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Quantum modes on chaotic motion: Analytically exact results
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We discover a class of chaotic quantum systems for which we obtain some analytically exact eigenfunctions
in closed form. These results have been possible due to connections shown between random matrix models,
many-body theories, and dynamical systems. We believe that these results and connections will pave the way
to a better understanding of quantum chaos.
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I. INTRODUCTION

Even as we understand for long that the world is quan
and buried in it is classical dynamics that is chaotic, find
eigenfunctions analytically from the the Schro¨dinger equa-
tion has turned out to be a near impossibility. Chaotic beh
ior @1,2# is characterized by the existence of positi
Lyapunov exponents, which determine the rate of expon
tial separation of very close trajectories in the phase spac
the system. Upon casting the chaotic systems in a quan
mechanical framework, impressions of chaos are found
variety of statistical properties of energy levels and eig
functions @3–5#. The fluctuation properties of energy lev
sequences of chaotic quantum systems agree very well
the results in random matrix theory@6#.

Eigenfunctions and eigenvalues contain all the inform
tion about a time-independent quantum system. Cha
eigenfunctions have been studied in detail and there are
main ideas around which the general understanding
evolved. According to Berry@7#, for chaotic systems, eigen
functions corresponding to excited states are conjecture
be well represented as a random superposition of p
waves. This conjecture has a lot of numerical support on
hand, and, is connected to statistical mechanics on the o
@8,9#. The other idea ensues from Heller’s discovery@10,11#
of scarring of eigenfunctions by periodic orbits, where t
probability density is considerably enhanced on the perio
orbit in configuration or phase space. This discovery
helped in understanding how classical periodic orbits fo
the underlying fabric for quantum states, and it helps in
preciating the beautiful nodal patterns and contour plots
chaotic eigenfunctions. Nevertheless, an analytical exp
sion is not obtained, and, Berry’s conjecture~which is statis-
tical in nature! does not help in seeing how coefficients in t
superposition arrange for striking patterns. Clearly, these
main ideas are not in mutual conflict.

Random matrix theory is connected in a ‘‘magical’’ wa
to several other topics in physics and mathematics, includ
complex quantum systems, Riemann zeta function, exa
solvable many-body problems, partial differential equatio
and the Riemann-Hilbert problem@12,13#. These different
areas are related to each other by the universal statis
properties of sequences characterizing them, such as en
levels of nuclei and chaotic quantum systems, zeros of
1063-651X/2002/66~1!/016216~5!/$20.00 66 0162
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Riemann zeta function, and eigenvalues of transfer matr
of disordered conductors. Moreover, joint probability dist
bution function~JPDF! of eigenvalues of random matrices
given by a statistical mechanics problem involving partic
with Coulomb-like interactions@14#. The JPDF gives the
probability with which eigenvalues$Ei% are found in inter-
vals @Ei ,Ei1dEi #; all the correlation functions giving vari
ous physical quantities follow from this. These problems b
long to the general class of exactly solvable statisti
mechanics models. In turn, these models may be conve
to problems in Hamiltonian dynamics where one can stu
the classical and quantal aspects.

In this paper, we extend these connections to another c
of random matrix models developed to explain intermedi
statistics found in pseudointegrable systems, the Ander
model in three dimensions at the metal-insulator transit
point and in certain problems in atomic physics@15–18,29#.
The sequences involved in these systems exhibit a beha
intermediate to regular and chaotic. Once again, the eig
value distribution of such random matrices is related to
exactly solvable statistical mechanics model where the in
action is a screened Coulomb-like along with an additio
three-body term@19,20#. Here, the above-mentioned mod
is mapped into a problem in Hamiltonian dynamics ind di-
mensions, which is shown to display chaos. Thus, the exa
solved many-body problem is nonintegrable in the sense
there are lesser number of constants of the motion than
degrees of freedom. Quantum mechanically, thus, cha
eigenfunctions are found analytically even though the und
lying classical dynamics at the same energies is chaotic.

For quantum cat maps~toral automorphisms!, analytical
form for the eigenfunctions is known@21–22#, where the
solutions were possible because the semiclassical stu
turned out to be exact.

For bringing out the connections clearly for the reader,
divide the arguments into short sections.

II. FROM A MANY-BODY PROBLEM TO
A ONE-BODY PROBLEM

In 1999, a many-body problem in one dimension was d
covered@19,23# where the nearest neighbors interact via
repulsive interaction that is inverse square in distance
tween the particles and an attractive three-body interact
©2002 The American Physical Society16-1
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SUDHIR R. JAIN, BENOIˆT GRÉMAUD, AND AVINASH KHARE PHYSICAL REVIEW E 66, 016216 ~2002!
also inverse-square in position coordinates of the partic
The N-particle problem on a circle has the Hamiltonian

H5(
i 51

N pi
2

2m
1g

p2

L2 (
i 51

N

sin22FpL ~xi2xi 11!G
2G

p2

L2 (
i 51

N

cotFpL ~xi 212xi !GcotFpL ~xi2xi 11!G ,
~1!

with xj5xN1 j . In the rest of this paper, we will take th
mass as unity and the circumferenceL5p, for notational
simplicity. The potential is singular wheneverxj 115xj
1np (n being an integer! with an inverse-square singularity
This leads to disconnected domains where the wave fu
tions are zero at singular~hyper!planes in the quantum prob
lem. We choose the domain in which the particles are
dered asx1<x2<•••<x11p. The center-of-mass~c.m.!
motion can be separated in this case by writing the am
tudes of the motion of particles around the c.m.,X
5(1/N)( i 51

N xi in terms of normal mode coordinates@24#.
Thus, we can write the positions asxj5X1yj , andyj ’s as

yj52
p

2
1S j 2

1

2D p

N
1

1

AN
qMcos~p j !

1S 2

ND 1/2

(
n51

M21 FqncosS 2pn j

N D2q2nsinS 2pn j

N D G ~2!

for evenN (M5N/2); and for oddN, without the last term
on the right hand side and summation going upton5M . The
quantum Hamiltonian operator transforms to

H5Hc.m.~X!1Hbilliard~$qn%!

52
1

2N

]2

]X2
2

1

2 (
n

M
]2

]qn
2

1(
j 51

N

W@yj~$qn%!#, ~3!

whereW@yj ($qn%)# is the potential term in Eq.~1!. Note that
n561,62, . . . ,6M for odd N while n561,62, . . . ,
6(M21),M for even N. Thus,Hbilliard represents a single
particle in an (N21)-dimensional domain bounded by th
~hyper!planes where potential becomes singular forcing
the wave functions to be zero on the boundaries of the
main. This gives us a class of billiards as a function ofb
@defined throughG5b2 andg5b(b21)# and from dimen-
sions two to (N21). A similar connection was realized b
Rey and Choquard@24# when they considered the Caloger
Sutherland-Moser~CSM! system and showed that th
N-body problem in this case is mapped to an integrable
liard problem in (N21) dimensions. It is interesting to not
that the CSM and our model coincide for three particles
nearest neighbors are all the neighbors and the cotan
term is unity owing to a trigonometric identity. Unlike this
and most interestingly, our many-body problem leads to n
integrable billiards for particles greater than three and hen
billiards of dimension greater than two. We now turn to sh
01621
s.
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that for N.3, our billiard models are, in fact, chaotic. Th
also implies nonintegrability of the many-body problem.

III. FAMILY OF CLASSICAL BILLIARDS

For the sake of concreteness, we concentrate our dis
sion onN54, leading to a three-dimensional~3D! billiard.
Equations of motion are singular each time a collision occ
~involving 2, 3, or 4 particles!, but two-particle collisions are
forbidden by energy conservation, giving rise to smooth
tegration using standard Runge-Kutta method, until o
reaches a multiple collision@25#. Preliminary studies show
that regularization of the classical motion near these co
sions could be done, but its exact implementation has
been achieved yet. Nevertheless, we believe that this p
lem does not alter results presented here. For each trajec
we have also computed the associated monodromy matriM
~whose symplectic structure is used as a relevant test!, allow-
ing us to extract evidence of chaotic behavior in our syste
For this, we have computed the ‘‘Lyapunov exponent
l̃(T)5 ln(uM(T)•e0u) using three different vectors:e0

i , e0
' ,

and e0
r , which are, respectively, unit vector parallel to th

flow at an initial time, unit vector perpendicular to the ener
shell at an initial time and a ‘‘random’’ unit vector, namel
1/A6(1,1,1,1,1,1).l̃ i(T), being equal to lnuẊ(T)u/uẊ(0)u, is
bounded entailing thereby a vanishing Lyapunov expone
providing a reference scale for further numerical estimat
of nonvanishing Lyapunov exponent. Forb52, at classical
energy equal to the quantum ground state energye054b2

@see Eq.~5!#, and initial conditions,

S q1~0!

q21~0!

q2~0!
D 5S 0.1

0.2

0.0
D S p1~0!

p21~0!

p2~0!
D 5S 1.0000

2.0000

5.1844
D , ~4!

results on Lyapunov exponents are plotted in Fig. 1. As
pected, behavior ofl̃ i(T) is substantially different from

FIG. 1. l̃ i(T)5 ln(uM(T)•ei u), for i 5i ~continuous line!,' ~dot-
ted line!, and r~dashed line!, for b52 ~see text for definition and

initial conditions!. As expected,l̃ i(T) is bounded, whereasl̃'(T)

and l̃ r(T) show linear behavior, emphasizing presence of h
chaos in the system.
6-2
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those ofl̃'(T) andl̃ r(T), emphasizing thus the presence
hard chaos in the system, with Lyapunov exponent,l;6
@26#.

A more appealing evidence of hard chaos is obtained
plotting Poincare´ surface of sections~PSOS!. For a generic
3D time-independent system, their dimensionality~4D!
makes them quite useless for visualizing. Fortunately, in
case, symmetry properties of the Hamiltonian, viz., inva
ance underq1↔q21 exchange allows us to consider the r
duced phase space made of trajectories for whichq15q21
and p15p21 at any time, leading thus to an effective 2
system. Figure 2 depicts, forb52, the reduced PSOS de
fined by q250, at different energies :Ea5e0516 @ground
state energy, see Eq.~5!#, Eb5e1525.5, Ec5eN536 @see
text following Eqs.~7!–~8!#, andEd5100.

The empty areas appearing on all these plots corresp
to trajectories having a four-body collision in their past, th
has been checked by propagating the corresponding in
conditions backward in time@27#. Nevertheless the system
appears to be fully chaotic in the reduced phase space, w
is emphasized by the fact that all periodic orbits of the
duced dynamics are unstable~i.e., nontrivial eigenvalues o
the monodromy matrix are not on the unit circle!. Actually
these orbits are also unstable when considered in the
phase space. Moreover, there are also unstable periodi
bits not belonging to the reduced phase space. We have
found unstable periodic orbits for which the four nontrivi
eigenvalues of the monodromy matrix form a quadrup
(L,L* ,L21,L21* ), L being complex.

b52 is not a special value, we have checked that
results presented here also hold for other valuesb.1.

IV. FAMILY OF QUANTUM BILLIARDS

We shall now use the known exact energy eigenstates@28#
of the newly discoveredN-body Hamiltonian~1! and obtain
few energy eigenvalues and eigenfunctions of the co
sponding (N21)-dimensional billiard. The billiard eigen
functions are obtained by eliminating the center-of-mass
pendence while the eigenvalues are determined

FIG. 2. Reduced PSOS defined byq250, at different energies
Ea5e0516 @ground state energy, see Eqs.~5!#, Eb5e1525.5, Ec

5eN536, andEd5100. The reduced dynamics is clearly chaot
~See text for discussion about areas appearing in the PSOS.!
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subtracting off the center-of-mass energy.
Let Ek ,ck denote the energy eigenvalues and eigenfu

tions of theN-body problem~1! with periodic boundary con-
ditions, i.e., Hck5Ekck . Then the exact ground state
given by @19,23#

c05)
j

N

usin~xj2xj 11!ub, E05Nb2, ~5!

providedg,G are related byg5b(b21),G5b2.
In addition to the ground state, a few of the excited ene

eigenstates have also been obtained in this case@28# and are
given by (ck5c0fk),

f15e1 , E15E01214b,

fN215eN21 , EN215E012N2214b,

fN5e1eN2
N

112b
eN , EN5E012N1418b. ~6!

Here ej ( j 51,2, . . . ,N) is an elementary symmetric func
tion of order j in the variablezj . For examplee25z1z2
1z1z31••• ~containing N(N21)/2 terms! and zj
5exp(2ixj). Note thatfk is an eigenfunction of the momen
tum operator with eigenvaluek @30#. Following the treatment
in Ref. @24#, it is easily shown that if the billiard Hamiltonian
satisfies the eigenvalue equationHBxk5ekxk , then the ei-

.

FIG. 3. Contour plots of excited states of the system withb
52 and energies~a! E 5 812.5 and~b! 813.4 in theq21-q1 plane.
6-3
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genvaluesek and the eigenfunctionsxk are related toEk ,ck
by xk5exp(22ikX)ck with ek5Ek2(2k/N). Finally, we
then obtain the following excited eigenvalues and eigenfu
tions for the (N21) billiard

x1c5c0Fcos
2

N
~@N21#x12•••2xN!1cyc.G , ~7!

xN5c0 (
i , j 51

N

cos 2~xi2xj !1
Nb

112b
, ~8!

whereE0 is as given in Eq.~5!, and cyc. is an abbreviatio
for ‘‘cyclic permutations.’’ In Eq. ~7!, x1s is obtained by
replacing cos by sin. The eigenvalues corresponding to
eigenfunctions written above are, respectively,e1c5e1s
5E014b122(2/N), and,eN5E018b14. Note that even
thoughxN is N dependent, the energy differenceeN2E0 is N
independent.

These expressions constitute the main result of the pa
The classical dynamics at energy equal to the energy ei
values of the eigenfunctions is chaotic, yet the eigenfu
tions are analytically expressible and are not a random
perposition of plane waves. However, sinceb can assume
any value, the functions could be quite complicated,
comprehensible. Thus, Berry’s conjecture would be exp
edly true for highly excited chaotic states, and not for chao
states in general. We show here some excited states as

FIG. 4. The squared modulus of the excited state eigenfunc
at energyE5812.5 suggests some scaling properties.
cs
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tour plots inq21-q1 plane@Figs. 3~a! and 3~b!# at energies
812.5 and 813.4. Surprisingly, these eigenfunctions do
seem to be random; in fact, the square of the modulus of
eigenfunctions do suggest some scaling properties~Fig. 4!.
Whether these could be fractals is a subject of an ongo
investigation. The recent work@31# on quantum fractals may
be useful in this context. In Fig. 5, the Poincare´ surfaces of
section show classically chaotic motion at the energies c
responding to the excited states.

We believe that chaos in quantum wave function, even
low energies, would show up as the system evolves.
time-dependent wave function, written as a superposition
eigenfunctions, has coefficients displaying chaos. Th
eigenfunctions form an invariant set in quantum theo
much in the same way as periodic orbits and fixed points
in classical theory. The most important evidence is shown
Heller’s discovery of scars. Thus, we state—scarring of wa
functions on periodic orbits is a reminder of the classical f
that on its way, an arbitrary trajectory is shadowed by pe
odic orbits.

It is worth noting that the existence of Bose-Einstein co
densation in a related one-dimensional many-body prob
at zero temperature is proved recently@20#. To prove the
existence of a Bose-Einstein condensate in one dimensio
nonzero temperatures, we need the excited states. Thus
development presented here is of importance to the gen
theory of quantum phase transitions also.
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