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Dephasing of Aharonov-Bohm oscillations in a mesoscopic ring with a magnetic

impurity

Sandeep K. Joshi†, Debendranath Sahoo‡ and A. M. Jayannavar⋆

Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, Orissa, India

(February 1, 2008)

We present a detailed analysis of the Aharonov-Bohm interference oscillations manifested through
transmission of an electron in a mesoscopic ring with a magnetic impurity atom inserted in one of
its arms. The electron interacts with the impurity through the exchange interaction leading to
exchange spin-flip scattering. Transmission in the spin-flipped and spin-unflipped channels are
explicitly calculated. We show that the spin-flipper acts as a dephasor in spite of absence of any
inelastic scattering. The spin-conductance (related to spin-polarized transmission coefficient) is
asymmetric in the flux reversal as opposed to the two probe conductance which is symmetric under
flux reversal.
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Quantum transport in open mesoscopic systems has at-
tracted considerable attention in the last two decades1–3.
In this area, the study of phase coherent transmission
of electrons in the Aharonov-Bohm (AB) ring occupies
a prominent place1–6. Study of dephasing7–11 of elec-
trons in this geometry is very timely12 to understand
basic issues related to quantum phenomena. By intro-
ducing a magnetic impurity atom (to be referred to as
the spin-flipper, or the flipper, for short) in one arm of
the ring, one can couple the spin of the electron (~σ) to

the spin of the flipper (~S) via the exchange interaction1,7.
This leads to scattering of the electron in which the spin
state of the electron and the impurity is changed with-
out any exchange of energy leading to reduction of in-
terference. Let the electron be incident from the left
reservoir with its spin pointing “up” (see Fig. 1). The
spin of the electron passing through the upper arm may
or may not be flipped by the flipper. In the case that
the spin is unflipped, one would expect the usual AB-
oscillations of the transmission due to interference of the
partial waves passing through the upper and the lower
branches of the ring. However, in the case that the spin
is flipped, one would think, guided by naive intuition,
that a path detection has taken place and hence one
would be led to conclude that the interference pattern
for the spin-down component would be wiped out. This
is true provided we consider only two forward propagat-
ing partial waves. However, there are infinitely many
partial waves in this geometry which are to be super-
posed to get the total transmission. These arise due to
the multiple reflections from the junctions and the im-
purity site. Consider, for example, an incident spin-up
particle moving in the upper arm which is flipped at the
impurity site and gets reflected to finally traverse the
lower arm before being transmitted. Naturally, this par-
tial wave will interfere with the spin-flipped component
transmitted along the upper arm. This results in non-
zero transmission for the spin-flipped electron. Thus on
taking into account the multiple reflections (more than

just two partial waves) the presence of magnetic impurity
does not lead to ”which-path” information. However, the
magnetic impurity acts as a dephasor1,7.
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FIG. 1. Mesoscopic ring with Aharonov-Bohm flux φ

threading through the center of the ring and a magnetic im-
purity in one arm of the ring.

In this work we show that the amplitude of AB-
oscillations is reduced by the flipper causing dephasing.
We study the problem using the quantum waveguide the-
ory approach6,13 and the spin degree of freedom of the
electron is dealt with in line with ref. 14. We consider
an impurity consisting of a flipper capable of existing in
M different discrete internal spin states and located at
a particular position on the upper arm of the ring (see
Fig. 1). The spin ~σ of the electron couples to the flipper

spin ~S via an exchange interaction −J~σ · ~Sδ(x− l3). The
magnetic flux threading the ring is denoted by φ and is
related to the vector potential A = φ/l, l being the ring
circumference13. During passage of the electron through
the ring, the total spin angular momentum and its z-
component remain conserved. We analyze the nature of
spin-up/down and total transmission (reflection) coeffi-
cients. For this we consider the incident electron to be
spin-polarized in the up-direction. Apart from dephas-
ing we show that up/down-transmission coefficients are
asymmetric in flux reversal, i.e., total spin polarization
(related to spin conductance15) is asymmetric in flux re-
versal. As expected we find that the total transmission
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coefficient which is the sum of spin-up and spin-down
transmission coefficients is symmetric in the flux rever-
sal.

Let l2 be the length of the lower arm of the ring and
the impurity atom be placed at a distance l3 from the
junction J1, l4 being the remaining segment length of
the upper arm. The various segments of the ring and
its leads are labelled as shown in Fig. 1 and the wave
functions in these segments carry the corresponding sub-
scripts. The wave functions in the five segments for a
left-incident spin-up electron can be written as follows:

ψ1 = (eikx + rue
−ikx)χmα+

rde
−ikxχm+1β,

ψ2 = (Aue
ik1x +Bue

−ik2x)χmα+

(Ade
ik1x +Bde

−ik2x)χm+1β,

ψ3 = (Cue
ik1x +Due

−ik2x)χmα+

(Cde
ik1x +Dde

−ik2x)χm+1β,

ψ4 = (Eue
ik1x + Fue

−ik2x)χmα+

(Ede
ik1x + Fde

−ik2x)χm+1β,

ψ5 = tue
ikxχmα+ tde

ikxχm+1β. (0.1)

where k1 = k + (eφ/h̄cl), k2 = k − (eφ/h̄cl), k is the
wave-vector of incident electron. The subscripts u and
d represent “up” and “down” spin states of the electron
with the corresponding spinors α and β respectively (i.e.,
σzα = 1

2
α, σzβ = − 1

2
β) and χm denotes the wave func-

tion of the impurity14 with Sz = m (i.e., Szχm = mχm).
The reflected (transmitted) waves have amplitudes ru
(tu) and rd (td) corresponding to the “up” and “down”
spin components respectively. Continuity of the wave
functions and the current conservation6,13,14 at the junc-
tions J1 and J2 imply the following boundary conditions.

ψ1(x = 0) = ψ2(x = 0),

ψ1(x = 0) = ψ3(x = 0),

ψ′
1(x = 0) = ψ′

2(x = 0) + ψ′
3(x = 0),

ψ′
3(x = l3) − ψ′

4(x = l3) = G(~σ · ~S)ψ3(x = l3),

ψ3(x = l3) = ψ4(x = l4),

ψ4(x = l3 + l4) = ψ5(x = 0),

ψ2(x = l2) = ψ5(x = 0),

ψ′
2(x = l2) + ψ′

4(x = l3 + l4) = ψ′
5(x = 0). (0.2)

Here G = 2mJ/h̄2 is the coupling constant indicative
of the “strength” of the spin-exchange interaction. The
primes denote the spatial derivatives of the wave func-
tions. Equations (0.1) along with the boundary condi-
tions (0.2) were solved to obtain the amplitudes tu, td,
ru and rd. Owing to the large length of the expressions in
the following we confine ourselves to the graphical inter-
pretation of the results. We have taken the flipper to be
a spin-half object (M = 2) situated symmetrically at the
center of the upper arm, i.e., l3 = l4. Now, depending
upon the initial state of the flipper we have possibility

of either spin-flip scattering (σz = 1/2, Sz = −1/2)
or no spin-flip scattering (σz = 1/2, Sz = 1/2), as
demanded by the conservation of the total spin and
its z-component. In the case of no-spin-flip scattering
(σz = 1/2, Sz = 1/2) the problem at hand reduces to
that of simple potential scattering from the impurity. We
have set h̄ = 2m = 1 and throughout the value of inter-
action strength G is given in dimensionless units. The
parameters used for the analysis are mentioned in the
figure captions.
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FIG. 2. Plot of total reflection coefficient R, spin-up re-
flection coefficient Ru and spin-down reflection coefficient Rd

for the spin -flip scattering case. The parameters are kl = 1.0,
G = 10.0.

To begin with we take a look at the symmetry prop-
erties of the transport coefficients in spin-flip scattering
case where the electron spin is opposite to the flipper
spin. It is worth noting that due to the presence of spin
degree of freedom the problem in hand although one-
dimensional becomes a multichannel problem. Figure 2
shows the spin-up reflection coefficient Ru = |ru|

2, spin-
down reflection coefficient Rd = |rd|

2 and total reflection
coefficient R = Ru+Rd as a function of the magnetic flux
parameter η = φ/φ0, φ0 being the flux quantum hc/e.
We clearly see the AB-oscillations with flux periodicity4

of 2πφ0. All three reflection coefficients are symmetric
in the flux reversal as expected on general grounds16.
In Fig. 3 we plot the spin-up transmission coefficient
Tu = |tu|

2 (thin line), spin-down transmission coefficient
Td = |td|

2 (dashed line) and total transmission coefficient
T = Tu+Td (thick line) versus η. It unambiguously shows
that though the total transmission T (related to the two-
terminal electrical conductance) is symmetric in flux re-
versal the spin-up Tu and spin-down Td components are
asymmetric under flux reversal. These transmission co-
efficients show AB-oscillations with flux periodicity of
2πφ0. We have verified this behavior of the reflection
and transmission coefficients for various values of wave
vector k of the incident electron and impurity strength
G. These observations are consistent with the reciprocity
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relations for transport in multichannel systems16 and are
a consequence of the general symmetry properties of the
Hamiltonian2. The transmission coefficient at flux φ for
the case when the incident particle is spin-up and the
impurity is spin-down is equal to the transmission co-
efficient for the case when incident particle is spin-down
and impurity is spin-up but the flux direction is reversed.
For the spin-polarized transport the total polarization
Tu − Td is related to the spin-conductance15. The above
symmetry properties imply that the spin-conductance is
asymmetric under the flux reversal. It should be noted
that at zero temperature the total electrical conductance
is calculated by summing up with equal weight-age the
total transmission coefficients for all the four cases, i.e.,
σz = ±1/2 and Sz = ±1/2.
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FIG. 3. Plot of total transmission coefficient T , spin-up
transmission coefficient Tu and spin-down transmission coef-
ficient Td for the spin -flip scattering case. The parameters
are kl = 1.0, G = 10.0.

As discussed in the introduction, due to multiple re-
flections the presence of a spin-flipper in one arm does
not lead to ”which-path” information. This would have
implied the complete blocking of spin-down transmission.
In contrast we clearly observe the AB-oscillations for the
case of Td originating from multiple reflections. We now
address the question of dephasing due to the spin-flipper.
To quantify dephasing , we calculate the amplitude of AB
oscillations (also referred to as visibility factor) by taking
the difference between the maximum and the minimum
of total transmission coefficient as a function of flux φ
over one period of the oscillation. A plot of the varia-
tion of the amplitude of oscillation of total transmission
T with the interaction strength G for the two cases, no
spin-flip scattering (S = 1/2 m = 1/2) and spin-flip scat-
tering (S = 1/2 m = −1/2), is shown in figure Fig.4 with
dashed line and thick line respectively. Note, however,
the signature of dephasing is that the amplitude of AB
oscillation of transmission coefficient for the spin-flip case
is always smaller than that for the no spin-flip case for all
non-zero values of coupling strength G. In other words

the reduction of amplitude of AB oscillations is stronger
for the spin-flip scattering case. We have verified the
above observation for other parameters in the problem.
Thus the presence of spin-flipper reduces or dephases the
AB-oscillations and it acts as a dephasor1,7,8.
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FIG. 4. Variation of amplitude of oscillation of total
transmission coefficient with the interaction strength for the
two cases of flip and no-flip scattering. The parameters are
kl = 1.0 and η = 1.0.
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FIG. 5. Variation of nth harmonic component an of the
total transmission coefficient with the coupling strength G at
kl = 1.0. Dashed lines are for the no-flip case and solid lines
are for the flip case.

At this point we are inclined to think that the harmonic
components of the total transmission T (η) in η = φ/φ0

might be able to shed more light on the issue. So,
with the hope of extracting some systematics we plot

the nth harmonic component an =
∫ 2π

0
T (η)cos(nη)dη for

n = 1, 2, 3... as a function of strength G for the spin-flip
scattering as well as no spin-flip scattering cases. The
plots are shown in Fig. 5 for first four harmonic com-
ponents. As can be seen the harmonic components do
not show any systematics in the sense that the higher
harmonic components can dominate over the lower har-
monic components at certain values of strength G for
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spin-flip scattering as well as no spin-flip scattering cases.
Also, the nth harmonic component for spin-flip scatter-

ing could dominate over that of the no spin-flip scattering
component. These features of the harmonic components
are manifestations of the multiple scattering nature of
the transport in such ballistic systems as against the ob-
servation of domination of lowest harmonic component
(n = 1) in the case of transport in the presence of evanes-
cent modes17. Guided by the naive intuition mentioned
earlier we would have expected the lowest harmonic to
dominate. This reiterates the important role played by
the reflection at the impurity site. We would like to em-
phasize that irrespective of the behavior of the harmonic
components (say for a particular case nth harmonic com-
ponent in the spin-flip case is dominant over the same
nth harmonic component for no-spin-flip case) the AB-
oscillations of the total transmission are always dephased
in the spin-flip case.
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FIG. 6. The transmission spectrum of T (thick line),
Tu(dotted line) and Td(dashed line) for (a) η = 0.0 G = 5.0
and (b) η = 1.3,G = 5.0. Thin line shows the plot of the un-
normalized electron probability |ψ3(l3)|

2 at the impurity site
x = l3.

In order to make sure that nothing unusual happens at
other energies we study the T , Tu and Td as functions of
kl for the case of spin-flip scattering. Figure 6 reveals an
interesting fact, namely at kl = 2π + 4nπ, n = 0, 1, 2...
the Td component vanishes independent of the value of
interaction strength G. In the η 6= 0 case this happens
at kl = 4nπ, n = 1, 2, .... At these values of the incident
wave-vectors the electron wave function at the impurity
site happens to be zero. As a result the electron does
not interact with the impurity at all and consequently
there is no spin-flip scattering at these energies. How-
ever, these k-points are to be distinguished from those
at which although Td is zero but in addition Tu = 1, be-
cause at these resonant energies the restriction T +R = 1
forces Td, Ru and Rd to be zero.

In conclusion, we have studied in detail the nature of

AB-oscillations in mesoscopic ring in the presence of a
spin-flipper in one of its arms. We have shown that this
acts as a dephasor. The presence of magnetic impurity
makes the polarized transmission coefficient asymmet-
ric in flux reversal whereas the total transmission coef-
ficient is symmetric in line with the theoretical expec-
tations. Further case of asymmetrically placed flipper,
spin-flipper with higher number of internal states and
spin-flippers in both arms of the ring are under investi-
gation for studying the nature of resonances, phase-shifts
and dephasing.
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