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Loss of interference in an Aharonov-Bohm ring
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Abstract : We study a simple model of dephasing of Aharonov-Bohm oscillations in the transmission of an electron across
a mesoscopic ring. A magnetic impurity in one of the arms of the ring couples to the electron spin via an exchange interaction.
This interaction leads to spin flip scattering and induces dephasing via entanglement. This is akin to the models evoked earlier
to explain destruction of interference due to which-path information in double-slit experiments. Total transmission is found to
be symmetric under flux reversal but not the spin polarization.
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1. Introduction

The notion of intrinsic decoherence and dephasing of
a particle interacting with its environment is being pur-
sued actively in the area of mesoscopic physics. This is
important from the basic point of view of understanding
the emergence of classical behavior from the quantum
dynamics. In this area, study of transmission of elec-
trons across a mesoscopic Aharonov-Bohm ring occupies
a prominent place from experimental as well as theoret-
ical viewpoint[1–6]. Generally in these systems, such a
transition can be observed as a function of temperature.
At very low temperatures the inelastic scattering length
is much larger than the sample dimensions and as a re-
sult the transport is completely phase coherent i.e., it
is dominated by quantum interference effects. At very
high temperatures the inelastic scattering length is much
smaller than the sample dimensions which leads to Ohmic
transport or classical behavior. This process is also re-
ferred to as dephasing owing to the loss of interference as
a result of the randomization of the interfering particle’s
phase.

In a double slit setup, interference results from the
lack of knowledge of (or indistinguishability of) the elec-
tron path. Thus a measurement of which path the elec-
tron has taken, wipes out the interference pattern. It is
known that in a ring interferometer the electron affects
the environment and changes its state differently in the
two arms of the ring thereby affecting the interference.
This amounts to a measurement of the path of the in-
terfering particle by the environment resulting in loss of

interference. Such interferometers are thus also termed
as “which-path” detectors. In an alternate picture, the
environment affects the electron phase differently in the
two arms, thus randomizing their relative phase differ-
ence leading to dephasing. The two views were shown to
be equivalent[7].

It is well known that the electron-environment entan-
glement can also lead to dephasing[8]. However, unlike
other approaches, entanglement leads to dephasing in ab-
sence of any energy transfer[7]. Thus motivated we con-
sider a simple model of dephasing in Aharonov-Bohm
ring with a spin-half impurity (spin-flipper) in one arm.
This example also serves to illustrate the effect of multi-
ple reflections on ”which-path” detection. We also show
that the spin-polarization which is related to the spin
conductance is asymmetric in flux reversal.
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Figure 1. Mesoscopic ring with Aharonov-Bohm flux φ

threading through the ring and a magnetic impurity in one
arm of the ring.
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Figure 2. Plot of total transmission coefficient TNSFS for
NSFS, total transmission coefficient TSFS for SFS, and spin-up
transmission coefficient Tu and spin-down transmission coef-
ficient Td for the spin-flip scattering case. The interaction
strength G = 10.0.

2. Model

Consider a spin-up electron incident from left onto the
ring (see Fig. 1) in the presence of Aharonov-Bohm flux
φ. The electron spin (~σ) is coupled to the spin of the flip-

per (~S) via an exchange interaction −J~σ · ~Sδ(x− l3). The
vector potential along the ring circumference is A = φ/l
where l = l2 + l3 + l4 is the ring perimeter, l2 being the
length of the lower arm of the ring and l3(l4) is the dis-
tance of the impurity from junction J1(J2) in the upper
arm. The exchange interaction conserves the total spin
angular momentum and its z-component. This leads to
two kind of scattering processes depending upon the ini-
tial state of the impurity spin namely, spin flip scattering
(SFS) when the initial state of impurity is down or no
spin-flip scattering (NSFS) when it is up. It should be
noted here that none of these two processes involve any
exchange of energy and are perfectly elastic scattering
events. In case of NSFS the problem at hand reduces to
that of a simple potential scattering. However, the ex-
change interaction does lead to entanglement of the elec-
tron and impurity wavefunctions. By using the standard
quantum waveguide theory[6,9] and applying continuity
of wavefunctions and current conservation conditions at
the impurity site and the junctions J1 and J2 we have
calculated the probabilities of transmission of the elec-
tron as a spin-up electron ( Tu = |tu|

2 ) and spin-down
electron ( Td = |td|

2 ). For details, we refer the reader to
Ref. 10. The total transmission probability is simply the
sum of the up and the down transmission probabilities

i.e., T = Tu + Td and the spin-polarization is given by
χ = (Tu − Td)/T . The lengthy analytical expressions re-
strict us to a graphical presentation of our results. In the
following we have set h̄ = 2m = 1, kl = 1 and the value of
the interaction strength G = 2mJ/h̄2 is given in dimen-
sionless units. We have chosen l2/l = 0.5, l3/l = 0.15,
l4/l = 0.35 for the results presented below.

−4.00 −2.00 0.00 2.00 4.00
φ/φ0

−1.0

−0.5

0.0

0.5

χ

Figure 3. Spin polarization (χ) as a function of the flux φ

for interaction strength G = 10.0.

3. Results and discussion

In figure 2 we show the plot of total transmission co-
efficient TNSFS for no spin-flip scattering case (where in-
cident electron spin is up σz = 1/2 and initial impu-
rity spin is down Sz = 1/2) and total transmission TSFS,
spin-up transmission Tu, spin-down transmission Td co-
efficients for the spin-flip scattering case (here incident
electron spin is up σz = 1/2 and initial impurity spin
is down Sz = −1/2) as a function of φ/φ0, φ0 = hc/e
being the flux quantum. Perhaps the most easily rec-
ognizable feature of the figure is the symmetry of both
TNSFS and TSFS under flux reversal and the 2πφ0 flux
periodicity of the AB oscillations. Such expected peri-
odic oscillations in the transmittance have been observed
experimentally[4]. However, individually the spin-up and
spin-down transmission coefficients, although having the
same 2πφ0 flux periodicity, are not symmetric under flux
reversal. The problem of transport in presence of spin-flip
scattering, in spite of absence of any inelastic scattering
reduces to the multichannel case. The symmetry proper-
ties noted above are consistent with reciprocity relations
for transport in multichannel systems and are a conse-
quence of the general symmetries of the Hamiltonian[12].
This asymmetry in the individual spin-up and spin-down
components of transmission presents itself in the asym-
metry observed in the spin-polarization χ as seen in Fig.
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3. The spin-conductance in spin-polarized transport is
related to the spin-polarization[11] and therefore is asym-
metric under the flux reversal. The zero temperature
total electrical conductance is a sum of total transmis-
sion coefficients for all the four possible initial conditions
(σz ,Sz)=(±1/2,∓1/2) and is symmetric under the flux
reversal.

0.0 5.0 10.0 15.0 20.0
G

0.00

0.20

0.40

0.60

0.80

1.00

A
m

pl
itu

de
 o

f 
os

ci
lla

tio
n 

of
 to

ta
l T

 

NSFS
SFS

Figure 4. Variation of amplitude of oscillation of total trans-
mission coefficient with the interaction strength G for the two
cases of spin-flip scattering (SFS) and no spin-flip scattering
(NSFS).

The second important feature which Fig. 2 exhibits
and was mentioned above but not emphasized is that
Td also shows an interference pattern (AB oscillations
with a flux periodicity of 2πφ0) in the SFS case. This
seems to contradict the naive expectation that a spin-
flip would amount to path detection and therefore one
should not, in principle, observe any interference pattern
for spin-down component of transmission. Realizing that
the above expectation rests on the belief that only two
forward propagating partial waves, one in each arm of
the ring, produce the interference pattern, helps to clarify
the situation. In the present geometry there are infinitely
many partial waves, owing their existence to the multi-
ple reflections induced by the reflection and transmission
at the junctions J1, J2 and impurity site, which super-
impose to produce the interference pattern. To clarify
the point further consider just one possible path that the
electron could take out of the infinitely many. The in-
cident spin-up electron moving in the upper arm of the
ring gets spin-flipped and reflected at the impurity and
finally traverses the lower arm. This partial wave will
then interfere with the spin-flipped component transmit-
ted across the impurity in the upper arm to give rise to an
interference pattern for Td. Thus the multiple reflections
erase the ”which-path” information. Naturally, then the
question arises - will we still observe dephasing in such a
situation. Figure 4 answers the question in the affirma-

tive. The signature of dephasing is that the amplitude of
AB oscillations of total transmission coefficient (or visi-
bility factor) for the SFS case is always smaller than that
for the NSFS case for all non-zero values of interaction
strength G. For G = 10.0, by comparing the TSFS with
the TNSFS reduction of amplitude can be seen explicitly
from Fig. 2. The reduction in the amplitude of oscil-
lations of the SFS case as compared to the NSFS case
indicates dephasing. Thus we see that the spin-flipper
acts as a dephasor.

4. Summary

In summary, we have studied the electron transmission
across a AB-ring geometry with a spin half impurity in
one arm of the ring using the quantum waveguide theory.
The electron interacts with the impurity via an exchange
interaction. The naive expectation of vanishing of in-
terference pattern for the spin-down transmission due to
which-path detection is to be modified in the light of the
important role played by multiple reflections. The reduc-
tion in the amplitude of oscillations of the total transmis-
sion coefficient for SFS in comparison to that for NSFS,
clearly brings out the feature of dephasing in this simple
model. Moreover, it is important to note that the de-
phasing in this model is in the absence of any inelastic
scattering. The study also reveals the asymmetric na-
ture of the spin-polarized transport as against the sym-
metric two probe conductance. Our further studies[13]
have shown that such a dephasor is not able to suppress
the other well known quantum effect namely, the cur-
rent magnification[3,6]. We believe that this effect will
be suppressed only in the presence of inelastic scatter-
ing. Further work in regard to transport properties and
additional resonances due to spin-flip is in progress.
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