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TENSOR PRODUCT THEOREM FOR HITCHIN PAIRS
-AN ALGEBRAIC APPROACH

V. BALAJI AND A.J. PARAMESWARAN

Abstract. We give an algebraic approach to the study of Hitchin pairs and prove the tensor
product theorem for Higgs semistable Hitchin pairs over smooth projective curves defined over
algebraically closed fields k of characteristic 0 and characteristic p, with p satisfying some
natural bounds. We also prove the corresponding theorem for polystable bundles.
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1. Introduction

Let X be a smooth projective curve over an algebraically closed field k. When the ground
field k is C, the notion of a Hitchin pair is due to Nigel Hitchin. In ([9], [10]) he proves the basic
theorem that the category of semistable Hitchin pairs of degree 0 is equivalent to the category
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of complex GL(n) representations of the fundamental group π1(X). One of the fundamental
consequences of this correspondence is that the tensor product of two semistable Hitchin pairs
of degree 0 is again semistable. The Kobayashi-Hitchin correspondence in the setting of Hitchin
pairs has been generalized and extended in a number of ways starting with the far reaching
one by C. Simpson ([26],[27]). Simpson develops the more general objects which he terms Λ–
modules. This gives differential geometric proofs of the tensor product theorem for Hitchin
pairs as well as for objects such as Λ–modules. In ([4]) Biswas and Schumacher prove simlar
results for stable Higgs sheaves over arbitrary Kahler manifolds.

For the classical case of semistable bundles the tensor product theorem is usually derived as
a consequence of the Narasimhan-Seshadri theorem or by using the usual Kobayashi-Hitchin
correspondence. The first purely algebraic proof of the tensor product theorem is due to Bogo-
molov ([5]) and little later by Gieseker([7]) using very different methods. The third approach
due to Ramanan and Ramanathan ([20]) has the advantage of being amenable to generalizations
to the positive characteristic case as well (cf. [11] and [1]).

The aim of this paper is to give algebraic proofs of the tensor product theorem for Hitchin
pairs over ground fields of all characteristics. Towards this, we need to first develop a purely
algebraic notion of Hitchin schemes, an object dual in a certain sense to a Hitchin pair. This
is indispensable for the algebraic proof since the standard methods of proof for usual principal
bundles do not apply for the setting of principal Hitchin pairs; the Higgs structure datum has to
be suitably incorporated in the algebraic setting. In the present paper, our approach, following
Nori ([19]), is a Tannakian one and the notions of “associated” Hitchin schemes (analogous to
“associated fibrations” to principal bundles) and geometric Higgs sections arises naturally.

We then use this new machinery for our purposes, along with a suitable modification of the
invariant theoretic ideas due to Bogomolov ([5]) and Ramanan-Ramanathan ([20]). In positive
characteristics we use the results due to Kirwan ([13]) and Hesselink ([8]) synthesized with
the methods of Ramanan-Ramanathan. This is absolutely essential in the setting of Hitchin
pairs since the reduction of structure group to the Kempf-Rousseau parabolic, which is key to
proof of the main theorem, is realizable geometrically only if we employ Kirwan’s stratification.
Representation theoretic bounds such as low heights (see [11]) come up as expected when we
work in char p (see Theorem 8.17). In characteristic zero we generalize Bogomolov’s approach
to the setting of Hitchin pairs and give a different proof of the main theorem; we do this for its
æsthetic elegance. For generalizing Bogomolov’s results, we find the exposé due to Rousseau
([22]) just the right one and we use it freely. It would be very interesting to compare these two
methods of proof since Bogomolov also provides a stratification of the unstable locus (as does
Kirwan) and defines the concept of a model which is in a sense “universal” for instability.

A word about the central principle which underlies these “algebraic” proofs of tensor product
theorems. The idea is to connect the concepts of Higgs semistability of G–Hitchin pair (E, θ)
(see Definition 4.12) with that of Bogomolov stability of Higgs sections of associated Hitchin
pairs (E(V ), θ

V
) via a representation G → GL(V ) (see Definition 4.15). Since we work in the

setting of Hitchin pairs, we need to work with Higgs sections of the associated objects.

2



The new result that emerges by this approach, apart from the æsthetics of a purely algebraic
proof, are variations in positive characteristics for the notions of principal Hitchin pairs. We
observe that the Frobenius pull-back is an inconsequential operation for Hitchin pairs and
therefore notions such as strong semistability do not provide anything new in the Higgs setting.
But we show that the bounds (height and separability index) developed in [11] and [1] are
immediately applicable. In the context of the recent work of Ngô Bao Châu ([18]) we believe
that our approach could be of interest in positive characteristics (see also [14]). The following
theorems are the main results in the paper:

1.1. Theorem. (Theorem 7.2, Theorem 8.17) Let (V1, θ1) and (V2, θ2) be two Higgs semistable
Hitchin pairs with det(Vi) ≃ OX , i = 1, 2. Suppose that the ground field k has characteristic p
such that

rank(V1) + rank(V2) < p+ 2

Then the tensor product (V1 ⊗ V2, θ1 ⊗ 1 + 1⊗ θ1) is also Higgs semistable.

1.2. Theorem. (Theorem 9.11) Let (E, θ) be a stable Hitchin pair of degree zero with G

semisimple and ρ : G→ SL(M) be a representation. Let ψ
G
(M) be as in (9.0.2) and Definition

9.3. Suppose that p > ψ
G
(M). Then the associated Hitchin pair (E(M), θM ) is polystable.

The layout of the paper is as follows: in Section 2 we develop the generalities about Hitchin
pairs and define the concept of a Hitchin scheme. In Section 3 we study principal G–Hitchin
pairs and the associated Hitchin schemes. Section 4 contains generalization of Bogomolov
stability of sections in the Hitchin pair setting. In Section 5 we recall results from the papers of
Kempf, Hesselink, Kirwan and Ramanan-Ramanathan. In Section 6 and Section 7 we give an
approach following Bogomolov for the proof of the main theorem in char 0. In Section 8 we prove
the main semistability theorem in positive characteristics with the low height assumptions. In
the last section we prove the theorem on polystability of associated bundles under assumptions
that the characteristic p is larger than the low separability index of some natural representation
spaces (see Remark 9.13 for some clarifications on earlier papers on this result, which treat
bundles without Higgs structures). The final remarks (Remark 9.16) indicate how these notions
easily generalize to the case when X is a higher dimensional variety since we work with µ–
semistability.

Acknowledgements: We thank Jochen Heinloth, Madhav Nori and D.S. Nagaraj for some
helpful discussions and suggestions. We sincerely thank the referee for his/her comments and
suggestions. They have gone a long way to clarify the paper. The first author thanks the
hospitality of TIFR and KSOM. The second author thanks the hospitality of CMI and IMSc.

2. Hitchin pairs, basic facts

Throughout this paper, unless otherwise stated, we have the following notations and assump-
tions:
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2.1. The Category of Hitchin pairs. Let X be a smooth projective curve over k. Let U be
a locally free OX–module.

2.2. Definition. A U–Higgs structure (or simply a Higgs structure, since U is fixed) on a
locally free OX–module F is an OX–module map θ : F → F ⊗ U together with the integrability
condition θ ∧ θ = 0, where θ ∧ θ : F → F ⊗ ∧2(U).

2.3. Definition. A Hitchin pair is a locally free OX–module F which is equipped with a Higgs
structure θ and we denote it by (F , θ).

2.4. Remark. The structure sheaf OX of the base curve X will always carry the trivial Higgs
structure, i.e the zero map OX → OX ⊗ U unless otherwise stated.

2.5. Definition. The space of Higgs sections of a Hitchin pair (F , θ) is defined to be the space
of sections s of the OX–module F such that θ ◦ s = 0.

The tensor product of two Hitchin pairs (E , φ)⊗ (F , θ) has E ⊗ F as the underlying bundle
and the Higgs structure is defined as

φ⊗ 1 + 1⊗ θ.(2.0.1)

2.6. Definition. The dual Hitchin pair is defined as the pair where (F∗,−θt), where F∗ is the
usual dual of F and θt is defined as follows: consider the Higgs structure θ : F → F⊗U. Taking
duals, we get θ∗ : F∗ ⊗ U∗ → F∗. Tensor this with U to get 1⊗ θ∗ : F∗ ⊗ (U⊗ U∗) → F∗ ⊗ U.
Now embed F∗ →֒ F∗ ⊗ (U ⊗ U∗) using the identity section OX → Hom(U,U) = (U ⊗ U∗).
Composing these maps we get

θt : F∗ → F∗ ⊗ U.(2.0.2)

The dual Higgs structure is given by taking −θt to be the Higgs structure on F∗.

2.7. Remark.The sign −θt is given to take care that (F , θ)⊗ (F∗,−θt) gives (OX , 0) when rank
F is 1 (cf. [26, Page 14]).

Morphisms of Hitchin pairs are defined as usual, i.e morphisms of theOX–modules compatible
with the Higgs structures. We denote by Hitch(X) the category of Hitchin pairs with the tensor
structure, duals and morphisms as described above.

2.8. Remark. A Higgs section can also be thought of as a Higgs morphism s : OX → F , where
OX is given the trivial Higgs structure, i.e the zero map OX → U.

2.9. Hitchin pairs as Λ-modules. C. Simpson in ([27, Section 2]) gives an equivalent de-
scription of Hitchin pairs; although this is stated under assumptions of characteristic zero, it
is not hard to see that the formalism holds good over positive characteristics as well. Let Λ be
the OX–algebra defined by

Λ = Sym(U∗)(2.0.3)
4



If α ∈ U∗ and if V and W are Λ–modules, then V ⊗OX W gets a Λ–module structure by the
Leibnitz formula

α(v ⊗ w) = α(v)⊗ w + v ⊗ α(w).(2.0.4)

Then we have

2.10. Lemma. (cf. [27, Lemma 2.13, page 85])

(1) Giving a Higgs structure on an OX–module F is equivalent to giving a Λ–module struc-
ture on F .

(2) Morphism of Hitchin pairs are equivalently morphism of OX–modules which are simul-
taneously also Λ–module maps.

(3) We have an equivalence of categories between Hitch(X) and localy free Λ–Modules.

2.11. Remark. In fact, Simpson ([27, Section 2, page 77]) considers more general objects such as
bundles with integrable connections. For example, if we take DX to be the sheaf of differential
operators on a smooth complex curve then we could work with the category of left DX–modules.

2.12. Hitchin algebras and Hitchin schemes. We work with the category of affine X–
schemes. The generalities that we develop here are essential in the paper.

2.13. Definition. A Hitchin OX–algebra is a faithfully flat OX–algebra A such that

(1) A gets a Λ–module structure, i.e a map

θ : A → A⊗OX U

(2) Furthermore, for the natural Λ–module structure on A⊗A, the multiplication map

A⊗OX A → A

and the map OX → A, given by the unit in A, are Λ–module maps.

A Hitchin X–scheme is an affine X–scheme f : Z → X such that f∗(OZ) gets the structure
of a Hitchin OX–algebra. In particular, for f = idX , the trivial Higgs structure on OX gives a
Hitchin X–scheme structure on X.

2.14. Remark.Equivalently (following Beilinson-Drinfeld ([3])), a Hitchin OX–algebra is a faith-
fully flat OX–algebra in the tensor category of Λ–modules. For example, OX is a Hitchin OX–
algebra and if B is a commutative k–algebra, then B ×k OX is a Hitchin algebra. A word of
caution here: a Hitchin OX–algebra is not a Λ–algebra in the usual sense of the term as can be
seen from (2.0.4).

Let C denote the category of Hitchin X–schemes. A morphism between two Hitchin X–
schemes is a morphism φ : Z → Y which preserves the Λ–module structure, i.e the canonical
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map

Z

f   @
@@

@@
@@

φ
// Y

g
~~~~

~~
~~

~

X

(2.0.5)

where φ induces a morphism of OX–algebras g∗(OY ) → f∗(OZ) which should be also a Λ–
module map.

2.15. Lemma. (Fibre products in C) Let Z and T be in C. Then the fibre product Z ×X T is in
C.

Proof: This is clear if one uses (2.0.4).

2.16. Corollary.Let φ : Z → T be a morphism of Hitchin X–schemes. Let T1 ⊂ T be a closed
Higgs subscheme. Then the inverse image scheme Z1 = φ−1(T1) ⊂ Z, being a fibre product, is
a closed Higgs subscheme of Z.

2.17. Remark. Let K = k(X) be the function field of X . We observe that we can define Hitchin
algebras over K as follows: let A be a finite type K–algebra and fix a finite dimensional
projective K–module UK . Let ΛK = Sym(U∗

K). A Higgs structure is a map

θ : A⊗K U∗
K → A

Furthermore, for the natural ΛK–module structure on A⊗A, the multiplication map

A⊗K A→ A

is a ΛK–morphism. A Hitchin scheme over K is Spec(A) for a Hitchin algebra A over K.

3. Hitchin functors and principal bundles

3.1. Hitchin functors following Nori. Let G be an affine group scheme defined over an
algebraically closed field k. A G–Hitchin functor is a tensor functor F : Rep(G) → Hitch(X)
satisfying Nori’s axioms, namely F is a strict, exact and faithful tensor functor (cf. [19, Page
77]) such that the following diagram commutes:

Hitch(X)

“forget”
��

Rep(G)

F
88qqqqqqqqqq

F ′

// V ect(X)

(3.0.1)

where the functor forget : Hitch(X) → V ect(X) forgets the Higgs structure. If V is a finite
dimensional G–module, we will denote the associated Hitchin pair by F (V ). Note that the
data underlying F (V ) is a locally free sheaf F ′(V ) together with a Higgs structure on F ′(V ).
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3.2. Remark. Observe that the forget functor is a tensor functor in this situation and hence by
Nori’s observation, the functor F ′ canonically gives rise to a principal G–bundle on X . The
aim in this section is to represent the functor F by a suitable “Hitchin scheme” which has as
its underlying principal G–bundle the one given by F ′.

Let S(X) be the category of quasi-coherent OX–modules. We extend F to a functor

F̄ : {G−mod} → S(X)

as follows: Let M be an arbitrary G–module. Express M as a direct limit of finite dimensional
G–modules

M = lim
−→
j

Vj(3.0.2)

now define,

F̄ (M) := lim
−→
j

F (Vj)(3.0.3)

which realises F̄ (M) as a quasi-coherent OX–module.

3.3. Remark. The definition of the quasi-coherent sheaf F̄ (M) is independent of the particular
limit chosen.

3.4. Conjugate Higgs structure. We observe that F̄ (M) has a natural Higgs structure as
follows: for each Vj we have the Higgs structure given by

ψj : F (Vj) → F (Vj)⊗ U(3.0.4)

Taking limits we get the Higgs structure on F̄ (M). In this situation, we equip F̄ (M) with the
conjugate Higgs structure as follows:

The Higgs structure (3.0.4) canonically induces on the dual locally free OX–module F (V ∗
j )

and a Higgs structure ψ̂j : F (V
∗
j ) → F (V ∗

j )⊗ U. Dualizing ψ̂j we get

(ψ̂j)
∗ := ϕj : F (Vj)⊗ U∗ → F (Vj)(3.0.5)

Now taking limits and observing that tensor products commutes with direct limits, we get a
map

lim
−→
j

ϕj = ϕ : F̄ (M)⊗ U∗ → F̄ (M)(3.0.6)

which we term the conjugate Higgs structure on the quasi-coherent module F̄ (M). We observe
that the induced Λ–module structure on F̄ (M) comes from this conjugate Higgs structure and
extending it to an action of Sym(U∗).

7



3.5. Remark. We note that in the finite dimensional setting, a “conjugate Higgs structure”
is in reality the “dual” of the “dual Higgs structure” as defined in Definition 2.6. Note the
importance of the signs. This can be seen above in (3.0.5) above, where we take the “dual

Higgs structure” ψ̂j on F (V ∗
j ) and then once more dualize to get ϕj which is the “conjugate

Higgs structure” on F (Vj). Taking “duals” works fine in the finite dimensional setting but since
we need the infinite dimensonal setting, we need to be careful. Finally, the Λ–module structure
on a Hitchin pair comes via the conjugate Higgs structure in this sense.

3.6. Associated Hitchin scheme. We have a natural extension of the functor F to the
category of affine G–schemes:

HF : {affine G− schemes} → {affine X − schemes}

To see this, let Z = Spec(k[Z]). Then k[Z] is a (possibly) infinite dimensional G–module and
also the multiplication map k[Z] ⊗ k[Z] → k[Z] along with the tensor axiom for F give the
sheaf F̄ (k[Z]) the structure of an OX–algebra. This defines a X–scheme j : HF (Z) → X where

HF (Z) := Spec(F̄ (k[Z])(3.0.7)

and further we can identify j∗(OHF (Z)) = F̄ (k[Z]) as an OX–algebra.

Let F be a Hitchin functor and let Z = Spec(k[Z]) be an affine G–scheme. Then since
j∗(OHF (Z)) = F̄ (k[Z]) we have the canonical conjugate Higgs structure on the OX–algebra
F̄ (k[Z]), (i.e a OX–module morphism)

ηZ : F̄ (k[Z])⊗ U∗ → F̄ (k[Z])(3.0.8)

Again, the multiplication map k[Z]⊗ k[Z] → k[Z] along with the tensor axiom for F give the
OX–algebra F̄ (k[Z]) the structure of an Hitchin OX–algebra. This therefore gives the structure
of a Hitchin X–scheme on HF (Z), which we denote by (HF (Z), ηZ).

3.7. Definition. The Hitchin X–scheme (HF (Z), ηZ) is called the associated Hitchin scheme
to the Hitchin functor F .

3.8.Geometric Higgs section. Recall that a section of the fibration HF (Z) is a X–morphism
s : X → HF (Z) which is given by an OX–algebra morphism s : F̄ (k[Z]) → OX .

3.9. Definition. We say that s : X → (HF (Z), ηZ) is a geometric Higgs section of the
associated Hitchin scheme (HF (Z), η) if further the composite:

s ◦ η : F̄ (k[Z])⊗ U∗ → F̄ (k[Z]) → OX(3.0.9)

is zero.

3.10. Remark. Equivalently, s : F̄ (k[Z]) → OX is a Hitchin OX–algebra morphism. In other
words, s is a section in the category C.

8



We will denote by E(V ) the image FE(V ) as a locally free OX–module and (E(V ), θV ) the
associated Hitchin pair. While viewing the G-module V as an affine scheme we will use the
notation

V = Spec(Sym(V ∗))(3.0.10)

The associated geometric fibre space is denoted by E(V).

3.11. Remark. Recall that E(V) is the geometric vector bundle in the sense of Grothendieck.

3.12. Proposition. A Higgs section (see Definition 2.5) of the Hitchin pair (E(V ), θV ) gives a
geometric Higgs section of the associated Hitchin scheme (E(V), ηV) and conversely.

Proof: By the functorial property of the symmetric algebra, an OX–module map OX → E(V )
canonically gives rise to an OX–algebra map Sym(E(V ∗)) → OX i.e an OX–algebra map
F̄ (k[V]) → OX and conversely.

We need only observe that the Higgs section property is also preserved. But this can be
formulated as Λ–structures and morphisms which preserve this structure. Therefore, by the
functorial property of the symmetric algebra, a Λ–module map OX → E(V ) canonically gives
rise to a Hitchin OX–algebra map Sym(E(V ∗)) → OX i.e a Hitchin OX–algebra map F̄ (k[V]) →
OX and conversely. This takes care of the Higgs property.

QED

3.13. Principal Hitchin pairs. We now define principal Hitchin pairs and show the repre-
sentability of a G–Hitchin functor by a principal Hitchin pair.

3.14. Definition. A principal G–Hitchin pair j : E → X is a principal G–bundle together
with the structure of an associated Hitchin scheme on E, i.e a conjugate Higgs structure on the
OX–algebra j∗(OE), viz

η : j∗(OE)⊗ U∗ → j∗(OE)(3.0.11)

Furthermore, j∗(OE) gets the structure of a Hitchin OX–algebra. In other words, E → X is a
principal G–object in the category C.

Denote the principal G–Hitchin pair by the pair (E, η).

3.15. Remark. Giving a principal G–Hitchin pair (E, η) gives the structure sheaf OE of the
underlying scheme E a structure of j∗(Λ)–module. This comes by taking j∗(η) for the η in
(3.0.11). This firstly gives a Higgs structure for the locally free sheaf j∗(U∗) which then extends
to a j∗(Λ) structure on OE .

3.16. Theorem. A principal Hitchin pair E canonically defines a Hitchin functor

FE : Rep(G) → Hitch(X)(3.0.12)

Conversely, let F be a Hitchin functor. Then there exists a principal Hitchin pair E unique
upto unique isomorphism such that there is a tensor equivalence of functors F ≃ FE.

9



Proof: In [19, Proposition 2.9], Nori proves this theorem for a tensor functor F : Rep(G) →
V ect(X) i.e without the Higgs structures. Observe that we have an equivalence of categories
Hitch(X) ≃ {Λ − mod}. The point to note is that taking direct limits commutes with the
Λ-module structure. The representing torsor E in the category of principal bundles (obtained
in Nori’s theorem) has the property that the associated locally free OX–modules E(V ) are Λ–
modules as well. Further, the tensor structure on Image(FE) coupled with the Higgs structure
gives FE(k[G]) or equivalently j∗(OE), the structure of a Hitchin OX–algebra and we are done.

Conversely, let E be a principal G–Hitchin pair. Let V ∈ Rep(G) be a finite dimensional
G–module. Then we need to show that the associated vector bundle E(V ) is a Hitchin pair and
this association is functorial.

By [19, Lemma 2.6], we have a functorial isomorphism of G–sheaves:

j∗(E(V )) ≃ VE = V ⊗k OE(3.0.13)

The trivial sheaf VE gets the obvious structure of a j∗(Λ)–module on OE (see Remark 3.15).

Let θ̃ : j∗(E(V )) ⊗ j∗(U∗) → j∗(E(V )) be the induced conjugate Higgs structure. Then by
the projection formula, this structure descends the structure of a Λ–module on E(V ). This
Λ–module structure is clearly functorial and proves the converse.

QED

3.17. Remark. Let G be a connected semisimple algebraic group. We recall that when the
ground field is the field of complex numbers, C. Simpson has defined a principal Hitchin pair,
or a principal Higgs bundle as a principal G–bundle together with a section θ ∈ H0(E(g)⊗Ω1

X)
with the integrability conditions. We remark that this definition is equivalent to giving a
G–Hitchin functor and this can be seen as follows.

Let g be a semisimple Lie algebra over C. Then the category of Lie algebra modules g → gl(V )
is a neutral Tannaka category and can be seen to recover back the group G. This is in a sense
the “infinitesimal Tannakian construction” as done for example in [17, Proposition 6.11].

We carry over this formalism to the setting of Hitchin functors. Given a Hitchin functor
F : Rep(G) → Hitch(X) let ρ : G → GL(V ) be an object in Rep(G). Then for every V , we
have a Hitchin pair

θV : OX → F (V )∗ ⊗ F (V )⊗ U

or equivalently a section θV ∈ H0(F (gl(V )) ⊗ U). These sections have the naturality with
respect to the tensor structure on Rep(G) and by the “infinitesimal picture” mentioned above,
we get the required section θ ∈ H0(F (g)⊗ U)).

Conversely, given (E, θ) as in Simpson, for every ρ : G → GL(V ) consider the induced
differential dρ : g → gl(V ). This induces an OX–module map:

θ : OX → E(g)⊗ U → (E(gl(V ))⊗ U))

which gives θV ∈ H0(E(gl(V ))⊗ U)) or equivalently a Hitchin functor.
10



3.18. Remark. From now on because of the equivalence F ≃ FE , we will denote the associated
Hitchin scheme by (E(Z), ηZ) and the sheaf F̄ (k[Z]) simply by E(k[Z]).

3.19. Associated maps. Let (E, η) be a G–Hitchin pair. A geometric Higgs section s : X →
(E(Z), ηZ) of the associated Hitchin scheme can therefore be viewed as a map

t : E(k[Z])) → OX

of OX–algebras such that the composite

t ◦ ηZ : E(k[Z]))⊗ U∗ → E(k[Z])) → OX(3.0.14)

is zero. Note that we give as always OX the trivial Higgs structure.

3.20. Remark. On the algebra k[Z] the conjugate Higgs structure is nothing but the Higgs
structure on the restricted dual of k[Z], viz, taking the conjugate Higgs structure on the finite
dimensional modules and taking the limit of the duals gives the restricted dual.

We have the following central fact:

3.21. Proposition. Let (E, η) be a G–Hitchin pair. Let Z and T be two affine G–schemes
and let φ : Z → T be a G–map. Then φ–induces a map of associated Hitchin schemes E(φ) :
(E(Z), ηZ) → (E(T ), ηT ). Further, a geometric Higgs section s : X → (E(Z), η) gets mapped
to a geometric Higgs section E(φ) ◦ s : X → (E(T ), ηT ).

Proof: The map φ induces a map of G–modules

φ∗ : k[T ] → k[Z](3.0.15)

Now express k[T ] as k[T ] = lim
−→
j

Vj , where Vj are finite dimensional G–modules. Similarly,

k[Z] = lim
−→
l

Wl. A G–module map φ∗ is therefore the data which gives for every j a Wφ(j)

together with a family of G–module maps of finite dimensional modules

φj : Vj →Wφ(j)(3.0.16)

inducing maps of the dual structures on the bundles and associated morphisms of the dual
Hitchin pairs

E(Vj)⊗ U∗ //

��

E(Vj)

��

E(Wφ(j))⊗ U∗ // E(Wφ(j))

(3.0.17)

Now taking limits we get

E(k[T ])⊗ U∗ //

��

E(k[T ])

��

E(k[Z])⊗ U∗ // E(k[Z])

(3.0.18)
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The vertical arrow morphism of OX–algebras

E(k[T ]) → E(k[Z])(3.0.19)

induces at the scheme level the morphism

E(φ) : E(Z) → E(T )(3.0.20)

and the diagram of sheaves above gives that this is a morphism of associated Hitchin schemes.
This proves the first part of the proposition.

By (3.0.14) a Higgs section of E(k[Z]) is a map E(k[Z]) → OX such that the composite

E(k[Z])⊗ U∗ → E(k[Z]) → OX(3.0.21)

is zero. Hence by (3.0.18) we get a diagram

E(k[T ])⊗ U∗ //

��

E(k[T ])

��

// OX

E(k[Z])⊗ U∗ // E(k[Z]) // OX

(3.0.22)

i.e, the section E(k[T ]) → OX is induced by the composite E(k[T ]) → E(k[Z]) → OX .

The commutation of the left half of the diagram immediately implies that the composite

E(k[T ])⊗ U∗ → E(k[T ]) → OX(3.0.23)

is also zero which implies that the E(φ)(s) is also a geometric Higgs section of the associated
Hitchin scheme E(T ).

QED

4. Bogomolov stability of sections

Let k be an algebraically closed field of arbitrary characteristic and G a connected reductive
algebraic group.

4.1. Higgs reduction of structure group. Let H ⊂ G be a closed subgroup.

4.2. Definition. A reduction of structure group of a G–Hitchin functor is a factoring of F as
follows:

Rep(G)

i

��

F
// Hitch(X)

Rep(H)
F ′

88qqqqqqqqqq

(4.0.1)

where F ′ : Rep(H) → Hitch(X) is a H–Hitchin functor.
12



4.3. Lemma. Let H ⊂ G be a closed subgroup and let (E, θ) be a principal Hitchin pair. Let
E
H
⊂ E be a reduction of structure group of the underlying G–bundle E to H. Suppose that E

H

gets the structure of a Hitchin X–scheme and the inclusion E
H

→֒ E is a morphism of Hitchin
schemes. Then E

H
is a Higgs reduction of structure group.

Proof: The proof is formal and follows easily from Theorem 3.16.

4.4. Lemma. Let (E, η) be a principal Hitchin pair giving rise to FE : Rep(G) → Hitch(X).
Let H ⊂ G be a closed reductive subgroup. Giving a Higgs reduction of structure group of FE

to H is equivalent to giving a Higgs section of the associated Hitchin scheme E(G/H) → X.

Proof: Let Z be an affine G–scheme. A geometric Higgs section s : X → (E(Z), ηZ) of the
associated Hitchin scheme can therefore be viewed as a G–equivariant Higgs X–morphism:

E

  @
@@

@@
@@

@

φ
// Z ×X

pr2
{{ww

ww
ww

ww
w

X

(4.0.2)

of Hitchin X–schemes E and Z ×X where the Hitchin scheme structure on the product is the
one induced from the canonical structure on X . Recall that X always carries the “trivial Higgs
structure”.

From this, it follows that any subset T ⊂ Z ×X flat over X is a Higgs subscheme. Hence,
for any G–equivariant map from the Hitchin G–scheme E to Z ×X , the inverse image will get
the structure of a Higgs X–subscheme on E which is G–invariant. This follows from Corollary
2.16.

Therefore if z ∈ Z is any point then we can consider the closed Higgs subscheme {z}×X →֒
Z ×X . This is a Higgs subscheme for any point z ∈ Z since the Higgs structure on Z ×X is
the one induced by the structure on X . Then by Corollary 2.16, the inverse image subscheme
φ−1({z} ×X) = Ez is a Higgs X–subscheme of E.

Specializing to the case when Z = G/H which is assumed affine, we then see that a geometric
Higgs section s : X → E(G/H) is given by a G–equivariant Higgs X–morphism φ : E →
G/H×X . The inverse image of the identity coset φ−1(e.H×X) then gives E

H
⊂ E as a Higgs

subscheme. By classical geometry (eg. Kobayashi & Nomizu), one knows that E
H
⊂ E gives

the H–reduction associated to s, hence by Lemma 4.3 the induced H–reduction E
H
is in fact

a Higgs reduction of structure group of the principal Hitchin pair (E, η) to H . The converse
is easy to see. Again classical geometry shows that giving EH gives rise to a G–equivariant
X–morphism E → G/H × X . E gets a Higgs structure and this map is trivially a Higgs
morphism as seen above.

QED
13



4.5. Remark. More generally, suppose that H ⊂ G is a subgroup such that G/H ⊂ Z is an
arbitrary subscheme of the affine G–scheme Z. Let K = k(X) be the function field of the base
curve X . Suppose further that over the generic point ξ ∈ X(K), the reduction section s(ξ) lies
in E(G/H) ⊂ E(Z).

Now consider the induced morphism

φK : EK → G/H × Spec(K) ⊂ Z × Spec(K)

we see that φ−1
K (e.H × Spec(K)) gives a Higgs K–subscheme (E

H
)K ⊂ EK , i.e a generic Higgs

reduction of structure group to H .

4.6. Remark.We fuss here about the affineness of Z since we have developed the earlier formalism
of associated Hitchin spaces only for affine G–schemes. Possibly, a graded version of this would
allow us projective G–schemes as well. In any case, when we need to talk of Higgs reductions
to parabolic subgroups, we exercise caution while interpreting the reduction datum as sections.

We now make a few remarks on the compatibility of the Higgs structure with the reduction
of structure group.

4.7. Lemma. Let H ⊂ G and let E
H
⊂ E be a reduction of structure group to H. Suppose that

for a dense open U ⊂ X, the Higgs structure on E comes from E
H
. Then the Higgs structure

on E on the whole of X comes from E
H
.

Proof: By [6, Proposition 2.21], any H–module W as an H–module is a subquotient of a G–
module V . i.e, there is a finite dimensional H–submodule M →֒ V and a H–module surjection
M ։W . So we have a diagram of H–modules:

M

��

// V

W

(4.0.3)

Applying the functor E
H
, we get the diagram of vector bundles:

E
H
(M)

��

// E
H
(V )

E
H
(W )

(4.0.4)

where E
H
(V ) has a Higgs structure since E

H
(V ) ≃ EG(V ) and over a dense open U ⊂ X ,

the diagram is one of Hitchin pairs. Since E
H
(M) ⊂ E

H
(V ), it follows that the X–Higgs

structure on E
H
(V ) restricts to a X–Higgs structure on E

H
(M) extending the given one on

U . Similarly, by considering the surjection E
H
(M) → E

H
(W ) we get an extension of the U–

Higgs structure on E
H
(W ) to the whole of X . This implies that E

H
gives a H–Hitchin functor

FH : Rep(H) → Hitch(X).
14



QED

4.8. Semistability of principal Hitchin pairs. We now give the definitions of Higgs
semistable (resp. polystable, stable) principal Hitchin pairs.

4.9. Definition. Let (E, θ) be a principal G–Hitchin pair. A reduction of structure group
σ : X → E(G/P ) of the underlying principal G–bundle to a parabolic subgroup P ⊂ G is said
to be a Higgs reduction if the P–subbundle E

P
⊂ E (induced by σ) gives a Higgs reduction of

structure group in the sense of Definition 4.2. In other words, there is a Higgs structure θ
P
on

E
P
, such that the extension of structure groups takes (E

P
, θ

P
) to (E, θ).

4.10. Remark. Note that the above definition allows us to handle reduction of structure groups
to parabolic subgroups as well. More precisely, the reduction section σ above gives E

P
and we

impose the condition that this P–bundle gets the structure of a Hitchin scheme and the induced
Hitchin scheme structure on E is the one coming from the original Hitchin pair structure (E, θ)
(see Remark 4.6 and the discussions before the remark).

4.11. Example. Let (E, θ) be a G–Hitchin pair and let G/P ≃ P(V ) for a finite dimensional
G–module V . Then giving a Higgs reduction s : X → E(G/P ) ≃ E(P(V )) is equivalent to
giving a Higgs line subbundle L ⊂ E(V ) for the locally free Hitchin pair (E(V ), θV ) in the sense
that, there is a Higgs structure L → L ⊗ U such the inclusion L →֒ E(V ) preserves the Higgs
structures.

4.12.Definition.(Following A. Ramanathan) We follow the convention that if χ is a dominant
character on a parabolic subgroup P ⊂ G, then the dual L∨

χ, of associated line bundle Lχ is
ample.

(1) The G–Hitchin pair (E, θ) is called Higgs semistable (resp. Higgs stable) if for every
parabolic subgroup P of G, and for every Higgs-reduction of structure group σ

P
: X →

E(G/P ) to P and for any dominant character χ of P , the bundle σ∗
P
(Lχ)) has degree

≤ 0 (resp.< 0). Observe that, if E
P
is the induced P–Hitchin scheme coming from σ

P
,

then we have an isomorphism of line bundles E
P
(χ) ≃ σ∗

P
(Lχ)) on X.

(2) A Higgs-reduction of structure group of (E, θ) to a parabolic subgroup P is called ad-
missible if for any character χ on P which is trivial on the center of G, the line bundle
E
P
(χ) associated to the reduced P -bundle E

P
has degree zero.

(3) A G–Hitchin pair (E, θ) is said to be Higgs polystable if it is semistable and furthermore,
for every admissible reduction of structure group (E

P
, θ

P
) to a parabolic subgroup P ,

there is a Levi subgroup R ⊂ P together with a Higgs-reduction of structure group
(E

R
, θ

R
) to R.

4.13. Remark. Recall the usual notions of Higgs semistability of locally free Hitchin pairs (cf.
Simpson [26]). This is analogous to the µ–semistability definition, namely, (W, η) is Higgs

semistable if for every Hitchin subpair (W1, η1), we have µ(W1) ≤ µ(W ), where µ(W ) = deg(W )
rank(W )

.

It is the usual exercise to show that if (W, η) is a Higgs semistable (resp. Higgs stable, Higgs
polystable) locally free Hitchin pair, then the underlying principal GL(r)–Hitchin pair is Higgs
semistable (resp. Higgs stable, Higgs polystable) in the above sense.

15



4.14. Remark. If a G–Hitchin pair has no admissible reduction to a proper parabolic subgroup
P then the Hitchin pair is easily seen to be Higgs stable.

4.15. Definition. (Following Bogomolov) Let (E, θ) be a principal G–Hitchin pair and let
G −→ GL(V ) be a representation of G. Let s be a Higgs section of the associated Hitchin scheme
(E(V), θV). Then we call the section “s” Bogomolov stable (resp. Bogomolov semistable,
Bogomolov unstable) relative to G if at one point x ∈ X the value of the section s(x) is stable
(resp semistable, unstable) in the GIT sense, i.e as points on V.

4.16. Remark.Recall from GIT the definitions of semistability, stability and instability of points
of V. A point ξ ∈ V is semistable if 0 /∈ O(ξ); the point ξ is stable if furthermore, O(ξ) is
closed and Stab(ξ) is finite. The point ξ is unstable if it is not semistable.

4.17. Remark. It is easy to see the non-dependence of the definition on the point x ∈ X .
Consider the inclusion k[V ]G →֒ k[V ] and the induced morphism q : V → V/G. This induces
a morphism E(q) : E(V) → E(V/G). Observe that V/G = Spec(k[V ]G) is a trivial G-space.
Thus we have the following diagram:

s : X −→ E(V) → E(V/G) ≃ X × V/G(4.0.5)

Composing with the second projection we get a morphism X → V/G which is constant by the
projectivity of X . Hence the value of the section is determined by one point in its G-orbit. (cf.
[22, 1.10]). Thus the fibre of q containing the orbit Orb(s(x)) is independent of x ∈ X .

By GIT, one knows that an orbit O consists of points which are unstable if and only if O ⊂
q−1(q(0)). Similarly, O consists of stable points if and only if O = q−1(q(O)) and furthermore,
the stabilizer of a point of O is finite.

Thus, the property of whether a section is Bogomolov semistable, stable or unstable is reduced
to checking it at any point of the base space X .

4.18. Lemma. Let G be a reductive group and let E be a principal G–bundle. Let V be a finite
dimensional G–module and let s : X → E(V ) be a Bogomolov semistable section of E(V ), or
equivalently, s(x) is GIT semistable for some x ∈ X. Then deg(s∗(L)) ≥ 0 for the G–linearized
ample bundle L on P(V ). More generally, let Y be a projective variety on which there is a
G–linearized action with respect to an ample line bundle L. If s : X → E(Y ) is a section such
that for some point x ∈ X image s(x) ∈ E(Y )x is GIT semistable for the G–action. Then,
deg(s∗(L)) ≥ 0. If moreover, deg(s∗(L)) = 0, then the section takes it values in the GIT fibre
F ⊂ Y ss → Y/G containing s(x).

Proof: Since s(x) is GIT semistable for the G–action on V , there exists a G–homogeneous
polynomial of degree n > 0, which is non-zero on s(x). In other words, we get a non-zero
section of s∗((L)n), implying that deg(s∗(L)) ≥ 0. The second half is similar and for details see
[20, Proposition 3.10].

QED
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5. A summary of results on instability

5.1. Some notations and preliminary definitions. Let k be an algebraically closed field
of arbitrary characteristic. Let G be a connected reductive algebraic group over k. Let T
be a maximal torus of G which we fix throughout and we fix a Borel subgroup B ⊃ T . Let
X(T ) := Hom(T,Gm) be the character group of T and Y (T ) := Hom(Gm, T ) be the 1-
parameter subgroups of T (defined over k). Let R ⊂ X(T ) be the root system of G with
respect to T . Let W be the Weyl group of the root system R. Let ( , ) denote the W-invariant
inner product on X(T ) ⊗ R. This inner product determines an inner product for any other
maximal torus since any two are conjugate.

For α ∈ R, the corresponding co-root α∨ is 2α/(α, α). Let R∨ ⊂ X(T )⊗R be the set of all
co-roots. Let B ⊂ G be a Borel subgroup containing T . This choice defines a base ∆+ of R
called the simple roots. Let ∆− = −∆+. A root in R is said to be positive if it is a non-negative
linear combination of simple roots. We take the roots of B to be positive by convention. Let
∆∨ ⊂ R∨ be the basis for the corresponding dual root system. Then we can define the Bruhat
ordering on W. The longest element with respect to this ordering of W is denoted by w0.
A reductive group is classified by these root-data, namely the character group, 1-parameter
subgroups, the root system, co-roots and the W-invariant pairing.

There is also a mapping from X(T )×Y (T ) → Z, (χ, λ) 7→ 〈χ, λ〉 which is a dual pairing over
Z. The inner product on X(T ) gives one on Y (T ), say (λ, λ′). For λ ∈ Y (T ), define χλ ∈ X(T )
by χλ(λ

′) = (λ, λ′). Thus, (λ, λ′) = (χλ, χλ′). Since any two maximal tori are conjugate, for
any 1-PS λ of G, we have a well-defined norm ‖ λ ‖ with ‖ λ ‖2∈ Q.

Following Hesselink, define Y (G) = Hom(Gm, G) and define Y (G, k′) to be the one parameter
subgroups of G defined over k′ for any field k′ ⊃ k. In particular, Y (G) = Y (G, k).

Define q(λ) :=‖ λ ‖2 which defines a map q : Y (T ) ⊗ Q → Q. The map q extends to a
G–invariant map from M(G) → Q, where M(G) = (Y (G) × N)/ ∼, where (λ, l) ∼ (µ,m) if
λ(tm) = µ(tl). Note that M(T ) = Y (T )⊗Q.

5.2. Definition. Let λ ∈ Y (T ). Define the associated parabolic subgroup P
λ
as follows:

P
λ
:= {g ∈ G | lim

t→0
λ(t) · g · λ(t)−1 exists in G}(5.0.1)

5.3. The Kempf-Rousseau 1-PS. Let V be a finite dimensional G–module and view it as a
T– module. Then we get a decomposition, V = ⊕Vχ, summed over all characters χ ∈ X(T )
such that Vχ 6= 0. For elements v ∈ V , we express it as v = ⊕vχ. Define the state of v,
ST (v) = {χ | vχ 6= 0}.

For λ ∈ Y (T ) = Hom(Gm, T ), we have V = ⊕Vi, where

Vi = {v ∈ V | λ(a).v = ai · v ∀a ∈ k∗}(5.0.2)

Thus, Vi = ⊕Vχ, where the sum is over all characters χ such that 〈χ, λ〉 = i.
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Let V q = ⊕i≥qVi. Then. V q+1 ⊂ V q and each V q is invariant under P
λ
(see Definition 5.2).

Thus, the group P
λ
acts on the quotient V q/V q+1 and the quotient map

π : V q →
V q

V q+1
(5.0.3)

is P
λ
–invariant. Further, the unipotent radical U(λ) acts trivially on V q/V q+1.

Let v ∈ V . For a 1-PS λ whose image is in some maximal torus T ′, define

m(v, λ) := inf{〈χ, λ〉 | χ ∈ ST ′(v)}(5.0.4)

Following Hesselink, we call m(v, λ) the “measure of instability” (cf. [8, 2.2, page 77] and [13,
12.1]). The numerical criterion of stability is that v ∈ V is semistable if and only if for every
λ we have m(v.λ) ≤ 0. (Note that the m(v, λ) here is different from the µ(v, λ) in Mumford’s
GIT and unfortunately called µ in [20]).

Fix vo ∈ V such that 0 ∈ G.vo, i.e an unstable point. G. Kempf (cf. [12]) then showed that
the function λ 7→ m(vo, λ)/‖ λ ‖ attains a maximum value on Y (G) (see below the paragraph
after Definition 5.7).

We may assume that this λ ∈ Y (T ). Then, λ is uniquely determined among the indivisible
1-PS’s of T and is called the instability 1-PS for vo. Put

j := m(vo, λ)(5.0.5)

then j = max{q | vo ∈ V q}.

Observe that the 1PS λ determines a character χ
λ
on P

λ
which is determined up to raising to

a positive power. Further, if p ∈ P
λ
, then P

pλnp−1
= P

λ
for all n > 0. Moreover the associated

characters satisfy the following relation:

χr

pλnp−1
= χs

λ
(5.0.6)

for some r, s > 0 (similar to the definition of M(G)).

5.4. Proposition. ([20, Proposition 1.12]) Let λ be the Kempf-Rousseau 1-PS for vo. Then
there exists a positive integer r and a character θλ of P

λ
determined up to equivalence as in

(5.0.6) by vo such that π(vo) ∈ P(V j/V j+1) is semistable for the natural action of P
λ
/U(λ) with

the linearisation given by O(r)⊗ Oθ−1
λ
. This gives a non-constant homogeneous function f on

V j/V j+1 such that f(π(vo)) 6= 0 and f(g.π(v)) = θλ(g)
rf(π(v)) for all v ∈ V j and g ∈ P

λ
.

5.5. Remark. We may assume that θλ is a dominant character of P
λ
(see [20, Remark 1.13 ]).

5.6. Instability of points on a projective variety. Let S →֒ P(V ) be a projective k–variety
with a linear action of G. Let x ∈ S and let x∗ be a point above x in the cone. The value of
m(x∗, λ) depends only on the point x ∈ S; therefore we simply write it as m(x, λ). We therefore
have the following definition for points of a projective variety S:

5.7. Definition. A point x ∈ S is unstable if m(x, λ) > 0 for some λ ∈ Y (T ).
18



For any x ∈ S, x is unstable if and only if q−1
G (x) <∞, where

q−1
G (x) := inf{q(λ) | λ ∈ M(G), m(x, λ) ≥ 1}

and if

ΛG(x) := {λ ∈M(G) | m(x, λ) ≥ 1, q(λ) = q−1
G (x)}

then equivalently, x is unstable if and only if ΛG(x) 6= ∅.

The T action on the vector space V breaks it up into weight spaces indexed by characters
ǫ0, . . . , ǫn say. These ǫi which are a priori inM(T )∗ can be identified with elements in M(T ) by
using ‖ ‖ whose square is q. Fix x = (x0 :, . . . , : xn) ∈ V and let λ be the point closest to 0 for
the norm q on the convex hull C(x) of the set {ǫi | xi 6= 0} in M(T ). This closest point exists
by the convexity and compactness of the closure of C(x) in M(T )⊗R and lies in fact in C(x).
Thus, the minimal is attained in the definition of ΛG (cf. [8, Lemma 3.2], or [20, Lemma 1.1]).

We recall the following lemma from [13, Lemma 12.6].

5.8. Lemma. If λ 6= 0 then ΛT (x) = {λ/q(λ)}.

Hesselink (cf. [13, 12.9]) defines the notion of “optimality” of subgroups and one can always
assume that the maximal torus T is optimal for x. Recall the following result from [13].

5.9.Theorem. (Kempf-Rousseau) For each unstable x ∈ S, there exists a unique parabolic P (x)
of G such that P (x) = P

λ
∀ λ ∈ ΛG(x). Further, if T is optimal for x, and ΛT (x) = {λ/q(λ)},

then P (x) = P
λ
.

5.10. Definition. Consider the convex hull C(F ) in M(T ) of a finite subset F ⊂ {ǫ0, . . . , ǫn}.
An element in C(F ) is called a minimal combination of weights if it is the closest point to 0 in
C(F ). Let B be the set of all minimal combination of weights in some positive Weyl chamber,
for various F ’s.

By the work of Kirwan ([13, Theorem 12.26, Page 157]), we know that the variety S has a
natural stratification indexed by partially ordered set B defined above. For each β ∈ B, we
have a locally closed subvariety Sβ ofM . The subvarieties Sβ are all G–invariant, i.e GSβ = Sβ.
Furthermore,

S =
⊔

β∈B

Sβ

expressing S as a disjoint union of the strata Sβ. The strata have a more precise geometric
description: S0 = Sss (i.e the G–semistable points), while if β 6= 0

Sβ = GY ss
β

where Y ss
β = {x ∈ S | β/q(β) ∈ ΛG(x)}. If the variety S is a nonsingular projective variety

then the strata {Sβ | β ∈ B} are all nonsingular and each stratum Sβ is in fact:

Sβ = G×P
β Y ss

β
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6. The Bogomolov model

In this and the next section we will assume that char(k) = 0. We will also assume that G
is a semisimple connected algebraic group. Notations are as in Section 5 above. Although the
results from the later sections in this paper proves the theorem on semistability of the tensor
product of two semistable Hitchin pairs over fields of characteristic zero as well as positive
characteristics, we give a different argument in next two sections using the ideas of Bogomolov;
this approach has the distinct advantage of making the ideas more transparent and in our
opinion more geometric.

6.1. Towards Bogomolov’s theorem. Let χ ∈ X(T ). Then it is well-known that there is a
canonical parabolic subgroup P (χ) associated to χ and χ acts as a character on P (χ). It is the
parabolic subgroup of G generated by the maximal torus T and the root groups U

r
for r ∈ R

such that (r, χ) ≥ 0. In fact, if λ is the 1 PS dual to χ, then P (χ) ≃ P
λ
(see Definition 5.2).

Let L
−χ be the associated line bundle on G/P (χ). Let W (χ) ≃ H0(G/P (χ), L

−χ)
∗. Then it

is well-known that since we are in char 0, W (χ) is an irreducible G–module with a non-zero
vector wχ ∈ W (χ) (called a highest weight vector) unique up to constant multiples, such that
for every p ∈ P (χ), one has:

p.wχ = χ(p).wχ

Moreover, two such irreducible modules W (χ) and W (χ′) are isomorphic as G–modules if and
only if there is a t ∈ W, such that t.χ = χ′. Let the notation W(χ) be as in (3.0.10).

6.2. Definition. For any character χ ∈ X(T ), χ 6= 0 we define the Bogomolov model Aχ

corresponding to χ to be the closure G.wχ in W(χ).

We now return to the setting of Proposition 5.4. We stick to the notations in (5.3). V will
be a finite dimensional G–module and vo ∈ V such that 0 ∈ G.vo, i.e an unstable point.

Consider the finite dimensional irreducible G–module W (rθλ) having highest weight vector

wrθλ = w

with T–weight rθλ.

It is known that the stabilizer ℘
λ
of the line k.w ⊂ W(rθλ) contains P

λ
for the action on

P(W (rθλ)) and in fact {℘
λ
}
red

= P
λ
. Since we work in characteristic 0, we have ℘

λ
= P

λ
.

Let j be as in (5.0.5) and V j be as in Proposition 5.4. We first deduce a Pλ–morphism:

f̂ : V j π
−→ V j/V j+1 f

−→ k(6.0.1)

where Pλ acts on k by the weight rθλ.

Now consider the mapping ψf : G× V j → W(rθλ) given by

ψf (g, v) = g(f̂(v) · {f̂(vo)
−1 · w})(6.0.2)

This makes sense since f̂(vo) 6= 0, by Proposition 5.4.
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The group P
λ
acts on G× V j by h(g, v) = (gh−1, h.v). Let

G×P
λ V j

be the quotient of G×V j with respect to this action. Let G act on G×V j by x(g, v) = (xg, v).
Now take

χ = r.θλ(6.0.3)

Then one can check without much difficulty that ψf is P
λ
–equivariant and we have a G–

morphism:

ψf : G×P
λ V j → G×P

λ k → Aχ ⊂ W(rθλ)(6.0.4)

Also, ψf(1, vo) = w.

Consider the map G× V j → V , given by (g, v) → g.v, which is G–equivariant. Let Z be the
image and vo ∈ Z. Then Z is closed and can be seen as follows (cf. [22, Lemma 2.5]):

Observe that Z = G.V j and P
λ
.V j ⊂ V j . Let α : G×V → G×V be the map (g, v) → (g, g.v),

and consider the following chain of maps:

G× V
α
−→ G× V

η
−→ G/P

λ
× V

pr2
−−→ V(6.0.5)

with η(g, v) = (g.P
λ
, v).

Then G.V j is the image by the composite pr2.η.α of G× V j . The map α is an isomorphism
and hence α(G×V j) is closed in G×V . Note that P

λ
.V j ⊂ V j. Therefore, we have η−1(η.α(G×

V j)) = {(g, v) | g−1v ∈ V j}. This is closed in G × V and is isomorphic to G × V j via the
isomorphism α. In other words, α(G× V j) is saturated for η. Since η is a quotient morphism,
it follows that η.α(G× V j) is closed in G/P

λ
× V . Therefore, since G/P is proper, the image

G.V j is closed in V (cf. [22, Lemma 2.5]).

The theorem of Bogomolov (cf. [22, Theorem 2.7] and [22, Page 287]) states that the map
ψf (6.0.2) factors through G.V j by a G–morphism

φf : G.V j → Aχ

In fact, if Y ⊂ IG(V ) is a closed irreducible G–subvariety then there exists a θλ ∈ XQ such
that Y ⊂ G.V j, where j and θλ are as in Proposition 5.4.

We now summarize the above discussion in the following key theorem.

6.3. Theorem. (Bogomolov) Let IG(V ) be the subset of V consisting of the unstable points for
the G action. Let Y (Y 6= 0) be a G–invariant closed subvariety of IG(V ). Then there exists a
χ 6= 0, χ ∈ X(T ) and a non-trivial G–morphism from Y → Aχ.

More generally, if Y = IG(V ), then there exists a filtration

Y0 = Y ⊃ Y1 ⊃ . . . ⊃ Ym = {0}(6.0.6)

of Y by closed G–stable subvarieties such that for i < m, Yi+1 is the intersection of the inverse
images of 0 by all the G–morphisms of Yi to models Aχi.
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Proof: See [22, Theorem 2.7, page 284] for details.

7. The main theorem in char 0

The aim of this section as well as the main strategy in the arguments in the later sections is to
use the interplay of Bogomolov instability of certain Higgs sections of associated bundles coming
from a G–Hitchin pair and the Higgs instability of the G–Hitchin pair. This was indeed the
strategy of Bogomolov and also Ramanan and Ramanathan. Let G be a connected semisimple
algebraic group.

Let V be a finite dimensional G–module and let W = W (χ) be as in (6.1). Let Aχ be as in
Definition 6.2.

7.1. Reduction to the Kempf-Rousseau parabolic. Denote by P(Aχ) the image in P(W )
of Aχ − (0); it is a closed subset of the projective space and therefore a projective variety. The
group G acts on P(W ) and P(Aχ) is an orbit for this action.

7.2. Theorem. Let (E, θ) be a principal G–Hitchin pair. Let σ be a Bogomolov unstable Higgs–
section of E(V) for the induced Higgs structure θV . Then,

(1) There exists a χ ∈ X(T ), χ 6= 0 (which we may assume to be dominant), and a non-zero
geometric Higgs section s of the associated Hitchin scheme E(Aχ).

(2) The projected section s1 of E(P(Aχ)) on a non-empty open U ⊂ X extends to X.

Proof:

(1): Let Y = IG(V ) ⊂ V be the G–subvariety of unstable points of V. By the main theorem of
Bogomolov (see [5] and [22, Corollaire 2.8]), there exists a filtration (6.0.6) above. Taking the
corresponding associated Hitchin schemes we have a filtration:

E(Y ) = E(Y0) ⊃ E(Y1) ⊃ . . . ⊃ E(Ym) = X × {0}(7.0.1)

Let i be the largest index such that σ(X) ⊂ E(Yi). Then by the canonical property of the
Bogomolov model and the instability of the section, we have

• a G–morphism ϕ : Yi → Aχ ⊂ W for a suitable character χ = χ(i) and
• furthermore, the induced map E(ϕ) : E(Yi) → E(Aχ) ⊂ E(W) when evaluated on the
subset σ(X) ⊂ E(Yi), has the property that E(ϕ)(σ(X)) 6= 0.

Define

s := E(ϕ)(σ)(7.0.2)

Since the section σ : X → E(V) is a Higgs section, and since the image of σ lies in Yi, the
section σ : X → E(Yi) is a geometric Higgs section of the associated Hitchin scheme E(Yi).
Further, by Proposition 3.21 the map E(ϕ) is a map of Hitchin schemes and the induced map
s = E(ϕ)(σ) is therefore a non-zero geometric Higgs section of E(Aχ) ⊂ E(W).
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This proves (1).

(2): Let U = {x ∈ X | s(x) 6= 0}. By projecting to P(Aχ) we get a section of E(P(Aχ)) on
the open subset U . Since P(Aχ) is projective, the section uniquely extends to a section of
E(P(Aχ)) on X .

QED

7.3. Theorem. The construction of the extension s1 : X → E(P(Aχ)) in Theorem 7.2 gives
rise to a P

λ
–reduction of the principal Hitchin pair (E, θ), to say, E

P
λ
⊂ E. Furthermore, the

reduction to P
λ
is compatible with the Higgs structure on (E, θ).

Proof: By the construction of the Bogomolov model and the discussion in (6.1), we have a
dominant character χ, a 1-PS λ and the character χ and λ are related by (6.0.3). Since
P(Aχ) = G/P

λ
, the section obtained above gives a reduction of structure group of E to the

parabolic subgroup P
λ
. To get the Higgs structure on E

P
λ
we proceed as follows (see Remark

4.5 and Remark 4.6).

Let H = StabG(v) for the G–action on Aχ. Observe that H ⊂ P
λ
⊂ G. The scheme

G/H ⊂ Aχ is a subscheme. Now the section s : X → E(Aχ) has the property that the image
s(ξ) of the generic point ξ ∈ X , lies in E(G/H).

If we base change to Spec(K) ⊂ X the G–equivariant Higgs morphism φ : E → Aχ ×X we
are in the setting of Lemma 2.15 since inverse images can be realized as fibre products. We
then immediately obtain the consequence that the K–subscheme φ−1(eH×K) ⊂ EK is a Higgs
subscheme (see Remark 4.5). By standard arguments, we see that φ−1(eH ×K) = (E

H
)K is a

H–reduction of EK .

Thus, the section s provides a Higgs H–reduction over K, and hence a Higgs P
λ
–reduction

over K.

As observed earlier (proof of Theorem 7.2), the underlying reduction of structure group E
P
λ

of E to P
λ
extends as a reduction of structure group to the whole of X . Hence by Lemma 4.7,

it follows that the reduction of structure group to P
λ
is a Higgs reduction on the whole of X .

QED

7.4.Higgs semistability and associated bundles. LetM be a finite dimensional G–module
such that ρ : G → SL(M) is a representation. Let Q ⊂ SL(M) be a maximal parabolic and
let L

γ
be an ample line bundle coming from a dominant character γ. Let SL(M)/Q ⊂ P(W )

be the embedding defined by L
γ
. Let s : X → E(SL(M)/Q) be a section and suppose that s

lifts to a section of the associated bundle on the cone of SL(M)/Q, say E(Ĉ). Suppose that s
is an unstable section of E(W ). Thus,

s(X) ⊂ Ĉ ∩ IG(W )
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hence by Theorem 7.2, s(X) ⊂ Yi ∩ Ĉ (the index i as defined after (7.0.1)).

Therefore, the induced G–morphism Yi → Aχ for some χ, is such that the image of the
general point of ξ ∈ X maps to the highest weight vector wχ in the model Aχ and the stabilizer
of the line kwχ in P(Aχ) is the Kempf-Rousseau parabolic P

λ
(where χ is related to λ as in

(6.0.3)).

7.5. Theorem. (See Theorem 8.17 for the result in positive characteristics as well) Let (E, θ)
be a Higgs principal G–Hitchin pair, with G semisimple. Suppose that ρ : G → GL(M) be a
representation. If (E(M), θM ) is a Higgs unstable GL(M)–Hitchin pair of degree 0 so is (E, θ).

Proof: We begin with the GL(M)–Hitchin pair (E(M), θM) which is Higgs unstable. By Defini-
tion 4.12, this implies that there is a maximal parabolic Q ⊂ GL(M) and a dominant character

η on Q together with a Higgs reduction s : X → E(GL(M)
Q

) such that the pull-back by s of the

associated line bundle Lη has deg(s∗(Lη)) > 0.

Choose m≫ 0 such that

deg(s∗(Lmη)) > g(7.0.3)

where g = genus(X).

Consider the dual L∨
η . By the convention (cf. Definition 4.12), L∨

η is ample. Let V =

H0(L∨
mη)

∗. Then we have the Plücker embedding GL(M)
Q

⊂ P(V ). Observe that if Q fixes the

subspace M1 ⊂M , and dim(M1) = r, then, V ⊂ Symm(∧r(M))).

Write P(V ) ≃ GL(V )/P
ℓ
, and since GL(M)/Q ⊂ GL(V )/P

ℓ
and the subgroup Q fixes

the line ℓ ⊂ V . Hence Q ⊂ P
ℓ
. The Higgs section s : X → E((GL(M)

Q
) gives a Q-Hitchin

pair structure on E
Q
. Hence by composing with the inclusion E(GL(M)

Q
) →֒ E(P(V )), we get,

via extension of structure group by the inclusion Q ⊂ P
ℓ
, a P

ℓ
–Hitchin pair structure on

E
Q
×Q P

ℓ
≃ EP

ℓ
.

By the discussion in Example 4.11, this section therefore gives a Higgs subbundle L′ ⊂ E(V ).
Furthemore, by (7.0.3), deg(L′) > g which in particular implies that L′ = OX(D) for an effective
divisor D.

In other words, s induces a section s : OX(D) →֒ E(V ) (we use the same notation for s)
which implies by the definition of Bogomolov instability that s is a Bogomolov unstable Higgs
section of (E(V ), θV ). We may view the Higgs section s as a section of the geometric Hitchin
scheme (E(V), θV ) which is such that the zeroes of s coincide with the effective divisor D.

Since s is a Bogomolov unstable Higgs section, we use Theorem 7.2 to get a Bogomolov model
Aχ together with a Higgs section of the Hitchin scheme E(Aχ). That is, the geometric section
s : X → E(V) factors through s : X → E(Aχ). The section s maps X −D to E(Aχ r {0}).

By Theorem 7.3, s extends to a section

t : X → E(P(Aχ)) = E
(

G/P
λ

)
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which moreover gives a Higgs reduction of structure group to the Kempf-Rousseau parabolic
P
λ
.

The character χ and λ are related by (6.0.3). The dominant character χ is a character of P
λ

and gives rise to a line bundle Lχ on G/P
λ
such that L∨

χ is ample.

Note that t is obtained by composing E(Aχ r {0}) → E(P(Aχ)) = E
(

G/P
λ

)

with s and the
geometric bundle underlying t∗(Lχ) is gets identified with

t∗
(

E(Aχ r {0})
)

(7.0.4)

Hence the induced section t in fact imbeds OX(D) ⊂ t∗(Lχ). This implies that deg(t∗(Lχ)) > 0.
By Definition 4.12, this gives the Higgs instability of (E, θ).

QED

8. Theorems in positive characteristics

Let the ground field k be algebraically closed of arbitrary characteristics. The notations
are as in Section 5. Let G be a connected semisimple algebraic group. Let K = k(X) be the
function field of the base curve and let ξ ∈ X(K) be the generic point of X . Let S →֒ P(V )
be a projective k–variety with a linear action of G and where V is a low height G–module (see
(8.1)). We observe that inputs from ([20]) and ([11]) (see Theorem 8.8 below) allows one to
conclude that the Kempf-Rousseau parabolic is defined over K. The existence of a reduction of
structure group to P

λ
is concluded rather scheme–theoretically in [20] and does not adequately

reflect the geometry. This makes it almost impossible to generalize the strategy to the setting
of Hitchin pairs.

The Kirwan stratification also gives a geometric description of the strata and we derive a
geometric realization of the Kempf reduction in the case of Hitchin pairs. We remark that
even without the Higgs structures, the proofs that we give here makes the entire theory more
transparent. We have therefore taken the opportunity to briefly expound the central point in
the proof of the main theorem of [11].

The following ideas underlie the proof in positive characteristics.

(a) Let S →֒ P(V ) be a projective k–variety with a linear action of G and where V is a low
height G–module. Let (E, θ) be a principal G–Hitchin pair. Let s be an GIT unstable
section of the underlying associated fibration E(S) (see Definition 8.12 below). For an
unstable K–point s(ξ) the rationality of the Kempf-Rousseau parabolic follows from
Theorem 8.8 (cf. [11] and [20]).

(b) Once this rationality is achieved, then Hesselink[8, Theorem 5.5, page 82] shows that
the Kirwan strata Sλ containing s(ξ) is actually defined over K; the proof of this uses
the data from (a).

(c) From this and Kirwan’s description of the strata we get the fact that the morphism
Sλ → G/P

λ
is defined over K.
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(d) This gives the reduction of structure group to the Kempf-Rousseau parabolic P
λ
.

(e) The Higgs geometry defined earlier then uses this K–morphism to get a geometric
description of the Higgs reduction to the Kempf-Rousseau parabolic P

λ
.

(f) Degree computation for this “Higgs” reduction to the Kempf-Rousseau parabolic then
follows easily and gives the required semistability results.

8.1. Low height representations. We recall (cf. [1, Page 7]) the definition and some salient
properties of a low height representation ρ : G→ SL(V ). Recall the notations from Section 5.

Observe that V can be written as direct sum of eigenspaces for T . On each eigenspace the
torus T acts by a character. These are called the weights of the representation. A weight λ
is called dominant if (λ, α∨

i ) ≥ 0 for all simple roots αi ∈ ∆+. A weight λ is said to be “≥”
another weight µ if the difference λ− µ is a non-negative integral linear combination of simple
roots, where the difference is taken with respect to the natural abelian group structure of X(T ).
The fundamental weights ωi are uniquely defined by the criterion (ωi, α

∨
j ) = δij . The height of

a root is defined to be the sum of the coefficients in the expression α = Σkiαi. We extend
this notion of height linearly to the weight space and denote this function by ht( ). Note that
ht is defined for all weights but need not be an integer even for dominant weights. We extend
this notion of height to representations as follows:

8.2. Definition. (cf. [11])

(1) Given a linear representation V of G, we define the height of the representation htG(V )
(also denoted by ht(V ) if G is understood in the given context) to be the maximum of
2ht(λ), where λ runs over dominant weights occurring in V .

(2) A linear representation V of G is said to be a low height representation if htG(V ) < p,
and a weight λ is of low height if 2ht(λ) < p.

Then we have the following theorem (cf. [11], [23] and [24])

8.3. Theorem. Let V be a linear representation of G of low height. Then V is semisimple.

8.4. Corollary. Let V be a low height representation of G and v ∈ V an element such that
the G-orbit of v in V is closed. Then V is a semisimple representation for the reduced stabiliser
Gv,red of v.

8.5. Remark. In Serre ([24] and [23]), the notation for htG(V ) is simply n(V ).

8.6. Rationality issues. Recall the following definitions from Hesselink ([8]) and the book by
Kirwan ([13]). We observe also that the notable difference between the treatment in Hesselink
([8]) and Kempf ([12]) is that [8] works over arbitrary fields while Kempf assumes that K is
perfect.

Recall that Y (G) is the set of 1PS’s λ : Gm → G of G defined over k (see Section 5).

8.7. Definition. Let V be a G–module. Let λ ∈ Y (G). A point v ∈ V (K) is called λ–unstable
if λ drives v to zero. The point v is called L–unstable for an extension L/K if it is λ–unstable
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for a λ ∈ Y (G,L), where we denote by Y (G,L) the subset of elements of Y (G) which are
defined over the field L.

A subset Ŝ ⊂ V (L) is called uniformly L–unstable if there exists a λ ∈ Y (G,L) such that all

s ∈ Ŝ(L) are λ–unstable.

We now summarize the main result of [11] in the following theorem:

8.8. Theorem. Let ρ : G → SL(V ) be a low height representation and let Q ⊂ SL(V ) be a
maximal parabolic subgroup and let us denote the homogeneous space SL(V )/Q by S.

Let χ be a dominant character on Q and let L∨
χ be the ample line bundle on S embedding

S →֒ Pr. Let K/k be an extension field. Let m ∈ S(K) be a K̄–unstable point for the G–action.
Let P (m) be the Kempf-Rousseau parabolic subgroup of G given by the 1PS λ which “optimally
drives m to zero” over K̄, i.e

P (m) = P
λ

Then, P (m) is defined over K. In other words, m is a K–unstable point.

Proof: This theorem is a generalization of a theorem in [20, Theorem 2.3.] where similar
rationality questions are addressed. In [20] the crucial assumption is that the action is strongly
separable, which essentially ensures that the isotropy subgroups for the action of G at any point
are (absolutely) reduced.

The assumption on the height of the representation allows for this generalization. Since the
proof for the most part follows [20], we will follow closely the notations and recall the relevant
details from there.

The assumption of separability of the action in [20, Theorem 2.3] is used in [20, Page 279,
paragraph 1]. Instead, one uses the hypothesis of Theorem 8.8, namely

(1) the low height property of G→ SL(V ).
(2) the fact that the variety where the action is being studied is a Grassmannian and not

an arbitrary projective variety.

We then use this together with [11, Lemma 3.2 and Proposition 3.3]. With these changes in
place, the rest of the proof of [20, Theorem 2.3] goes through without any difficulty.

The key step in the proof, as in all rationality questions, is to show that P (m) is defined
over the separable closure Ks. Then the λ will lie in Y (G,Ks) and the point m will firstly
be shown to be Ks–unstable and then a Galois descent argument will show that it is actually
K–unstable.

QED

Recall another rationality theorem from [8, Theorem 5.5 (a)]:

8.9. Lemma. Let Ŝ ⊂ V be a closed subset. Then Ŝ is uniformly Ks–unstable if and only if Ŝ
is uniformly K–unstable.
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From these lemmas and the Theorem 8.8 we get the following key corollary.

8.10. Corollary. Let ρ : G → SL(V ) be a low height representation and let S = SL(V )/Q
and m ∈ S(K) be a K̄–unstable point driven to zero “optimally” by λ ∈ Y (G, K̄). Let Sλ ⊂ S
be the strata containing m. Then the locally closed subvariety Sλ ⊂ S is defined over K.

Proof: Observe that since m ∈ S(K) is K̄–unstable by the low height assumption on V and
by Theorem 8.8, it follows that m ∈ S(K) is K–unstable and the Kempf-Rousseau parabolic
P (m) and the λ are both defined over K. That is λ ∈ Y (G,K).

The strata Sλ containing m is a priori uniformly K̄–unstable and since m ∈ Sλ, it follows by
Theorem 8.8 that the 1-PS λ actually lies in Y (G,Ks). Hence the Kempf-Rousseau parabolic
P (m) = P

λ
is also defined over Ks. That is, Sλ is uniformly Ks–unstable.

Since P
λ
and λ are both defined over K itself, by [8, Theorem 5.5] it follows that the strata

Sλ is uniformly K–unstable. In other words, Sλ is defined over K.

By [8, Proposition 6.1], since m ∈ S(K) is a K–unstable point it implies that there is a
maximal K–unstable subset Y ss

λ ⊂ S with m ∈ Y ss
λ such that all its points are driven to zero

by λ ∈ Y (G,K). By [8] again each Y ss
λ is invariant under the action of the Kempf-Rousseau

parabolic P
λ
.

As we have seen in our description of Kirwan’s stratification, we know that G×P
λ (Y ss

λ ) = Sλ

is a locally closed subvariety of S defined over K. In conclusion, we have shown that Sλ is
defined over K and we have a K–morphism Sλ → G/P

λ
with fibres isomorphic to Y ss

λ .

QED

8.11. GIT instability and unstable reductions.

8.12. Definition. Let E be a principal G–bundle on X. Let Y be an affine G–variety. Let
s : X → E(Y ) be a section of the associated fibration. We say the section is GIT unstable
if the evaluation s(ξ) of the section at the generic point ξ ∈ X(K) is a GIT unstable point
in E(Y )(K) for the GK–action on E(Y )K. If Y is a projective variety on which there is a
G–linearized action with respect to a very ample line bundle L, and s : X → E(Y ) a section,
we call it GIT unstable if s(ξ) is a GIT unstable point in the cone over E(Y )K.

8.13. Remark. Observe that this definition makes perfect sense even if X is not projective.

8.14. Remark. Let X be projective and Y be an affine G–variety. A section s is GIT unstable
in the sense of Definition 8.12 if and only if for some point x ∈ X image s(x) ∈ E(Y )x is GIT
unstable for the G–action. In other words, the section s is Bogomolov unstable in the sense of
Definition 4.15. Of course, it must be noted that these notions make sense even when we have
a Higgs structure.

8.15. Lemma. Let E be a principal G–bundle. Let ρ : G → SL(W ) be a linear representa-
tion. Consider the associated principal SL(W )–bundle E(SL(W )). Suppose that there exists a
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maximal parabolic Q ⊂ SL(W ) and a dominant character η of Q together with a reduction of
structure group s : X → E(SL(W )/Q) such that

deg(s∗(Lη)) > 0(8.0.1)

Then, the section s is a GIT unstable section in the sense of Definition 8.12 for the ample line
L∨
η on SL(W )/Q.

Proof: This follows immediately from Lemma 4.18.

8.16. Remark.We note that in the Lemma 8.15 the parabolic subgroup Q gives a destabilizing
vector subbundle for the vector bundle E(W ).

We now prove the following theorem:

8.17. Theorem.Let (E, θ) be a Higgs semistable principal G–Hitchin pair, G being semisimple.
Let ρ : G→ SL(W ) be a low height representation. Then the Hitchin pair (E(W ), θW ) is Higgs
semistable.

Proof: The proof breaks up into two parts.

Higgs compatible Kempf-Rousseau parabolic reduction:

Let Q ⊂ SL(W ) be a maximal parabolic and η a dominant character of Q. Suppose that
we are given a Higgs-reduction of structure group s : X → E(SL(W )/Q). There are two
possibilities: either the section is GIT semistable or it is GIT unstable in the sense of Definition
8.12.

In the first case, by Lemma 4.18, since L∨
η is ample,

deg(s∗(Lη)) ≤ 0(8.0.2)

In the second case it is more subtle and we proceed as follows. Let

S := SL(W )/Q

Let ξ ∈ X be the generic point and let s(ξ) ∈ E(S)(K) be GIT unstable for the action of G.
Let us denote the image s(ξ) by m.

By the assumption of low height the 1-PS λ and the Kempf-Rousseau parabolic P
λ
are both

defined over K (by Theorem 8.8). Hence, m ∈ Sλ with Sλ defined over K (see the end of
Section 5 and Theorem 5.9 for the notations). Let Eξ be the generic fibre of E → X . Now
view the restriction of Higgs section s to Spec(K):

Eξ

$$H
HHHHHHHH

s
// Sλ ×K →֒ S ×K

vvmmmmmmmmmmmmm

Spec(K)

(8.0.3)
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as a G–equivariant morphism of Hitchin schemes over Spec(K). Composing with the canonical
projection Sλ → G/P

λ
, we get the morphism t of Higgs K–schemes:

Eξ

##H
HHHHHHHH

t
// G/P

λ
×K

xxppppppppppp

Spec(K)

(8.0.4)

Taking the inverse image of t−1(eP
λ
×K), we get EP,ξ ⊂ Eξ which is a P

λ
–subscheme of Eξ.

Observe further that since X is a curve, the reduction to P
λ
extends as a usual reduction

(i.e without the Higgs structure). What we have shown is that E has a P
λ
–reduction which is

generically Higgs. By Lemma 4.7, it follows that this reduction is a global Higgs reduction.

The degree computations:

As in the proof of Theorem 7.5, using the ampleness of the dual L∨
η and taking sections for

a suitable power m of L∨
η we get the Plücker embedding of S ⊂ P(V ).

The parabolic subgroup P
λ
being defined over K gives a Higgs reduction of structure group

of (E, θ) to a parabolic P
λ
of G. Let V =

⊕

Vi be the weight space decomposition of V with
respect to λ. Let V q = ⊕i≥qVi (see the discussion in (5.3)).

Let

j = µ(m, λ) = min{i | m has a non− zero component in Vi} = max{q | m ∈ V q}

Let m = m0 +m1, with m0 of weight j > 0 and m1 the sum of terms of higher weights. In
other words, in the projective space P(V ) we see that λ(t) ·m −→ m0. It is not too hard to see
that we have an identification of the Kempf-Rousseau parabolic subgroups associated to the
points m and m0 which is therefore simply denoted by P

λ
. (cf. [20, Proposition 1.9]).

In the generic fibre E(V )ξ we have the projection
⊕

i≥j

Vi −→ Vj(8.0.5)

which takes m to m0. This gives a line sub-bundle L0 of E(Vj) associated to the point m0 as
well as a nonzero map s∗(Lη) → L0.

Now by Proposition 5.4, m0 is in fact GIT semistable for the action of P
λ
/U , i.e for the

Levi quotient of P
λ
, for a suitable choice of linearisation obtained by twisting the action by

a dominant character χ of P
λ
(see (6.0.3)). Let E

P
λ
be the P

λ
–bundle obtained by the Higgs

reduction to P
λ
. Let Lχ = E

P
λ
(χ). Since (E, θ) is Higgs semistable by assumption, we have

deg(Lχ) ≤ 0(8.0.6)

The GIT semistability of the point m0 for the action of P
λ
/U with respect to this new lineari-

sation, forces, by Lemma 4.18, the following degree inequality (we skip the details which are
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essentially in the closing parts of the proof of [20, Proposition 3.13]):

deg(L0 ⊗ L∨
χ) ≤ 0(8.0.7)

By (8.0.6) deg(L∨
χ) ≥ 0. Hence by (8.0.7), deg(L0) ≤ 0. This implies deg(s∗(Lη)) ≤ 0. This

shows that in either case, we get the inequality (8.0.2). This proves the Higgs semistability of
(E(SL(W ), θW ).

QED

8.18. Remark. We remark that if we follow the proof strategy of Theorem 7.5 in the positive
characteristic case, the prime bounds that are forced are much bigger than those imposed by
low height considerations.

8.19. Theorem. Let (V1, θ1) and (V2, θ2) be two Higgs semistable Hitchin pairs with det(Vi) ≃
OX , i = 1, 2. Suppose that the ground field k has characteristic p such that

rank(V1) + rank(V2) < p+ 2

Then the tensor product (V1 ⊗ V2, θ1 ⊗ 1 + 1⊗ θ1) is also Higgs semistable.

Proof: This is immediate from height computations for the tensor product representations
and Theorem 8.17 above. See for example [25, 5.2.5].

QED

9. Polystability of associated bundles

The ground field k has arbitrary characteristics in this section. LetG be a connected reductive
algebraic group. Let T be the maximal torus of G and W be a finite dimensional G-module.
Further, let X(T ) be the free abelian group of characters of T and S be the set of distinct
characters that occur in W .

For every subset S ⊂ S we have the following map:

νS : Z|S| −→ X(T )

given by es −→ χs. Let gS be the g.c.d of the maximal minors of the map νS written under the
fixed basis.

For any vector w ∈ W , consider the subset Sw ⊂ S, consisting of characters that occur in w
with nonzero coefficients. i.e., if w =

∑

aχ(w)eχ, then

Sw = {χ ∈ S|aχ(w) 6= 0}

Then we recall the following:

9.1. Lemma. (cf. [1, Lemma 6]) The characteristic of the field, p does not divide gSw if and
only if the action of T on the vector w is separable.
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Define
pT (W ) := {largest prime which divides gS|∀S ⊂ S}

9.2. Definition. Let ρ : G −→ SL(W ) be a finite dimensional representation of G. Define the
separability index, ψ

G
(W ) of the representation as follows:

ψG(ρ) = ψ
G
(W ) = max{ht

G
(W ), pT (W )}

The notion of separability index was first defined in ([1]). The reader is referred to ([1,
Section 4]) for the details.

9.3. Definition. The module W is said to be with low separability index if the characteristic
of the ground field k is either zero or p which satisfies p > ψ

G
(W ).

We recall the results proved in [1, Proposition 5, p 16] along with a key result from [2].

9.4. Proposition.

(1) If W is a G-module with low separability index, then the action of G on W is strongly
separable i.e., the stabilizer at any point is absolutely reduced.

(2) (A version of Luna’s étale slice theorem in char.p) Let W be a G-module with low
separability index. Let F be a fibre of the good quotient q : W −→ W//G, and let F cl

be the unique closed orbit contained in F . Then there exists a G-map

F −→ F cl.

(3) (see [2, Proposition 8.5, p.312]) More generally, if F is an affine G–subvariety of P(W ),
with W as a G–module with low separability index, and suppose that F contains a unique
closed orbit F cl. Then there exists a G-retract

F −→ F cl.

9.5. Remark. In [2], Bardsley and Richardson make the assumption that the action of G on F
is separable and the stabilizer Gf at f ∈ F cl is linearly reductive. Since the action on W has
low separability property, the stabilizer Gf is a saturated, reduced and reductive subgroup of
G. The assumption of linear reductivity of the stabilizer is handled in our situation by the low
separability assumption on W , since the tangent space T

f
(F cl) at f ∈ F cl is also a Gf–module

of low separability index. This gives complete reducibility of the action of the stabilizer on the
tangent spaces in Luna’s slice theorem (for details see [1, Proposition 5, p 16]).

9.6. Definition. Let (V, θ) be a semistable Hitchin pair with deg(V ) = 0. The Higgs socle
subpair (ψ(V ), θ

ψ(V )
) is defined as the sum of all stable subpairs (W, θW ) ⊂ (V, θ) of degree 0.

9.7. Remark. The socle subpair (ψ(V ), θ
ψ(V )

) can be easily seen to be a direct sum of certain

stable subpairs of (V, θ) each of degree 0. Moreover, if (V, θ) is not polystable i.e, it is not direct
sum of stable Hitchin pairs, then (ψ(V ), θ

ψ(V )
) is a proper subpair of (V, θ) and conversely.

Recall the notion of admissible reductions and polystability of Hitchin pairs (see Definition
4.12 (2) and (3)).
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9.8. Remark. Let (V, θ) be a semistable Hitchin pair of rank n with det(V ) ≃ OX . Let (E, θ)
be the underlying principal SL(n)–Hitchin pair. The Higgs socle ψ(V ) ⊂ V gives an exact
sequence of Hitchin pairs:

0 → ψ(V ) → V → V/ψ(V ) → 0(9.0.1)

i.e an admissible Higgs reduction of structure group of (E, θ) to a maximal parabolic subgroup
P ⊂ SL(n). We will call this reduction (E

P
, θ

P
) the “socle” reduction. Note that (E, θ) is a

polystable Hitchin pair if and only if the parabolic subgroup P coincides with the structure
group SL(n) of E.

9.9. Lemma.Let (V, θ) be a semistable Hitchin pair of rank n with deg(V ) = 0. Let (E, θ) be the
underlying principal GL(n)–Hitchin pair. Let P ⊂ GL(n) be the maximal parabolic subgroup
coming from the Higgs socle of (V, θ) and let (E

P
, θ

P
) be the socle Higgs reduction. Then (V, θ)

(or equivalently (E, θ)) is not polystable if and only if there is no Levi reduction of structure
group of (E

P
, θ

P
).

Proof: The proof is trivial since the Higgs socle (ψ(V ), θ
ψ(V )

) is the maximal subpair which

has the defining properties in Definition 9.6. A reduction of structure group of (E
P
, θ

P
) to its

Levi would mean a splitting of (9.0.1) and this would contradict the maximality of the Higgs
socle.

QED

9.10. Lemma. (cf. [1, Lemma 10, page 20]) Let (E, θ) be a stable principal G–Hitchin pair
with G semisimple. Suppose that M is a finite dimensional G–module with low separability
index. Let Z = SL(M)/Q where Q ⊂ SL(M) is a maximal parabolic subgroup and let L = Lη

be a very ample line bundle on Z coming from a dominant character η of Q. Let (E(Z), θZ)
be the associated Hitchin pair. Then any non-zero Higgs section σ : X −→ E(Z) such that
deg(s∗L) = 0 is a GIT semistable Higgs section in the sense of Definition 8.12.

Proof: Let Q ⊂ SL(W ) be a maximal parabolic and η a dominant character of Q. Suppose
that we are given a Higgs-reduction of structure group s : X → E(SL(W )/Q). Suppose further
that it is GIT unstable in the sense of Definition 8.12. We will get a contradiction to the
stability of (E, θ). The proof follows almost verbatim the proof of the Theorem 8.17 till we
reach the construction of the line bundle L0. We pick the thread there.

Since (E, θ) is stable, by the Theorem 8.17, the associated vector bundle E(Vj) is Higgs
semistable of degree 0 implying that deg(L0) ≤ 0. On the other hand, by (8.0.5), we get a map
s∗L → L0. Since deg(s

∗L) = 0, this implies that deg(L0) = 0.

Now by Proposition 5.4, m0 is in fact GIT semistable for the action of P
λ
/U , i.e for the

Levi quotient of P
λ
, for a suitable choice of linearisation obtained by twisting the action by

a dominant character χ of P
λ
(see (6.0.3)). Let E

P
λ
be the P

λ
–bundle obtained by the Higgs

reduction to P
λ
. Let Lχ = E

P
λ
(χ).
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The GIT semistability of the point m0 for the action of P
λ
/U with respect to this new

linearisation, forces, by Lemma 4.18, the degree inequality, deg(L0 ⊗ L∨
χ) ≤ 0 (see proof of

Theorem 8.17). Since deg(L0) = 0, this in conjunction with the degree inequality above, gives
deg(L∨

χ) ≤ 0. This implies that for the dual line bundle we have deg(Lχ) > 0. This inequality
contradicts the Higgs stability of (E, θ) (see Definition 4.12 (i)).

QED

With these results we now have the following basic theorem on polystability (cf. [5, Lemma
8.3] and [20, Theorem 3.18]). Note that we need extra assumptions on characteristic of the
ground field for polystability of associated constructions to hold. LetM be a finite dimensional
G–module. Denote by

ψ
G
(M) = max

i
{ψ

G
(∧i(M))}(9.0.2)

9.11. Theorem. Let (E, θ) be a stable Hitchin pair of degree zero with G semisimple and

ρ : G → SL(M), be a representation such that p > ψ
G
(M). Then the associated Hitchin pair

(E(M), θM) is polystable.

Proof: By Theorem 8.17, since p > htG(M), the extended Hitchin pair (E(M), θM ) is semistable.
Let Q ( SL(M) be a proper maximal parabolic subgroup such that (E(SL(M)), θM ) has an
admissible Higgs reduction to a parabolic subgroup. In other words, in the language of Higgs
bundles, we have a degree zero Higgs subbundle of the Higgs bundle (E(M), θM ).

Let us denote the projective variety SL(M)/Q by Z and let L be a very ample line bundle
with a SL(M)–linearization (and hence a G–linearization) on Z. We use the same notation
for the induced line bundle on E(Z) as well. Let s : X → E(Z) be a Higgs section which
gives a Higgs line subbundle s∗(L) with deg(s∗(L)) = 0, i.e the section “s” gives an admissible
reduction of structure group.

By Lemma 9.10, the section s : X → E(Z) is a GIT semistable section in the sense of
Definition 8.12. By the last part of Lemma 4.18, we see that the section s takes its values in
F , where F → Zss → Z//G is a single GIT fibre; i.e s : X → E(F ) ⊂ E(Z). Moreover, F is a
G–invariant affine variety.

By the assumption of low separability index of the module W = H0(SL(M)/Q,L), it follows
that the G–action on F is separable. Furthermore, being a GIT fibre, it contains a unique closed
orbit F cl. Let F cl = G/I. By the low separability assumptions, it follows that the stabilizer I
is reduced and the affineness of F implies that I is reductive. Moreover, I ⊂ Q.

Again, by virtue of the low separability of the G–module W , we can apply Proposition 9.4
and we have a G–retract, F → F cl, which gives by composition, a section s′ : X → E(F cl). The
section s′ : X → E(F cl) = E(G/I), being a Higgs section, gives a Higgs reduction of structure
group of the G–Hitchin pair (E, θ) to I. Denote this I–Hitchin pair by (EI , θI).

The stabilizer is a saturated subgroup and hence by the low height property of the represen-
tation ρ : G → SL(M), it follows that the inclusion I →֒ Q is completely reducible. That is,
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I →֒ L for a Levi subgroup of Q. (See [1, Page 15-16] and [23, Page 25] for details on “saturated
subgroups”.)

The upshot of the discussion is that the Hitchin pair (E(SL(M)), θM ) gets a Higgs reduction
of structure group to the Levi subgroup L ⊂ Q. The argument has shown that whenever Q (
SL(M) gives an admissible reduction of structure group of (E(SL(M)), θM ), it gets a further
Levi reduction. Coupled with Lemma 9.9, we see immediately that, since the socle reduction
(E

P
, θ

P
) is an admissible reduction, the parabolic subgroup P ⊂ SL(M) corresponding to

the Higgs “socle” cannot possibly be a proper parabolic, i.e P = SL(M). This implies that
(E(M), θM) is a polystable SL(M)–Hitchin pair. This completes the proof of the theorem.

QED

9.12. Remark. The above theorem gives by far the best effective bounds on p for polystability
of associated bundles to hold, even in the situation when there are no Higgs structures on the
bundles.

9.13. Remark. In [16, Theorem 3.1] (cf. also [15, Section 4]) it was claimed that if p is larger
than the maximum of the heights of exterior powers as in (9.0.2) (and not the separability
index) then it gives the polystability of the associated bundle. The proof of [16, Theorem 3.1],
which was needed to justify this claim, is incorrect as was pointed out to the authors of [16] by
Professor J. P. Serre in a private correspondence.

9.14. Remark. The previous theorem is the precise algebraic counterpart of the differential
geometric fact that a polystable Higgs vector bundle supports a uniquely defined Einstein-
Hermitian connection, a fact proven by Hitchin over curves and by Simpson for smooth projec-
tive varieties.

9.15. Remark. We believe that the approach in this paper should generalize to other natural
situations such as “quiver bundles”. Suitable analogues of Hitchin schemes defined for them
along with the GIT developed in this paper should yield similar theorems.

9.16.Remark.(Rational Principal bundles) Following ([20, page 290]), we have the corresponding
notion of a rational principal G–Hitchin pair on a higher dimensional smooth projective variety
X . It goes without saying that since we deal with µ–semistability and stability, all the results
proven in the previous sections go through without change for µ–semistable (resp. µ–stable)
rational G–Hitchin pairs.
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(1982).
[23] J.P.Serre: Moursund Lectures, University of Oregon Mathematics Department (1998).
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