy11, we concatenate copy00, the bridge point, and Reverse[copy11]to create the Root2path of dimension ` + 2, call it P`+2, and length essentiallytwice that of P`: jP`+2j = 2 jP`j+ 1 (1)As for the dimensions between the doublings, which are all of odd order, we cansimply use the path P` by adding a \0" to each point in P` to create P`+1. IfjP`j is exponentional in `, then jP`+1j is exponential in `+ 1.For the base case ` = 1, we have only two points in the search space: 0 and1. We put them both on the Root2path P1 = f0; 1g, where 0 is the beginningand 1 is the end (i.e., the global optimum).With every other incremental increase in dimension, we have an e�ectivedoubling of the path length. Solving the recurrence relation in Equation 1, withjP1j = jP2j = 2, we obtain the path length as a function of `:jP`j = 3 � 2b(`�1)=2c � 1: (2)Path length increases in proportion to 2`=2 or (p2)` and thus grows exponentiallyin ` with base � 1:414, an ever-decreasing fraction of the total space 2`.Since the path takes up only a small fraction of the search space for large`, the entire Root2path approaches a Needle-in-a-Haystack (NIAH) problem as` grows. We are interested in how long a hillclimber takes to climb a path, nothow long it takes to �nd it. We therefore slope the remainder of the search space(i.e., all points not on the Root2path) towards the beginning of the path. Theconstruction of the Root2path makes it easy to do this. Since the �rst pointon the path is the all-zeroes point, we assign �tness values to all points o� thepath according to a function of unitation4. The fewer ones in a string, the higherits �tness. Thus, most of the search space should lead the hillclimber to the all-zeroes point, in at most ` steps. We call this landscape feature the nilness5 slope.Together, the path P` and the nilness slope form a single hill, making the searchspace unimodal. A deterministic hillclimber, started anywhere in the space, isguaranteed to �nd the global optimum.3 Thus the point \001" in P3 becomes \00001" in copy00 and \11001" in copy11.4 The unitation u(s) of a string s is equal to the number of ones in s. For example,u(\0110110") = 4.5 The nilness of a string s is simply n(s) = `� u(s) (i.e., the number of zeroes in s).

(camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158) 5To �nd the total number of \steps" from the bottom of the hill (the all-onespoint) to the top (the global optimum), we add the \height" of the nilness slope,which is simply `, to the path length (Equation 2), and substract one for the allzeroes point, which is on both the path and the slope:Hill-Height(`) = 3 � 2b(`�1)=2c + `� 2 (3)The recursive construction of the Root2path is illustrative, but ine�cient for�tness evaluations in our simulations below. In Figure 1 we present pseudocodefor a much more e�cient decoding algorithm6. Note that the recursion in thepseudocode is (optimizable) tail recursion. The function HillPosition can beused directly as the objective �tness function for optimization (maximization)7.PathPosition[str] := CASE(str == "0") RETURN 0; /* First step on path. */(str == "1") RETURN 1; /* Second step on path. */(str == "00|rest-of-string") /* On 1st half of path. Recur. */RETURN PathPosition[rest-of-string];(str == "11|rest-of-string") /* On 2nd half of path. Recur. */RETURN 3*2^Floor[(Length[str]-1)/2] - 2 -PathPosition[rest-of-string];(str == "101" OR "1011|all-zeroes") /* At bridge pt. (halfway) */RETURN 3*2^(Floor[(Length(str)-1)/2] - 1) - 1);OTHERWISE RETURN false; /* str is NOT ON PATH. */HillPosition[str] := IF (PathPosition[str]) /* If str is on path, *//* return path position plus problem length (slope). */THEN RETURN PathPosition[str] + Length[str];ELSE RETURN Nilness[str]; /* Else return position on slope, *//* which is number of zeroes. */Fig. 1. The decoding algorithm for the Root2path function, k = 1.4 Simulation Results4.1 The Long Road for HillclimbersWe restrict ourselves to �ve simple algorithms, analyzed in [10]:- Steepest ascent hillclimber (SAHC)- Next ascent hillclimber (NAHC)- Fixed rate mutation algorithm (Mut)- Mutation with steepest ascent (Mut+SAHC)- Mutation with next ascent (Mut+NAHC)All �ve algorithms work with one point, s, at a time. The �rst point, s0, is chosen6 In the literature on coding theory, the development of such algorithms is an importantfollowup to the existence proofs and constructions of long paths [11].7 Note that the decoding algorithm assumes odd(`).

6 (camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158)randomly. Thereafter, sn+1 is found by looking at a neighborhood of sn. Withsteepest ascent, all of sn's neighbors are compared with sn. The point withinthat neighborhood that has the highest �tness becomes sn+1. If sn+1 = sn,then steepest ascent has converged to a local (perhaps global) optimum. Nextascent is similar to steepest ascent, the only di�erence being that next ascentcompares neighbors to sn in some �xed order, taking the �rst neighbor with�tness greater than sn to be sn+1. In our runs, we assume SAHC and NAHCexplore a neighborhood of radius one (step size k = 1).Mutation (Mut) ips each bit in sn with probability pm, independently. Theresulting string is compared with sn. If its �tness is greater, the mutated stringbecomes sn+1, otherwise sn does. M�uhlenbein [10], and other researchers, havefound that a bitwise mutation rate pm = 1=` is optimal for many classes ofproblems. The only mutation rate we use here is 1=`.The other two hillclimbing algorithms we run are combinations of muta-tion with steepest ascent (Mut+SAHC) and next ascent (Mut+NAHC). Thesecombinations are implemented by simply mutating sn, and allowing either nextascent or steepest ascent hillclimbing to explore the neighborhood around themutated string. The resulting string, either the originally mutated string or abetter neighbor, is then compared with sn for the choice of sn+1.We test on Root2paths of dimension ` = 1 to 20. We only consider paths ofstep size k = 1. In Figure 2, we plot the performance of the �ve hillclimbers. Foreach problem size `, we ran each algorithm at random starting points. The plot-ted points are averages over �ve runs. We measure performance as the numberof iterations (of the hillclimber's main update loop) required to reach the globaloptimum (i.e., the number of points in the sequence sn). Note that this is lessthan the number of �tness evaluations used. For example, since steepest ascentsearches a neighborhood of radius one everytime it updates sn, its number of�tness evaluations is ` times the number of iterations.As Figure 2 illustrates, at least three of the algorithms perform exponentiallyworse as ` increases. Mutation by itself tends to spend a long time �nding thenext step on the path. Steepest and next ascent tend to follow the path stepby step. Steepest ascent with mutation exhibits linear performance, however.The superiority of this hillclimbing variant is explained by its tendency to takesteps of size two. Mutation with pm = 1=` takes a single-bit step, in expectation.Steepest ascent then explores the immediate neighborhood around the mutatedpoint. Since the Root2path contains many shortcuts of step size two8, steepestascent with mutation is able to skip several large segments of the path.To force Mut+SAHC to stay on an exponentially long path, we clearly needpaths of greater step size. A simple way of building such a path is to extend theconstruction of the Root2path as follows. For a step size of k = 2, we shoulddouble the path every third increment in dimension. Thus we prepend \111" and\000" to copies of P` to get P`+3. We now have a path that grows in length inproportion to 2`=3. We could call these CubeRoot2paths. We can generalize tostep size k, to get paths that grow as 2`=(k+1), exponential in ` for k� `.8 For example, the beginning and end of the Root2path are only two bits apart!

(camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158) 7
Space
Size

Path
Length

0 5 10 15 20

200

400

600

800

1000

1200 Search

Problem Size

SAHC

Iterations

Mut

NAHC

Mut+SAHC

Mut+NAHC

Fig. 2. The performance of �ve hillclimbing algorithms as a function of the problemsize `. Performance is averaged over �ve runs.4.2 Crossover's SuccessIt is not obvious that the long path problems are amenable to recombinativesearch. From its inductive construction, it is clear that the Root2path has struc-ture. The same basic subsequences of steps are used over and over again on largerscales, resulting in fractal self-similarity. But we do not know if such structureinduces building blocks exploitable by crossover [5], as we have not yet applieda schema analysis to these functions. However, certain substrings such as \11"and \1011" (in certain positions) are common to many points on the path. Andour �rst results, summarized in Table 1, indicate that a GA with crossover aloneis an e�ective strategy for climbing long hills in a short time.In Table 1 we compare three hillclimbers to a GA on three di�erent sizeRoot2path problems (all with stepsize k = 1). The GA is a simple, generationalGA, using single point crossover with probability pc = 0:9, no mutation (pm =0), binary tournament selection, and the population sizes indicated in Table 1.Random mutation hill climbing (RMHC) is described in [1, 8, 9]. RMHC is likemutation-only (Mut) above, except that one and only one bit ip takes place.Thus, RMHC starts with a random string s0, and updates sn by randomlyipping one bit in sn to form s0n. If s0n is better than, or equal to sn, then s0nbecomes sn+1, otherwise sn becomes sn+1.In [1, 8, 9], the authors found that RMHC optimized Royal Road (RR)

8 (camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158)PERFORMANCE ON Root2path, stepsize k = 1Number of Functions Evaluations to Global Optimummean (std. dev.)problem sizealgorithm ` = 29 ` = 39 ` = 49SAHC 1,425,005 (789) >15,000,000 (0) >40,000,000 (0)NAHC 1,359,856 (247) >15,000,000 (0) >40,000,000 (0)RMHC 1,382,242 (112,335) >15,000,000 (0) >40,000,000 (0)GA (Xover only) 25,920 (5830) 75,150 (53,500) 151,740 (140,226)Pop. size 4000 5000 6000Height of Hill 49,179 1,572,901 50,331,695(path + slope) steps steps stepsTable 1. GA versus hillclimbers: results from 10 runs of each algorithm.functions faster than SAHC, NAHC, and the GA. On the Root2path problems,however, the GA9 seems to outperform the three hillclimbers, and RMHC ap-parently loses out to the deterministic10 hillclimbers. Comparing the long pathproblems to the RR functions is not within the scope of this paper11. But ourearly results pointing to superior performance by crossover might be of partic-ular interest to those looking at when GAs outperform hillclimbers [8, 9]. Oneanswer might be \on a hill" (at least, a certain kind of hill).5 Discussion5.1 Extension: Longer PathsIt is certainly possible to construct paths longer than the Root2path. A Fi-bonacci path of step size k = 1 is constructed inductively like the Root2path.Our inductive step goes as follows. Given a Fibonacci path F` of dimension `,and a Fibonacci path F`+1 of dimension `+1, we construct a path of dimension`+2 by skipping a dimension and then doubling F` as with the Root2path. Butrather than simply adding a single \bridge" point to connect the two copies of9 For the GA we estimate the number of �tness evaluations (to �nd the global) asnumgens � popsize � pc, where numgens is the number of generations until the globaloptimum �rst appears. If the GA prematurely converges (i.e., to a non-optimalpoint), it is restarted without resetting numgens. Thus numgens is cummulativeover multiple (unsuccessful) GA runs.10 SAHC and NAHC are deterministic in the sense that they are guaranteed to �ndthe global optimum of the Root2path within a maximum time. The GA and RMHC,on the other hand, are stochastic.11 It is interesting to note, however, that both landscapes are unimodal (by our de�ni-tion of local optimality).

(camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158) 9F`, we use the path F`�1 to connect them. We know we can use F`�1 to connectthe two copies of F` since F`+1 is composed of an F` path coupled with an F`�1path.The formal construction and inductive proof of existence of the Fibonaccipath will have to be postponed. The important result to mention here is thatthe Fibonacci path grows faster in length than the Root2path. The sequence ofFibonacci path lengths, obtained by incrementing `, is the Fibonacci sequence,f1,2,3,5,8,13,21,34,55,...g, since:jF`j = jF`�1j+ jF`�2jSolving the recurrence relation reveals exponential growth of � 1:61803`, whichhas the golden ratio as its base. This base is larger than the base � 1:414 in theexponential growth of the Root2path, but is still < 2. Thus, even the Fibonaccipaths will asymptotically approach zero percent of the search space.The problem of �nding a maximally long path with minimal separation hassome history, and is known as the \snake-in-the-box" problem, or the design ofdi�erence-preserving codes, in the literature on coding theory and combinatorics[7, 11]. Maximizing the length of paths with k-bits of separation is an openproblem, even for k = 1. However, upper bounds have been found that are< O(2`). Thus the longest paths we can ever �nd12 will be O(2`=c) for someconstant c > 1. For the Root2path, c = 2 for k = 1. For the Fibonacci path,c = 1=(Log2�) � 1:44042 when k = 1, where � is the golden ratio.5.2 Extension: Analysis of Expected PerformanceWe need both empirical and analytical results for expected performance of var-ious mutation algorithms and recombinative GAs. We wish to explore such ap-parent tradeo�s as step size k versus length of the path jP j. As k increases,jP j decreases exponentially in k, but the number of �tness evaluations requiredto e�ectively search a neighborhood of radius k increases exponentially in k. Asimilar tradeo� involves the mutation rate pm. As pm increases, the mutation-only algorithm is more likely to take a larger shortcut across the path, but itis also less likely to �nd the next step on the path. These kinds of tradeo�s,involving parameters of the search space design and the algorithms themselves,are amenable to analysis of expectation.5.3 ConclusionsLong path problems are clearly and demonstrably di�cult for local searchers(that is, algorithms that search small neighborhoods with high probability, and12 It is easy to show that maximum path lengths must be < 2`, at least for k � 3:divide the total volume of the search space by a volume v(k) that is a lower boundon the number of o�-path points that must \surround" each point on the path. Thisupper bound indicates that for k � 3, the optimal path length must approach zeroexponentially fast as ` increases. This means that for k � 3, the best growth in pathlength for which we can hope is x`, where x < 2.

10 (camera-ready preprint) PPSN III (1994) c1994 Springer-Verlag (pp. 149-158)larger neighborhoods with vanishingly small probability). Such algorithms in-clude hillclimbers and the GA's mutation operator. Surprisingly, some of these\intractable hills" can be solved e�ciently by GA crossover. The fact that theGA solves problems speci�cally contrived for hillclimbers lends support to ourintuition of GA robustness. Also able to solve long path problems of step sizek are hillclimbers of step size k0 > k. But long path problems of step size k0can be constructed to defeat such hillclimbers. The GA (with crossover) on theother hand might scale smoothly with increasing k. Such a result has impli-cations for hybrid algorithms that perform hillclimbing during or after regularGA search: the addition of hillclimbing to the GA could make an \easy" prob-lem intractable. Thus the long path problems reveal to us another dimensionof problem di�culty for evolutionary computation; a dimension along which wecan characterize, measure, and predict the performance of our algorithms.References1. Forrest, S., Mitchell, M.: Relative building-block �tness and the building-block hy-pothesis. In: L.D. Whitley (ed.): Foundations of Genetic Algorithms, 2. San Mateo,CA: Morgan Kaufmann (1993) 109{1262. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learn-ing. Reading, MA: Addison-Wesley (1989)3. Goldberg, D. E.: Making genetic algorithms y: a lesson from the Wright brothers.Advanced Technology for Developers. 2 February (1993) 1{84. Jones, T., Rawlins, G. J. E.: Reverse hillclimbing, genetic algorithms and the busybeaver problem. In: S. Forrest (ed.): Proceedings of the Fifth International Confer-ence on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann (1993) 70{755. Holland, J. H.: Adaptation in natural and arti�cial systems. Ann Arbor, MI: Uni-versity of Michigan Press (1975)6. Ho�meister, F., B�ack, T.: Genetic algorithms and evolutionary strategies: simi-larities and di�erences. Technical Report \Gr�une Reihe" No. 365. Department ofComputer Science, University of Dortmund. November (1990)7. MacWilliams, F. J., Sloane, N. J. A.: The Theory of Error Correcting Codes. Ams-terdam, New York: North-Holland (1977)8. Mitchell, M., Holland, J. H.: When will a genetic algorithm outperform hill climbing?In: S. Forrest (ed.): Proceedings of the Fifth International Conference on GeneticAlgorithms. San Mateo, CA: Morgan Kaufmann (1993) 6479. Mitchell, M., Holland, J. H., Forrest, S.: When will a genetic algorithm outperformhill climbing? Advances in Neural Information Processing Systems 6. San Mateo,CA: Morgan Kaufmann (to appear)10. M�uhlenbein, H.: How genetic algorithms really work, I. fundamentals. In: R.M�anner, B. Manderick (eds.): Parallel Problem Solving From Nature, 2. Amsterdam:North-Holland (1992) 15{2611. Preparata, F. P., Niervergelt, J.: Di�erence-preserving codes. IEEE Transactionson Information Theory. IT-20:5 (1974) 643{64912. Wilson, S. W.: GA-easy does not imply steepest-ascent optimizable. In: R.K.Belew, L.B. Booker (eds.): Proceedings of the Fourth International Conference onGenetic Algorithms. San Mateo, CA: Morgan Kaufmann (1991) 85{89

