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Abstract. Experimental data on masses and lifetimes of unstable particles falls into a pattern, a
brief review of some interesting consequences is presented here. From the experience in semiclas-
sical methods and recent advances in quantum chromodynamics, it is proposed that an appropriate
generalization of the Gutzwiller trace formula for field theories may lead to a systematic semiclassi-
cal chromodynamics theory. The theory can be developed to get appropriate dynamics leading to an
explanation of pattern discovered in the empirical data.
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1. Introduction

An essential problem of particle physics is to explain the relationship between the mea-
sured mass of fundamental particles and their lifetimes. This is a formidable problem.
It is shown in this paper that the main problem can be broken into various parts and the
inter-relationship between nuclear and particle properties show possibilities by which phe-
nomena can be better understood. It is possible to explain missing fundamental particles,
their maximum mode of decay, prediction of the half-lives of isospin particles, and so on
[1].

Besides, a possible way to understand above mentioned relations will be presented. This
is based on the observation of random matrix universality found in the fluctuation mea-
sures on energy levels of nuclei, chaotic quantum systems, quantum dots, Riemann zeros
etc. Semiclassical trace formula is most useful in understanding the universal features as
well as in quantizing chaotic systems. A way to unravel these mysteries would be through
a semiclassical route by generalizing the semiclassical trace formula of Gutzwiller [2]. It
should be noted that Gutzwiller trace formula was inspired by the Selberg trace formula in
number theory. Thus, here we have some deep connections between number theory, semi-
classical methods, nuclear physics and chaos. After presenting the empirical approach,
some recent developments [3] on how nuclear masses are obtainable from the quantum
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chromodynamics (QCD) will be presented inx2. In x3, we briefly propose a sketch of
what may be called semiclassical chromodynamics. Section 4 contains a brief summary.

2. Masses and lifetimes of nuclei, mesons, etc.

2.1 Empirical approach

Employing the measured masses and lifetimes of unstable nuclei and other particles, it was
shown that [1,4,5] their product follows a simple relation:

�h

MT
=

n

2n
; (1)

whereM is neutron mass (ergs) in�-emitting nuclei, binding energy of the nuclei in�
emitters, and entire mass of the decaying particles in the case of fundamental particles.T
is the observed half-life related to the width� andn is an integer, presumably containing
information about the strength of interaction [5]. The above relation leads to an interesting
connection� = M:n=2n which means that the Heisenberg energy spread in decay is a
fractionn=2n of the rest mass. It is to be noted that the ration=2n can be interpreted
following Cantor in that ifn is discrete set of numbers,2n is the corresponding continuous
set of numbers.

In particular, to appreciate the efficacy of (1), consider first the behaviour of fundamental
particles and writep = � log10

�h
MT

= � log10
n
2n

, thus givingn from observed values of
M andT . In figure 1,log10

�h
MT

is plotted againstn. As seen here, all known particles lie
on a straight line.

There are two important gaps in the line, first being betweenn = 30 andn = 43 and
again betweenn = 63 andn = 97. A curious result is that the values ofp take values of
numbers very close to primes for values ofn = 6, 10, 14, 21, 28, 42, and 49 [5b].

Figure 1. log �h

MT
vs n for elementary particles,�- and�-emitters is plotted, a

remarkable trend is evident.
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It was also shown in [1] that periodicity can be introduced by replacing (1) by

�h

MT
=

f(n)

2f(n)
; (2)

wheref(n) = n sin(�n+ 7). The constant� is given values 1, 2, or 3 to fit the observed
values ofMT . For most of the particles the value is 2, 1 and 3 are kept for the scale.

We now show that (1) by itself is capable of explaining many aspects of particle and
nuclear physics.

2.1.1Lifetimes of isospin particles: The classification of mesons in terms ofn allows for
some interesting regularities. Then-values of isospin singlets and neutral member of the
isospin triplets belonging to SU(3) octets are found to be related to each other through
some periodicity. The following equations show that(� 0; �) for pseudoscalar mesonic
octet,(�0; !) for vector mesonic octet and(�;�0) for 1

2

+
baryonic octet-pairs of states

with different values of isospin (I), but the same value of its third componentI 3 show
regularities:

n�0 � n� = 22 + 1 for pseudoscalar mesons,

n�0 � n! = 22 + 1 for vector mesons,

n� � n�0 = 25 + 1 for baryons. (3)

On the other hand, singlets belonging to SU(3) octets and their orthogonal singlets with
the same value ofI andI3(= 0) show a slightly different kind of periodicity ofn values.
Examples of such pair of mesons are(�; !), (�; � 0) for which

n� � n! = 21;

n� � n�0 = 23: (4)

Both the symmetries can be combined to give a relation

j �n j= 2q+ j �I j; (5)

where�n and�I represent differences in their integern and isospin values respectively.
It is to be noted that this relation holds for only integral values of�I . These regularities
in then-difference point out to the quantization of the�=M ratios for the isospin levels
which can be written in a mathematical form as [6]

�
MT

�h

�
n+�

= k

�
MT

�h

�
n

; (6)

where subscripts denote the correspondingn-values forMT=�h. Note thatn and� are
integers, and� is the index using isospin. This equation can be simplified by using (1) to

k =
n

n+ �
2�: (7)

2.1.2Lifetime of proton: We apply the above considerations to proton by using the cor-
responding value ofn of its doublet member, the neutron. SinceI 3 = 1=2 (�1=2) for
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proton (neutron), thus�I3 = 1 as we go from neutron to proton. For the case of neutron
wheren = 97, it is argued in [6] that� = 27�97 = 31. The corresponding case of proton
for which� = 31, q = 7 + 1, thusn = 27+1�31 = 225. With this value ofn for the
proton, the lifetime of proton becomes5:33� 1033 years which is very close to the present
experimental limit: more than1031�5� 1033 years. It is really intriguing to note that the
lifetime of a particle with known mass can be calculated using that of the other particle
which is related to the former through isospin symmetry.

2.1.3Excited nuclear levels and elementary particles: The transition of a ground state
nucleus to an excited one of higher energy occurs under an external influences when the
required energy is transferred to the nucleus through interaction with an energetic particle.
When excited externally, one or many nucleons occupy higher energy levels. Since the nu-
cleon levels are separated by finite energy intervals, the nucleus cannot receive an arbitrary
amount of energy but only in certain quanta, precisely corresponding to the energies of
nucleon transitions from lower to higher states. In this section, we propose that the energy
is absorbed by the nucleus in a discrete way in the form of virtual mesons, mainly the light
ones. As a result, the system gets excited to a level whose width and energy depend on
the mass and decay time of the meson involved in the process. The type of virtual meson
depends on the external energy imparted to the nucleus.

Each excited level of a nucleus is associated with an elementary particle which is iden-
tified by comparing the ratiologEr=� [7] for an excited level of energyEr and width�
with logMT=�h for an elementary particle of massM and lifetimeT . In figure 2, integer
Dn is given byp = log(2Dn=Dn). The quantityn for a resonance level is calculated from
Er=� by using (1) which helps in identifying the particle involved in the excitation pro-
cess. The elementary particles involved are found to be light mesons. A study on number
distribution of various ensuingn-values show that it is the! meson that is mostly involved
in the excitation process.

Figure 2. A derived integer,Dn (see text) is plotted againstlogEr=� for reso-
nances, the trend is clearly brought out.
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2.2 QCD approach

Quarks and gluons are the ingredients of protons and neutrons (which is 99% of the known
mass) and the theory which describes the strong interactions binding the nuclei together
is QCD. Since the heavier quarks play a minor role in determining the structure of proton
and neutron, it is enough to consider a truncated version of QCD where only up and down
quarks are taken into account along with gluons. The theory of colour gluons is derived
from the Yang–Mills or a non-abelian gauge symmetry. Gauge invariance also demands
that the vector particles like colour gluons have no mass. Based on phenomenological
evidence that up and down quark mass terms are small, one may go further and set them
to zero, leaving QCD with no mass terms called QCD lite by Wilczek [8]. Surprisingly,
even with QCD lite, the mass of protons and neutrons turn out to be accurate to within
10% [9]. Thus, most of the mass of ordinary matter is basically the energy associated with
quark motion and colour gluon fields – we make use of this finding in our proposal inx3.
And, although the masses seem to come without mass, the mass is acquired in the same
way as photons acquire it in a superconductor. This means that there exists a background
condensate of Higgs field – a phase-coherent object – giving us all the mass including that
of electrons. In QCD lite, there is only one dimensionless parameter,� s, that governs the
strength of the strong interaction. According to QCD, the proton mass in Planck units can
be written as [8]

mproton � exp

�
�

k

�unified

�
MPlanck;

whereMPlanck =
p
(�hc=G), �unified = 1=25 is the value where the strong, weak and elec-

tromagnetic interactions unify, andk = 11=2� is a calculable factor characterizing antis-
creening.

SinceMPlanck is roughly1018mproton, this above formula explains how large ratios originate.
Although this formula works remarkably well for ratios, it does not give unique values
for physical quantities. Rather it gives several consistent solutions giving many different
possible worlds.

3. Towards semiclassical chromodynamics

An important aspect is that the empirical results inx2.1 give us our own world in contrast
to several worlds inx2.2. We now propose a program where we plan to begin with QCD,
take into account the lessons fromx2.2, and use the number-theoretic patterns discovered
in [4,5], to semiclassically quantize the field theory. Eventually, one has to argue a way
to obtain energy levels of lighter nuclei. Owing to the fact that nuclei belong to the non-
perturbative regime of QCD, we begin our journey with a reminder of one of the profound
results of mathematical physics of the last century – the Gutzwiller trace formula [2]. We
feel that it is important to mention that the logical program remains the same for any other
field theory, so the considerations are quite general.

3.1 Quantizing chaos via Gutzwiller trace formula

It is an outstanding problem to find analytically exact expressions for quantum states at
energies where the underlying classical motion is fully chaotic. The most popular method
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is semiclassical simply because fully chaotic systems are in a non-perturbative regime and
are generally inaccessible to analytic methods. We believe that for the case of nuclear
properties in so far as they may be obtained in a non-perturbative manner from QCD,
semiclassical theories may be well-suited.

With the exception of a recent work [10], it is possible to quantize chaotic dynamical
systems only by the powerful Gutzwiller trace formula. To understand this, consider a one-
body system described by a Hamiltonian,H = p2=2 + V (q), which supports classically
chaotic dynamics; (q, p) are the phase space coordinates. To obtain the energy levelsE i

of the system, the density of energy levels is expressible as the trace formula:

X
i

Æ(E �Ei) �
X
r;po

cos[ r
�h
Spo � �po]q

j I�Mr
po j

(8)

where ‘po’ andr denote the periodic orbits and their repetitions obtained by solving the
classical equations of motion.Spo and�po are respectively the classical actions and
Maslov indices corresponding to the periodic orbits.M is the monodromy matrix giv-
ing the stability properties of the periodic orbits. Thus, knowing the periodic orbits and its
characteristics, one can quantize any system. The important point is that the above expres-
sion is only a dominant term in the semiclassical expansion, corrections can all be found
[11]. There are many examples where this formula has given significant results [12]. It
should be noted that the semiclassical framework has been developed for certain problems
in nuclear physics based on the trace formula [13].

3.2 Generalizing trace formula for field theories

Whereas trace formula helps in quantizing linear partial differential equations, nonlinear
partial differential equations (PDE) need a generalization. The equations for QCD are
highly nonlinear and any success in treating them depend on this development. Of course,
there have been analytic solutions known for a long time [14] for the classical SU(2) Yang–
Mills equations of motion, they correspond only to the equilibrium points or the saddles in
the semiclassical quantization. One needs to go further.

An example has been considered recently [15,16] where the authors considered a non-
linear PDE, the Kuramoto–Sivashinsky equation. This equation arises in describing am-
plitudes for interfacial instabilities in various contexts [17]. A study of unstable modes of
this equation were initiated [18] in order to study the temporally stationary solutions. In
[15], it was shown that in the limit of weak turbulence or ‘spatiotemporal chaos’, cycles of
longer and longer periods are determined and used to evaluate global averages.

The first step is to find the classical solutions. For the case of nonlinear PDE or QCD,
the solutions will be spacetime solutions, which are patterns; swirls in case of turbulence.
These patterns will in general be unstable. Next step is to classify which needs a codifica-
tion of patterns. In terms of code, one can then find recurrent patterns. These are important
as they form the invariant set and would dictate long-time spatially extended dynamics.
One can then determine the stability characteristics by finding whether the pattern is stable
or unstable along certain eigen-directions. In our context, simplest theory to consider is
the QCD lite and develop (what we call as) semiclassical chromodynamics lite (SCD lite).
Here, then, the observable will be energy corresponding to quark and gluon motion. En-
ergy corresponding to quantized modes of the color fields would give masses. The stability
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of the modes would correspond to lifetimes. It is here, as one may anticipate (x2.2), that
the empirical relations will be most invaluable.

The problem is to get the correct dynamics, much help is available thanks to so much
study existing on QCD, and, on empirical relations.

4. Summary

The good agreement between experimentally measured quantities and those coming from
(1) suggests that the expression has deeper meaning. As mentioned inx2.1, the ratio n

2n
or

generally f(n)

2f(n)
can be interpreted following Cantor in that ifn is discrete set of numbers,

2n is the corresponding continuous set of numbers. In fact, a theorem states: IfA contains
n elements wheren is a positive integer thenB which has a continuum of numbers, i.e. is
of higher cardinality, contains2n elements. IfA consists of the set of all integers thenB
is equivalent to a continuum of all real numbers from 0 to 1.

We have proposed here a possible semiclassical field theory which can handle non-
perturbative effects so important in nuclear physics. The proposition here has to take shape
in years to come, though.

Acknowledgements

We thank Dr B K Jain, Prof. A N Mitra and Prof. B V Sreekantan for comments and
encouragement.

References

[1] R Ramanna and A Sharma,Curr. Sci.73, 1083 (1997)
[2] M C Gutzwiller, Chaos in classical and quantum physics(Springer, Heidelberg, 1990)
[3] F Wilczek,Phys. Today(Nov. 1999) p. 11;Phys. Today(Jan. 2000) p. 13
[4] R Ramanna,Curr. Sci.65, 472 (1993)
[5] R Ramanna and B V Sreekantan,Mod. Phys. Lett.A10, 741 (1995)

[5b] It may be noted that in comparison to the average density of primes, the density ofn’s being
found close to primes is much higher.

[6] A Sharma and R Ramanna,Mod. Phys. Lett.A11, 2335 (1996)
[7] T Lauritsen and F Ajzenberg-Selove,Nucl. Phys.A78, 1 (1966)
[8] F Wilczek,Nature397, 303 (1999)
[9] C Bernardet al, Nucl. Phys. (Proc. Suppl.)B73, 198 (1999)

[10] S R Jain, B Gr´emaud and A Khare,Quantum expression of chaos, preprint (2001)
[11] P Gaspard and D Alonso,Phys. Rev.A47, R3468 (1993)
[12] M Brack and R K Bhaduri,Semiclassical physics(Addison-Wesley, New York, 1997)
[13] S R Jain,Nucl. Phys.A673, 423 (2000)
[14] A A Belavin, A M Polyakov, A S Swartz and Yu S Tyupkin,Phys. Lett.B59, 85 (1975)
[15] F Chrisiansen, P Cvitanovic and V Putkaradze,Nonlinearity10, 55 (1997)
[16] P Cvitanovic,PhysicaA288, 61 (2000)
[17] I G Kevrekidis, B Nicolaenko and J C Scovel,SIAM J. Appl. Math.50, 760 (1990)
[18] G Goren, J-P Eckmann, and I Procaccia,A scenario for the onset of spacetime chaos, preprint

(1997)

Pramana – J. Phys.,Vol. 57, Nos 2 & 3, Aug. & Sept. 2001 269


