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lassi
al limit of quantum spin systems 
orresponds to a dynami
al Lagrangian whi
h
ontains the usual kineti
 energy, the 
ouplings and intera
tions of the spins and an additional, �rstorder kinemati
al term whi
h 
orresponds to the Wess-Zumino-Novikov-Witten (WZNW) term forthe spin degree of freedom [1℄. It was shown that in the 
ase of the kineti
 dynami
s determined onlyby the WZNW term, half odd integer spin systems show a la
k of tunneling phenomena whereasinteger spin systems are subje
t to it [3℄ in the 
ase of potentials with easy-plane easy-axis symmetry.Here we prove, for the theory with a normal quadrati
 kineti
 term of arbitrary strength or the �rstorder theory with azimuthal symmetry (whi
h is equivalently the so-
alled easy-axis situation), thatthe tunneling is in fa
t suppressed for all non-zero values of spin. This model exempli�es the 
on
eptthat in the presen
e of 
omplex Eu
lidean a
tion, it is ne
essary to use the ensuing 
omplex 
riti
alpoints in order to de�ne the quantum (perturbation) theory [6℄. In the present example, if we do notdo so, exa
tly the opposite, erroneous 
on
lusion, that the tunneling is unsuppressed for all spins,is rea
hed.PACS numbers: 11.10.-z, 03.65.Xp, 73.40.GkSemi-
lassi
al spins - Semi
lassi
al spin systems aregoverned by an a
tion of the form
S =

∫

dt

(

I

2
∂tŝ · ∂tŝ− V (ŝ)

)

+ σ

∫

d2xǫij(ŝ · ∂iŝ× ∂j ŝ)(1)where ŝ ≡ (sin θ cosϕ, sin θ sinϕ, cos θ) is a three ve
torof unit norm, representing semi-
lassi
ally the quantumspin [1℄. This des
ription is valid for large value of thespin, whi
h is given by σ. The se
ond term is the so-
alledWess-Zumino-Novikov-Witten term [2℄, whi
h takes intoa

ount the fa
t that the original quantum spin satis�esthe algebra of the rotation group. σ the 
oe�
ient ofthe WZNW term is quantized to be a half integer, σ =
N/2. The WZNW term is de�ned by extending the spin
on�guration into an extra, auxiliary dimension. Thearbitrariness of the way to extend the �eld 
on�gurationinto the extra dimension makes the value of the WZNWterm ambiguous, however due to the topologi
al natureof the WZNW term, only dis
retely so. Thus quantizingthe 
oe�
ient allows for the a
tion to be well de�nedmodulo 2π. Classi
ally this is nonsense, but quantumme
hani
ally, where it is only the exponential of the itimes the a
tion that is meaningful, this yields a wellde�ned quantum me
hani
s. Bosoni
 spins 
orrespondto integer values of σ, i.e. N even, while fermioni
 spins
orrespond to half odd integer values, i.e. N odd.In this paper we 
onsider the spin system with ase
ond order kineti
 term in addition to the WZNWterm. For the 
ase of a potential with easy-axis, az-imuthal symmetry, with additionally a re�e
tion sym-metry (along the axis), we prove that in fa
t the tun-neling is suppressed for both bosoni
 and fermioni
 non-zero spin systems. Easy-axis re�e
tion symmetry means

V (θ, φ) ≡ V (θ) = V (π − θ), for example, the poten-tial V (ŝ) ≡ V (θ, φ) = 1
2γ sin2 θ. The potential is as-sumed to be su
h that we have two, identi
al, degen-erate 
lassi
al ground states, one 
entered at the northpole while the other at the south pole and 
orrespondingsemi-
lassi
ally des
ribed, perturbative, quantum groundstates. Normally it is expe
ted that there is quantumme
hani
al, non-perturbative tunneling between theseground states, usually making the symmetri
 
ombina-tion to be the true ground state while the anti-symmetri

ombination to be slightly lifted in energy. We will showboth semi-
lassi
ally and analyti
ally that this tunnelingdoes not o

ur and the two ground states remain exa
tlydegenerate. The only 
ase for whi
h tunneling persistsis for zero spin but his 
ase is a
tually out of the phys-i
al purview of the present analysis. Indeed the models
onsidered here des
ribe spin systems only in the large σlimit.It was shown in Ref. [3℄ for situations where the ki-neti
 dynami
s is determined only by the WZNW termand where there is assumed an easy-plane easy axis-symmetry in the potential giving rise to degenerate 
las-si
al ground states along one axis, that tunneling betweenthese ground states is suppressed for fermioni
 systemswhile for bosoni
 systems it is not. This 
on
lusion wasbased on the analysis of the 
ontribution of the WZNWterm. It gives an equal 
ontribution for the two paths
orresponding to instantons and anti-instantons in the
ase of bosoni
 spins, but an equal and opposite 
ontri-bution in the 
ase of fermioni
 spins. This analysis doesnot keep the quadrati
 kineti
 term as in Eq. (1). Astandard reason to spurn this term is that for low energydynami
s, the se
ond order term would give a negligible
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orre
tion to predi
tions from just the �rst order term.However, 
onsidering the a
tion based only on the �rstorder WZNW term, as done in Ref. [3℄), and applying itto our 
ase of easy-axis symmetry (in fa
t for a slightlygeneralized separable potential), we easily reprodu
e thesuppression of tunneling for all spins. The reason for thesuppression is di�erent in the two 
ases with or with-out the se
ond order term. Without the se
ond orderterm, there simply do not exist any instanton traje
to-ries that would mediate the tunneling. With the se
ondorder term, we �nd that even for arbitrarily small 
oef-�
ient I in Eq. (1) that although there is an instanton,the tunneling is suppressed be
ause it has in�nite a
tion.The system 
onsidered in this paper is an exemplarof the general situation of 
omplex a
tions with 
omplex
riti
al points [6℄, and one that is physi
ally and phe-nomenologi
ally relevant. The Eu
lidean Feynman pathintegral with imaginary terms in the a
tion, whi
h o
-
urs in the presen
e of t-violating intera
tions su
h asthe WZNW term, requires deformation of the path inte-gration 
ontour into the spa
e of 
omplexi�ed �eld 
on-�gurations, at least in order to de�ne the perturbationtheory. Perturbation theory is based on the idea of quan-tizing the Gaussian �u
tuations about the 
lassi
al 
rit-i
al points of the a
tion. For an a
tion with imaginaryterms, the 
riti
al point is generally attained only at 
om-plex values of the �eld variables. The 
ontour of pathintegration should be deformed so as to pass through the
omplex 
riti
al point in the dire
tion of steepest des
ent.Alternatively, it is proposed that it is adequate to 
on-sider only the real part of the a
tion to de�ne the measureof fun
tional integration, that the imaginary part onlygives a bounded phase fa
tor whi
h 
an be integratedagainst this measure. Although this is probably 
orre
t,it is in
orre
t to base the perturbation theory about the
riti
al points of the real part of the a
tion. Indeed, wewill show that for the spin system under 
onsideration,expanding about these abridged, real 
riti
al points erro-neously indi
ates that there is tunneling, whereas it 
anbe shown analyti
ally that there is in fa
t none.Complex path integral - Quantum me
hani
ally we 
an
al
ulate the matrix element, 
orresponding to the Eud-
lidean persisten
e amplitude in an eigenstate of angularposition |θ, ϕ〉

〈θ, ϕ| e
−βĤ

~ |θ, ϕ〉 =

∫

D(θ(τ), ϕ(τ))e−
1

~
SE (2)using the Eu
lidean path integral. SE is the Eu
lideana
tion obtained by analyti
ally 
ontinuing the Minkowskia
tion of Eq. (1) to imaginary time, t → −iτ . Thisyields a real positive de�nite term 
oming from the nor-mal, quadrati
 part of the a
tion, while the WZNW term,be
ause it is t-odd, remains imaginary:

SE =

∫

dτ

(

I

2
∂τ ŝ · ∂tτ ŝ+ V (ŝ)

)

−iσ

∫

d2xǫij(ŝ·∂iŝ×∂j ŝ).(3)

The matrix element on the LHS of Eq. (2) admits theexpansion in terms of energy eigenstates |Ei〉

〈θ, ϕ| e
−βĤ

~ |θ, ϕ〉 =
∑

i

e
−βEi

~ |〈θ, ϕ|Ei〉|
2. (4)In the 
ase with two degenerate 
lassi
al ground states,if there is tunneling, there will arise two low lying energylevels 
ontributing to the expansion in Eq. (4), whi
h
an be re
overed by evaluating the RHS of Eq. (2), inthe semi-
lassi
al approximation. In this approximation,the energy splitting is 
al
ulated to be proportional to

e−S0/~, the hallmark of a tunneling e�e
t, where S0 is thea
tion of the 
orresponding instanton. An instanton is a
lassi
al solution of the Eu
lidean equations of motionthat satis�es the appropriate boundary 
onditions. Wewill show that there exist no �nite a
tion instanton solu-tions to the Eu
lidean equation of motion 
oming fromthe a
tion Eq. (3). Thus we �nd that the amplitude fortunneling simply vanishes.The Eu
lidean equations of motion, be
ause of theimaginary WZNW term 
ontain i expli
itly, and as isgenerally expe
ted, their solution lies in the spa
e of 
om-plex 
on�gurations. In the 
ondensed matter literature,there does not seem to be any aversion to analyti
ally
ontinuing the 
ontour of path integration into the spa
eof 
omplex 
on�gurations, see for example [4℄. In theparti
le physi
s literature, typi
ally, only the real part ofthe a
tion is used to determine the 
riti
al points. Weemphati
ally assert that this gives the wrong result inthe 
ase at hand. In prin
iple, if the path integral 
an bedone exa
tly, it should not matter what point is used as a
enter point. However, if the path integral is done only ina Gaussian approximation about a 
enter point, then thetrue answer 
an be 
ompletely obs
ured. This is expli
-itly seen in the 
ase of monopoles in the Georgi-Glashowmodel, [5℄ and a general analysis in [6℄.Abridged, real 
riti
al points - If we put σ = 0, weobtain the a
tion 
orresponding to only the real part ofthe a
tion. Varying to �nd the 
riti
al point, we get
Iθ̈ − I sin θ cos θϕ̇2 −

∂V (θ)

∂θ
= 0 (5)

I sin2 θϕ̇ = l (6)where l is a 
onstant whi
h is obtained as an integral ofthe equations of motion sin
e ϕ is a 
y
li
al 
oordinateand where the overdot refers to a derivative with respe
tto Eu
lidean time τ . Eq. (5) determines θ(τ) after re-pla
ing for ϕ̇ from Eq. (6), whi
h then in turn servesto �x ϕ(τ). The se
ond term in Eq (5) serves as a 
en-trifugal barrier, prohibiting the spin to ever be at (departfrom) the north pole unless l = 0. Therefore this mustbe the 
ase for the instanton solution that we sear
h. Eq.(5) then is integrable, yielding
I

2
θ̇2 − V (θ) = const. = 0. (7)



3The 
onstant is �xed by the boundary 
ondition that at
τ = −∞, the traje
tory starts at the north pole with zerovelo
ity. Integrating to quadrature, assuming a re�e
tionsymmetri
 double well potential V (θ) = V (π − θ) withabsolute minima at the poles (normalized to zero) yields

∫ θ(τ)

π/2

dθ

√

I

2V (θ)
= τ − τ0. (8)The a
tion for the traje
tory is simply 
al
ulated to be

S0 =

∫

dτ

(

I

2
θ̇2 + V (θ)

)

=

∫ π

0

dθ
√

2IV (θ) (9)using Eq. (5), and whi
h is evidently �nite. The 
ontri-bution of the WZNW term to su
h a traje
tory is stri
tlyzero, sin
e ϕ̇ = 0, and hen
e we are led to the 
on
lusionthat there is no suppression of tunneling. This 
on
lu-sion, as we will show, is entirely in
orre
t.Full, 
omplex 
riti
al points - In the 
ase at hand, the
riti
al points of the full a
tion satisfy the equations ofmotion:
Iθ̈ − I sin θ cos θϕ̇2 −

∂V (θ)

∂θ
+ iσ sin θϕ̇ = 0 (10)

I
d

dτ

(

sin2 θϕ̇
)

− iσ sin θθ̇ = 0 (11)Noti
e the expli
it i in the equations, whi
h prohibits asolution with real values for both θ and ϕ. The se
ondequation integrates immediately, analogous to the 
on-servation of azimuthal angular momentum,
d

dτ

(

I sin2 θϕ̇+ iσ cos θ
)

= 0 (12)yielding
I sin2 θϕ̇+ iσ cos θ = il (13)where we have anti
ipated that a solution requires imag-inary �eld variables and repla
ed l → il. We note that ϕis 
ompletely imaginary while θ remains real. Repla
ingfrom Eq. (13) into Eq. (11) and integrating on
e yields

I

2
θ̇2 −

1

2

(l − σ cos θ)2

I sin2 θ
− V (θ) = S (14)where S is a 
onstant. We 
an see dire
tly that the in-stanton 
orresponds to motion in minus the e�e
tive po-tential

Veff.(θ) =
1

2

(l − σ cos θ)2

I sin2 θ
+ V (θ) (15)that is in general divergent at both θ = 0 and θ = π. V (θ)is assumed to be a well behaved potential with symmetri
minima at the north and south poles. We 
an adjust

l = σ, whi
h removes the divergen
e at the north pole,or l = −σ whi
h removes it at the south pole, but it

is not possible to remove the divergen
e at both polessimultaneously. We let the reader verify that for l =
σ, any traje
tory whi
h starts with zero velo
ity at thenorth pole at τ = −∞, moves with in�nite velo
ity atthe south pole at a �nite time. It is easy to see that su
ha traje
tory has in�nite Eu
lidean a
tion. The boundary
ondition that θ, θ̇ → 0 as τ → −∞ implies that theintegration 
onstant S = 0. Then
S0 =

∫

dτ

(

I

2
θ̇2 + Veff.(θ)

)

=

∫ π

0

dθ
√

2IVeff.(θ)

=

∫ π

0

dθ
√

σ2 tan2 (θ/2) + 2IV (θ) = ∞ (16)sin
e the integral diverges at the south pole θ = π. Thus
e−S0/~ = 0 and tunneling is suppressed for all σ, i.e.for all spins. We see that it is 
ru
ial to 
onsider the
omplex 
riti
al points of the full a
tion in order not toget a misleading, erroneous 
on
lusion.Quantum me
hani
al system - Our result 
an be 
on-�rmed by looking at the 
orresponding S
hrödinger quan-tum me
hani
al system, where it is easy to see, in
on-trovertibly, that tunneling is suppressed for all non-zerovalues of the spin σ. The Lagrangian in Eq. (1), al-though 
on
eived as to des
ribe a semi
lassi
al spin, 
anbe equally well thought of as the Lagrangian that de-termines the dynami
s of a 
harged parti
le on a two-sphere that is subje
t to the magneti
 �eld of a magneti
monopole lo
ated at the 
enter of the sphere. Evidentlythe ele
tri
 �eld due to the 
harged parti
le itself is nottaken into a

ount, sin
e it is topologi
ally impossible tohave net 
harge on a 
ompa
t manifold su
h as a sphere.Suppression of tunneling would imply that the groundstate of this system is degenerate even in the presen
e ofan easy axis, re�e
tion symmetri
 potential.The S
hrödinger des
ription of the quantum systemof Eq. (2) 
orresponds to the transverse (spheri
al)Lapla
ian in the presen
e of a gauge �eld of a magneti
monopole at the 
enter of the sphere

(

−
~

2

2I

(

ŝ× (~∇− iσ ~A±)
)2

+ V (θ)

)

Ψ± = EΨ± (17)where the gauge �eld is a
tually a 
onnexion on a non-trivial �bre bundle. Aθ = 0 and the azimuthal 
ompo-nent of the gauge �eld is given by
Aϕ =

{

A+
ϕ = σ(1 − cos θ)/ sin θ θ ∈ [0, π)

A−
ϕ = −σ(1 + cos θ)/ sin θ θ ∈ (0, π]

(18)where A+
ϕ is related to A−

ϕ by a gauge transformation
U(ϕ) = ei2σϕ, on the domain where they are both de-�ned, θ ∈ (0, π). The eigense
tions of this problem in theabsen
e of the potential are well studied, in the seminalpaper of Wu and Yang, [7℄, where the monopole harmon-i
s are de�ned as se
tions of the asso
iated ve
tor bundle,and they are analog to the usual spheri
al harmoni
s (no-tationally, our σ 
orresponds to their q). We 
an expand



4our solution in terms of the monopole harmoni
s for �xed
m, sin
e our problem has azimuthal symmetry
Ψ±

n,m =

{

∑

l≥|m| ψn,l,mΘn,l,m(θ)ei(m+σ)ϕ θ ∈ [0, π)
∑

l≥|m| ψn,l,mΘn,l,m(θ)ei(m−σ)ϕ θ ∈ (0, π]

≡

{

ψn,m(θ)ei(m+σ)ϕ θ ∈ [0, π)

ψn,m(θ)ei(m−σ)ϕ θ ∈ (0, π]
(19)where l = |σ|, |σ| + 1, · · · while m = −l,−l + 1, · · · , l.Then in ψn,m(θ) the only vestige of the monopole thatremains is that m is a half odd integer for fermioni
 spinwhile it is an integer for bosoni
 spin. ψn,m(θ) satis�esthe equation

(

−
~

2

2I

(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

(m+ σ cos θ)2

sin2 θ

))

ψn,m(θ)

+V (θ)ψn,m(θ) = En,mψn,m(θ). (20)This equation has a doubly degenerate spe
trum due tothe assumed re�e
tion symmetry of the potential, V (θ) =
V (π−θ). The repla
ementm→ −m, θ → π−θ yields thesame equation. Evidently for fermioni
 spins, all levelsare doubly degenerate, i.e. espe
ially the ground state.For bosons, the state m = 0 is not paired, however, theground state is a
hieved for m = ±σ. If m 6= ±σ thespin must stay away from both poles where the e�e
-tive potential (m+σ cos θ)2

sin2 θ
diverges, whi
h for
es it intoregions where the potential V (θ) is non-vanishing and
orrespondingly lifts the energy. For m = ±σ the e�e
-tive potential diverges at only one of the poles, and thewave fun
tion is lo
alized at the opposite pole, givingrise to the doubly degenerate ground states. The groundstate being doubly degenerate implies the absen
e of tun-neling.First order theory - We 
an 
onsider our system whenonly the �rst order term is 
onsidered, to show that therealso the tunneling is suppressed for all spins. The 
or-responding Eu
lidean a
tion is just obtained from Equ.(3) by putting I = 0 giving the 
orresponding equationsof motion:

−
∂V (θ)

∂θ
+ iσ sin θϕ̇ = 0 (21)
−iσ sin θθ̇ = 0 (22)Multiplying the �rst by θ̇, the se
ond by ϕ̇ and adding thetwo yields simply −∂V (θ)

∂θ θ̇ = 0 i.e. V (θ) = const. = 0.This is just a spe
ial 
ase of the general result, that the
onserved Hamiltonian for a Lagrangian theory that is�rst order, is just given by the potential. In generalwe �nd that the 
onserved energy is just V (θ, ϕ) = 0(where we have normalized the potential so that it van-ishes at the initial point, and hen
e always). Thusany instanton must satisfy this 
onstraint. The instan-tons of Refs. [3℄ and [4℄ 
an be easily reprodu
ed us-ing this analysis. For the easy-axis 
ase that we study

here, V (θ, ϕ) → V (θ) = 0, there simply are no solu-tions. We 
an even allow for the possibility of solutionsthrough 
omplex �eld variables, θ → θ+ iξ, however, theequation V (θ + iξ) = 0 still a�ords no solutions sin
e
V (θ + iξ) = u(θ, ξ) + iv(θ, ξ) = 0 requires u(θ, ξ) = 0and v(θ, ξ) = 0. But these are harmoni
 fun
tions, thereal and imaginary parts of a holomorphi
 fun
tion. Thelevel 
urves of u(θ, ξ) are the paths of steepest des
ent of
v(θ, ξ) and vi
e versa. It is impossible that both of themremain 
onstant along any path. An evident generaliza-tion to the 
ase V (θ, ϕ) = V (θ)U(ϕ) is left to the reader,where the same 
on
lusions 
an be drawn. Thus in the�rst order theory, the tunneling is suppressed for all spinsfor the simple reason that there are no instantons.Con
lusions - We have shown that there is suppres-sion of quantum tunneling for both fermioni
 and bosoni
spin systems in the 
ase of easy-axis, azimuthally and re-�e
tion symmetri
 quantum spin systems. We have alsoshown that it is absolutely 
ru
ial to take into a

ount
omplex 
riti
al points of the Eu
lidean a
tion when theMinkowski a
tion 
ontains t-odd terms. In the present
ase, this leads to suppression of tunneling of ma
ros
opi
spin systems. The experimental veri�
ation of our resultsshould be interesting.A
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