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Quantum modes on chaotic motion: Analytically exact results
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We discover a class of chaotic quantum systems for which we obtain some analytically exact eigenfunctions
in closed form. These results have been possible due to connections shown between random matrix models,
many-body theories, and dynamical systems. We believe that these results and connections will pave the way
to a better understanding of quantum chaos.
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I. INTRODUCTION Riemann zeta function, and eigenvalues of transfer matrices
of disordered conductors. Moreover, joint probability distri-
Even as we understand for long that the world is quantabution function(JPDB of eigenvalues of random matrices is
and buried in it is classical dynamics that is chaotic, findinggiven by a statistical mechanics problem involving particles
eigenfunctions analytically from the the Sctinger equa- With Coulomb-like interactiong14]. The JPDF gives the
tion has turned out to be a near impossibility. Chaotic behavProbability with which eigenvalue$g;} are found in inter-
ior [1,2] is characterized by the existence of positiveVvals[E;,Ei+dE]; all the correlation functions giving vari-
Lyapunov exponents, which determine the rate of exponerPus physical quantities follow from this. These problems be-
tial separation of very close trajectories in the phase space ¢#ng to the general class of exactly solvable statistical
the system. Upon casting the chaotic systems in a quantufiechanics models. In turn, these models may be converted
mechanical framework, impressions of chaos are found if© pProblems in Hamiltonian dynamics where one can study
variety of statistical properties of energy levels and eigenihe classical and quantal aspects.
functions[3-5]. The fluctuation properties of energy level  In this paper, we extend these connections to another class

sequences of chaotic quantum systems agree very well witpf random matrix models developed to explain intermediate
the results in random matrix theof§]. statistics found in pseudointegrable systems, the Anderson

Eigenfunctions and eigenvalues contain all the informamodel in three dimensions at the metal-insulator transition

tion about a time-independent quantum system. Chaotioint and in certain problems in atomic physjd$-18,29.
eigenfunctions have been studied in detail and there are twbhe sequences involved in these systems exhibit a behavior
main ideas around which the general understanding hd§termediate to regular and chaotic. Once again, the eigen-
evolved. According to Berrﬂ?], for chaotic SystemS, eigen- value distribution of such random matrices is related to an
functions Corresponding to excited states are Conjectured @xactly solvable statistical mechanics model where the inter-
be well represented as a random superposition of p|anéCti0n is a screened Coulomb-like along with an additional
waves. This conjecture has a lot of numerical support on ontree-body tern{19,2Q. Here, the above-mentioned model
hand, and, is connected to statistical mechanics on the oth& mapped into a problem in Hamiltonian dynamicsdiai-
[8,9]. The other idea ensues from Heller's discovEt®,11] mensions, which is shown to display chaos. Thus, the exactly
of scarring of eigenfunctions by periodic orbits, where thesolved many-body problem is nonintegrable in the sense that
probability density is considerably enhanced on the periodi¢here are lesser number of constants of the motion than the
orbit in configuration or phase space. This discovery haslegrees of freedom. Quantum mechanically, thus, chaotic
helped in understanding how classical periodic orbits fornigenfunctions are found analytically even though the under-
the underlying fabric for quantum states, and it helps in aplying classical dynamics at the same energies is chaotic.
preciating the beautiful nodal patterns and contour plots of For quantum cat mapforal automorphisms analytical
chaotic eigenfunctions. Nevertheless, an analytical expredorm for the eigenfunctions is know[21-22, where the
sion is not obtained, and, Berry’s conjectivenich is statis-  solutions were possible because the semiclassical studies
tical in nature does not help in seeing how coefficients in the turned out to be exact.
superposition arrange for striking patterns. Clearly, these two For bringing out the connections clearly for the reader, we
main ideas are not in mutual conflict. divide the arguments into short sections.

Random matrix theory is connected in a “magical” way

to several other topics in physics and mathematics, including Il FROM A MANY-BODY PROBLEM TO

complex quantum systems, Riemann zeta function, exactly A ONE-BODY PROBLEM
solvable many-body problems, partial differential equations,
and the Riemann-Hilbert problefi2,13. These different In 1999, a many-body problem in one dimension was dis-

areas are related to each other by the universal statisticabvered[19,23 where the nearest neighbors interact via a
properties of sequences characterizing them, such as energgpulsive interaction that is inverse square in distance be-
levels of nuclei and chaotic quantum systems, zeros of theween the particles and an attractive three-body interaction,

1063-651X/2002/6@.)/0162165)/$20.00 66 016216-1 ©2002 The American Physical Society



SUDHIR R. JAIN, BENOT GRiEI\/IAUD, AND AVINASH KHARE PHYSICAL REVIEW E 66, 016216 (2002

also inverse-square in position coordinates of the particles. 15
The N-particle problem on a circle has the Hamiltonian
2 2 N 10 ¢
. pi u I
H—z,l%nLgFi;sm E(xi—xiﬂ) =
E s
a2 N - - 2
652 co‘{f(xi_l—xi) cor{t(xi—xiﬂ) : £
0
()
with X;=Xy+j. In the rest of this paper, we will take the -5 h : - - .

mass as unity and the circumference 7r, for notational
simplicity. The potential is singular wheneveq, ;=X;
+nm (n being an integemwith an in\{erse—square singularity. FIG. 1. X/(T)=In(IM(T)-€]), fori=| (continuous ling L (dot-
This leads to disconnected domains where the wave funGgq |ing, and r(dashed ling for =2 (see text for definition and

tions are zero at singulghypejplanes in the quantum prob- i, conditions. As expected!(T) is bounded, whereas"(T)
lem. We choose the domain in which the particles are O and X'(T) show linear behavior, emphasizing presence of hard
dered asx;<x,=<---<Xx;+ . The center-of-masgc.m) :

. . . e .chaos in the system.
motion can be separated in this case by writing the ampli-
tudes of the motion of particles around the c.nX,
=(1N)=N ,x; in terms of normal mode coordinat§g4].

Thus, we can write the positions as=X+y;, andy;’s as

that for N>3, our billiard models are, in fact, chaotic. This
also implies nonintegrability of the many-body problem.

Ill. FAMILY OF CLASSICAL BILLIARDS

2 yM-1

N

. j

T V7w 1
VimTo* ( = 5) N \/—NqMcos( ) For the sake of concreteness, we concentrate our discus-
sion onN=4, leading to a three-dimensiongD) billiard.

2mnj [ 2mn Equations of motion are singular each time a collision occurs

= an°5< N ) —qnsm( N (20 (involving 2, 3, or 4 particles but two-particle collisions are
forbidden by energy conservation, giving rise to smooth in-

for evenN (M =N/2): and for oddN, without the last term t€gration using standard Runge-Kutta method, until one
on the right hand side and summation going uptoM . The reaches a r_nult_lple coII|S|o[125]._PreI|m|r_1ary studies show _
quantum Hamiltonian operator transforms to that regularization of the c_IaSS|caI motion near Fhese colli-
sions could be done, but its exact implementation has not

H=H_m(X)+Hpiiara{an}) been achieved yet. Nevertheless, we believe that this prob-
o lem does not alter results presented here. For each trajectory,
1 2 1M ;2 N we have also computed the associated monodromy mtrix,

=T oNwZ 2 > o + ‘21 WLy;({anp)],  (3)  (whose symplectic structure is used as a relevant, tiw-
" dOn I ing us to extract evidence of chaotic behavior in our system.

whereW[y;({d,})] is the potential term in Eq1). Note that for tius, we have cqmputed thg Lyapunov e>‘<ponents,
n=*+1,+2,...,=M for odd N while n=+1,+2,..., MT)=In(IM(T)-€[) using three different vectorsio, &
+(M—1),M for even N. ThusH g represents a single and €, which are, respectively, unit vector parallel to the
particle in an N—1)-dimensional domain bounded by the flow at an initial time, unit vector perpendicular to the energy
(hypejplanes where potential becomes singular forcing alShell at an initial time and a “random” unit vector, namely,
the wave functions to be zero on the boundaries of the dod/v6(1,1,1,1,1,1)X!(T), being equal to IX(T)|/|X(0)|, is
main. This gives us a class of billiards as a functiongof bounded entailing thereby a vanishing Lyapunov exponent,
[defined throughG= B2 andg=B8(B8—1)] and from dimen-  providing a reference scale for further numerical estimation
sions two to N—1). A similar connection was realized by of nonvanishing Lyapunov exponent. F@- 2, at classical
Rey and ChoquarfR4] when they considered the Calogero- energy equal to the quantum ground state eneggy4 2
Sutherland-Moser(CSM) system and showed that the [see Eq(5)], and initial conditions,

N-body problem in this case is mapped to an integrable bil-

liard problem in N—1) dimensions. It is interesting to note g.(0) 0.1 p1(0) 1.000

that the CSM and our model coque for three particles as q-1(0) | =| 0.2|| p_1(0) | = 2.0000|, (a)
nearest neighbors are all the neighbors and the cotangent

term is unity owing to a trigonometric identity. Unlike this, 02(0) 0.0 P2(0) 5.184

and most interestingly, our many-body problem leads to non- o
integrable billiards for particles greater than three and hencésults on Lyapunov exponents are plotted in Fig. 1. As ex-
billiards of dimension greater than two. We now turn to showpected, behavior ofA”(T) is substantially different from
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FIG. 2. Reduced PSOS defined §y=0, at different energies:
E.= eo=16 [ground state energy, see E@S)], E,=€,=25.5, E,
=en=136, andE4=100. The reduced dynamics is clearly chaotic.
(See text for discussion about areas appearing in the BSOS.

those ofA™(T) and\'(T), emphasizing thus the presence of
hard chaos in the system, with Lyapunov exponent;6
[26].

A more appealing evidence of hard chaos is obtained on
plotting Poincaresurface of sectionéPSOS. For a generic
3D time-independent system, their dimensionaligD)
makes them quite useless for visualizing. Fortunately, in our

case, symmetry properties of the Hamiltonian, viz., invari- ~ ®
ance undeq;—q_4 exchange allows us to consider the re- )
duced phase space made of trajectories for kap_hq_l FIG. 3. Contour plots of excited states of the system vgth

and p,=p_, at any time, leading thus to an effective 2D =2 and energiesa) E = 812.5 andb) 813.4 in theq_,-q, plane.

system. Figure 2 depicts, fg8=2, the reduced PSOS de- .

fined byq,=0, at different energies E,=e,=16 [ground  Subtracting off the center-of-mass energy. _

state energy, see E)], E,= €;=25.5, E.= ey= 36 [see _ Let Ey, ¢ denote the energy elgen_val_ues and eigenfunc-

text following Egs.(7)—(8)], andE4=100. t|p_ns of t_heN—body problem(1) with periodic boundary con-
The empty areas appearing on all these plots corresporfftions, i-e., Hyy=Eyi.. Then the exact ground state is

to trajectories having a four-body collision in their past, this91ven by[19,23

has been checked by propagating the corresponding initial N

conditions backward in timg27]. Nevertheless the system _ Cy 8 — N2

appears to be fully chaotic in the reduced phase space, which Yo H [sin0=xj2)I", - Eo=NA%, ©

is emphasized by the fact that all periodic orbits of the re-

duced dynamics are unstalfiee., nontrivial eigenvalues of providedg,G are related by=B(B—1),G=p>.

the monodromy matrix are not on the unit circl&ctually In addition to the ground state, a few of the excited energy

these orbits are also unstable when considered in the fu@ligenstates have also been obtained in this [28eand are

phase space. Moreover, there are also unstable periodic a@iven by (= ¥ody),

bits not belonging to the reduced phase space. We have also

found unstable periodic orbits for which the four nontrivial ¢1=€;, E;=Eo+2+4p,
eigenvalues of the monodromy matrix form a quadruplet
(A, A*, A" A1), A being complex. dn-1=€n-1, En-1=Eqt2N-—-2+48,

B=2 is not a special value, we have checked that all

N
results presented here also hold for other vaj@esl. by =Eren— 35 ey, En=Eo+2N+4+88. (6)

IV. FAMILY OF QUANTUM BILLIARDS

Heree; (j=1,2,...N) is an elementary symmetric func-
We shall now use the known exact energy eigensf@®@ls tion of orderj in the variablez;. For examplee,=2z,2,
of the newly discoveret-body Hamiltonian(1) and obtain  +2z;z3+---  (containing N(N—1)/2 termg and gz

few energy eigenvalues and eigenfunctions of the corre=exp(2x;). Note thatg, is an eigenfunction of the momen-
sponding N—1)-dimensional billiard. The billiard eigen- tum operator with eigenvalue[30]. Following the treatment
functions are obtained by eliminating the center-of-mass dein Ref.[24], it is easily shown that if the billiard Hamiltonian
pendence while the eigenvalues are determined bgatisfies the eigenvalue equatibtyy, = € xk, then the ei-
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FIG. 5. The Poincar surfaces of section for the energies corre-
sponding to the excited states shown in Fig. 3.

tour plots ing_4-q; plane[Figs. 3a) and 3b)] at energies
812.5 and 813.4. Surprisingly, these eigenfunctions do not
seem to be random; in fact, the square of the modulus of the
eigenfunctions do suggest some scaling propeftés. 4).
Whether these could be fractals is a subject of an ongoing
investigation. The recent woifl81] on quantum fractals may
FIG. 4. The squared modulus of the excited state eigenfunctioe useful in this context. In Fig. 5, the Poincan@faces of

0.5 1

at energyE=2812.5 suggests some scaling properties. section show classically chaotic motion at the energies cor-
. _ responding to the excited states.
genvalues, and the eigenfunctiong, are related tde, , i We believe that chaos in quantum wave function, even at

by xi=exp(=2kX)¢i with €,=E,—(2k/N). Finally, we |ow energies, would show up as the system evolves. The
then obtain the following excited eigenvalues and eigenfunctime-dependent wave function, written as a superposition of
tions for the (N—1) billiard eigenfunctions, has coefficients displaying chaos. Thus,

eigenfunctions form an invariant set in quantum theory,

X1c= o co%([N— 1]x,— - - - —xy) +oye.l, (7) much in the same way as periodic orbits and fixed points do
in classical theory. The most important evidence is shown by

N Heller’s discovery of scars. Thus, we state—scarring of wave

NS functions on periodic orbits is a reminder of the classical fact

XN= ‘/’Oig.::l cos A —xj)+ 1128 (8 that on its way, an arbitrary trajectory is shadowed by peri-

odic orbits.
whereE, is as given in Eq(5), and cyc. is an abbreviation It is worth noting that the existence of Bose-Einstein con-
for “cyclic permutations.” In Eq.(7), xis is obtained by densation in a related one-dimensional many-body problem

replacing cos by sin. The eigenvalues corresponding to that zero temperature is proved recentB0]. To prove the
eigenfunctions written above are, respectivebi.=¢,; €Xistence of a Bose-Einstein condensate in one dimension at

=Ey+4B+2—(2/N), and,ey=E,+88+4. Note that even nonzero temperatures, we need the excited states. Thus, the
thoughyy, is N dependent, the energy differeneg—E,isN  development presented here is of importance to the general

independent. theory of quantum phase transitions also.
These expressions constitute the main result of the paper.
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