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MODULI OF PARAHORIC G–TORSORS ON A COMPACT

RIEMANN SURFACE

V. BALAJI AND C. S. SESHADRI

Abstract. Let X be an irreducible smooth projective algebraic curve of genus
g ≥ 2 over the ground field C and let G be a semisimple simply connected al-
gebraic group. The aim of this paper is to introduce the notion of a semistable
and stable parahoric torsor under a certain Bruhat-Tits group scheme G, con-
struct the moduli space of semistable parahoric G–torsors and identify the
underlying topological space of this moduli space with certain spaces of ho-
momorphisms of Fuchsian groups into a maximal compact subgroup of G.
The results give a complete generalization of the earlier results of Mehta and
Seshadri on parabolic vector bundles.

1. Introduction

Let X be a smooth projective curve defined over C of genus g ≥ 2. Let H be the
upper half space and π a subgroup of the discontinuous group of automorphisms of
H such that X = H/π. We note that the action of π is not assumed to be free. It
is well known that the set of fixed points of π are finite and the isotropy subgroups
are cyclic of finite order. Let zi ∈ H be the set of fixed points of the action of π
and let the isotropy subgroups be denoted by

πzi = 〈Ci〉

with Ci as generators. Let q : H → X be the quotient projection and let R ⊂ X
be the points of X over which the map q is ramified and let ni be the ramification
index at xi ∈ R which are the images of zi ∈ H. Thus, m = |R| and each Ci is an
element of order ni.

Let G be a connected reductive algebraic group over C and let KG ⊂ G be a
maximal compact subgroup of G.

1.0.1. Definition. The type of a homomorphism ρ : π → G is defined to be the set
of conjugacy classes in G of the images ρ(Ci) and is denoted by τ = {τ i}.

1.1. Notation. Let Rτ (π,KG) denote the space of homomorphisms ρ : π → KG of
type τ = {τ i}.

Following Mehta-Seshadri [17], to a homomorphism ρ : π → KG one can asso-
ciate a (π,G)–bundle E on H i.e, E is a principal G–bundle over H and the action
of π on H lifts to an action on E.

If G is the full-linear group, the (π,G)–bundles on H have an equivalent descrip-
tion as π–vector bundles on H. We recall ([28], [17]) that if V is a π–vector bundle

Key words and phrases. Stable vector bundles, parahoric groups, parabolic bundles, group
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on H, the vector bundle W = qπ
∗
(V )(invariant direct image by q) on X acquires a

parabolic structure which consists of the data assigning a flag to the fibre of W at
every ramification point in X for the covering q together with a tuple of weights;

The invariant direct image functor V 7→ qπ∗ (V ) gives a fully faithful embedding of
the category of π-vector bundles on H into the category of parabolic vector bundles
on X (morphisms being taken as isomorphisms). Moreover, we can realise every
parabolic bundle as qπ∗ for a suitable π and V .

This translates easily into an equivalent description of (π,GL(n))–bundles on H

as principal GL(n)–bundles on X with parabolic structures. Now one can define
the concepts of stability (resp. semistability) for π–vector bundles (or equivalently
parabolic bundles on X) and construct the corresponding moduli space of equiva-
lence classes of semistable objects (fixing some invariants) as a normal projective
variety.

Further, for these moduli spaces the underlying topological spaces can be iden-
tified with equivalence classes of elements in Rτ (π, U(n)), i.e unitary representa-
tions of π (see Mehta-Seshadri [17], Seshadri [28]), which generalize the results in
Narasimhan-Seshadri[19] and Seshadri [27].

The purpose of this paper is to further generalize the above results when the
structure group G is no longer the full-linear group.

Let us suppose hereafter that the group G is semisimple and simply connected
(over C) unless otherwise stated. One can again give an equivalent description of
(π,G)–bundles on H as certain intrinsically defined objects on X . However, the
picture is more subtle than the case when G is the full-linear group ; for instance, it
is not possible, in general, to associate in a natural manner a principal G–bundle on
X to a (π,G)–bundle on H. We call these new objects on X , which give an equiva-
lent description of (π,G)–bundles on H, as parahoric bundles or parahoric torsors.
These parahoric torsors are describable as pairs (E , θ), where E is a torsor (i.e prin-
cipal homogeneous space) on X under a parahoric Bruhat-Tits group scheme G,
together with weights θ, which are elements of the set of rational one-parameter
subgroups of G (see Definition 1.0.2 and Definition 6.2.3). We define notions of
semistability and stability of such parahoric torsors and construct moduli spaces of
these objects; they are projective varieties and their points are equivalence classes
of semistable parahoric G–torsors.

The parahoric torsors that we consider here have been defined earlier by Pappas
and Rapoport, without however the notion of weights, where they made some
conjectures on the moduli stack of such torsors (see [21] and [22]). Heinloth has
since settled many of their conjectures (see [14]; we note that Heinloth works over
arbitrary ground fields not just C). We were led independently to the description of
these parahoric torsors in trying to interpret (π,G)–bundles on H as objects on X
(inspired by A. Weil’s work [35], as was the case in [17] and [28]). In this context,
one can say that the central observation in our paper is contained in Section 2,
which links explicitly the ideas from the paper of Weil and Bruhat-Tits theory. We
need to define a few technical terms before we can state the main results of our
paper.

Let G be a smooth affine group scheme over X satisfying the following conditions
(compare this with the definition in Heinloth [14]):

1.0.2. Definition.
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(a) Let Ram(G) ⊂ X be the finite set of points x ∈ X and let Ax the complete
local ring at x ∈ X. Then GAx is a Bruhat-Tits parahoric group scheme
over Spec Ax as defined by [7, Definition 5.2.6].

(b) The generic fibre of G is isomorphic to G. Moreover,

G|X−Ram(G) ≃ G× (X −Ram(G)) (1.0.2.1)

In what follows, we will consider parahoric Bruhat-Tits group schemes where the
subset Ram(G) ⊂ X is the set R of ramification points of the map q : H → X .

For notations and conventions see 2.2. Let Axi ≃ ÔX,xi
and Kxi its quotient

field, xi ∈ R. Let E ≃ Y (T )⊗ R and Ω denote a collection of subsets {Ωi} ⊂ Em,
where |R| = m. As is well-known (see 2.2) to each subset Ωi ⊂ E, there is a
notion of a parahoric subgroup PΩi

(K) ⊂ G(Kxi), i = 1, . . .m, and furthermore,

associated to each parahoric subgroup P
Ωi
(K), there is a smooth group scheme

G
Ωi

over Spec Axi known as the Bruhat-Tits group scheme. Let G
Ω,X

denote the
parahoric Bruhat-Tits group scheme on a projective curve X associated to the local
datum Ω = {Ωi} (see Notation 5.1). We will call such a group scheme a parahoric
Bruhat-Tits group scheme over the curve X (see Remark 5.1.3 for its relationship
with Heinloth’s definition).

We observe that there is a picture of parahoric subgroups using the notion of
alcoves which are products of simplices (see Remark 3.0.7). The points of the alcove
A parametrize parahoric groups upto conjugacy by G(K).

We define, in Section 5 of this paper, the concept of semistable and stable G–
torsors on X . Our main results can be formulated as follows (see Theorem 8.1.8):

1.0.3. Theorem.

(1) To every set τ of conjugacy classes, we can associate a collection Ω(τ ) =
{Ωi} such that, we have a bijective correspondence between the space
Rτ (π,KG)/KG of conjugacy classes of homomorphisms ρ : π → KG of
type τ and the equivalence classes of semistable G

Ω(τ)
–torsors, where G

Ω(τ)

is a parahoric Bruhat-Tits group scheme associated to the set τ .
(2) If G is a parahoric Bruhat-Tits group scheme, then there is a τ such that

equivalence classes of semistable and stable G–torsors is identified with the
equivalence classes of semistable and stable G

Ω(τ)
–torsors on X.

(3) Under this correspondence, the set of irreducible homomorphisms gets iden-
tified with the stable G

Ω(τ)
–torsors.

1.0.4. Remark. If the points of Ω(τ ) correspond to points in the interior of the alcove
A, the group scheme G

Ω(τ)
gets embedded in the constant group scheme G×X (see

Remark 2.4.2).

1.0.5. Theorem.

(1) The set M
X
(G

Ω(τ)
) of equivalence classes of semistable G

Ω(τ)
–torsors on

X gets a natural structure of an irreducible normal projective variety of
dimension ( see Theorem 7.3.2 and Corollary 8.1.9 for notation and details)

dimC(G)(g − 1) +

m∑

i=1

1

2
e(θ) (1.0.5.1)

(2) The correspondence given in Theorem 1.0.3 above is a homeomorphism
Rτ (π,KG)/KG ≃MX (GΩ(τ)

) of the underlying topological spaces.
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1.0.6. Remark. We have assumed above that the group G is semisimple and simply
connected. The construction of the moduli spaces when G is a general reductive
group can be carried out as a consequence of the construction in the semisimple
and simply connected case.

We make a few clarifying remarks on the paper.
(i) Let G = SL(n) and let q : H → X be the covering projection. Recall that

to every homomorphism ρ ∈ Rτ (π,KG), we can associate a (π,G)–bundle Vρ on

X̃. The classical association of taking invariant direct image qπ∗ (Vρ), immediately,
by degree considerations, shows that the correspondence sends homomorphisms
to bundles on X whose degree is non-zero (cf. [19], [28] and [17]). These were
precisely the cases for which the special parabolic structures were introduced in
Narasimhan-Seshadri [19]. In our setting, the moduli spaces of bundles with fixed
determinants and non-zero degree gets realized as moduli spaces of torsors under
maximal parahoric Bruhat-Tits group schemes and these are exactly n in number.

(ii) We observe that in the above theorem (for G simple), when the set τ of
conjugacy classes is identified with the points in the interior of the Weyl alcove,
the parahoric Bruhat-Tits group scheme is a subgroup scheme of the constant group
scheme G ×X and the semistable and stable torsors are simply the parabolic G–
bundles, i.e principal G–bundles with parabolic structures, which are analogues of
the parabolic vector bundles. This case has been dealt with in Teleman-Woodward
[32].

(iii) When G = GL(n) the theory of Bruhat-Tits ensures that the only parahoric
Bruhat-Tits group scheme are subgroup schemes of the Chevalley group schemes.
This is the reason why in Mehta-Seshadri [17], the phenomenon of torsors under
Bruhat-Tits group schemes does not figure in the correspondence.

(iv) (Parabolic G–bundles) Let Ax = Ô
X,x

. If for every x ∈ R
p
the parahoric

group P
Ω
(Kx) gets identified with the distinguished hyperspecial parahoric sub-

group G(Ax) the moduli space of parahoric torsors is the moduli space of principal
G–bundles on X . If on the other hand, PΩ(Kx) ⊆ G(Ax) for every x ∈ Rp , then
under the evaluation map ev : G(Ax) → G(C), the subgroup P

Ω
(Kx) maps to a

standard parabolic subgroup of G, so that in this case a quasi-parahoric torsor
could indeed be called a quasi-parabolic G–bundle in the familiar sense of the term
when G is the full-linear group, i.e the data consists of a principal G–bundle on X
together with a parabolic subgroup of G (i.e a “flag”) for every x ∈ R

p
.

(v) (Parahoric torsors which are not principal G–bundles) In general there is
a third case, namely there are parahoric subgroups of G(Kx) which cannot be
conjugated to subgroups of G(Ax) and indeed, barring G(Ax), all the maximal
parahoric subgroups of G(Kx) fall under this third category (see [7]). It is this case
which highlights the precise reason why we need to give a subtler description of
(Γ, G)–bundles on Y as parahoric torsors on X which do not support a principal
G–bundle on X . Evidence to this effect was shown using Tannakian considerations
in Balaji-Biswas-Nagaraj [2], leading to the definition of a ramified bundle in [3].
The approaches in these papers give a general picture but does not give the precise
correspondence obtained in this paper. More concrete examples were shown in [29]
indicating what to expect in general. Furthermore, when the “weights” are in the far
wall of the Weyl alcove, Teleman ([31, Section 9] and [32]) has already observed that
the quasi-parabolic structures in this case should be given by generalized parabolic
subgroups of the group G((z)) and that the “true” moduli spaces for these would
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correspond real analytically to certain space of representations into the maximal
compact of G. These correspond to the parahoric torsors which are not parabolic
G–bundles.

(vi) The striking cases which arise out of the present study are the non-
hyperspecial maximal parahoric subgroups where a number of new phenomena
show up. These correspond, on the side of the representations of the Fuchsian
group (see 8.0.4.1), to those maps ρ : π → KG such that centralizers of the images
of the elements ρ(Ci) are proper semisimple subgroups of G.

(vii) We remark that all the results which realize parahoric bundles on X as
obtained from (Γ, G)–bundles from a Galois cover Y → X hold on P1 as well
as elliptic curves. The only point which fails to hold in general is the existence of
stable parahoric bundles on these curves. Once this is achieved by possibly choosing
sufficiently large number of ramification points, the moduli construction also goes
through.

(viii) After this paper was posted in the archives, we were informed by P. Boalch
of his paper [5] where the parahoric structure is seen in the setting of regular
singular connections. We believe that relating these with our paper should be a
fruitful theme to pursue.

Acknowledgements: We wish to thank Jochen Heinloth and Michel Brion for
many helpful suggestions on an earlier version of this paper. The first author also
thanks Gopal Prasad for some helpful discussions on Bruhat-Tits theory.

2. Non-abelian functions and bounded groups

As the title suggests, the aim of this section is to tie up some ideas from the
classical paper of A. Weil ([35]) and Bruhat-Tits theory ([7]). This section is central
to this paper.

2.1. Some preliminaries on root datum. Let G be a semisimple, simply con-
nected algebraic group defined over C and we fix a maximal torus T of G. Let
X(T ) := Hom(T,Gm) be the character group and Y (T ) := Hom(Gm, T ) the group
of 1-parameter subgroups of T . Let R = R(T,G) ⊂ X(T ) be the root system asso-
ciated to the adjoint representation of G and S be a system of simple roots.

Denote by ( , ) : Y (T ) × X(T ) → Z the canonical bilinear form. The set S
determines a system of positive roots R+ ⊂ R and a Borel subgroup B ⊂ G with
unipotent radical U . We now order the set R+ = {ri}, i = 1, . . . , q. We then have
a family {u

r
: Ga → G | r ∈ R} of root homomorphisms of groups such that one

gets an isomorphism of varieties:
∏

r∈R+

u
r
:
∏

r∈R+

Ga → U (2.1.0.1)

For every root r ∈ R, we denote by T
r
= Ker(r)0, and Z

r
= ZG(Tr

), the
centralizer of Tr in G. The derived group [Z

r
, Z

r
] is of rank 1 and there exists a

unique 1PS, r∨ : Gm → T ∩ [Z
r
, Z

r
] such that T = Im(r∨).T

r
and (r∨, r) = 2. The

element r∨ is the coroot (or 1–PS) associated to r. The {r∨ | r ∈ R} form a system
of roots R∨.

For each r ∈ R the root homomorphism

ur : Ga → G (2.1.0.2)
5



is such that

t.u
r
(a).t−1 = u

r
(r(t).a) (2.1.0.3)

for any C–algebra A and for any t ∈ T (A), a ∈ A and such that the tangent map
du

r
induces an isomorphism

dur : Lie(Ga) → (LieG)r

The functor A 7→ u
r
(Ga) = u

r
(A) gives U

r
(A) ⊂ G(A). This determines a closed

subgroup U
r
of G and is called the root group corresponding to r.

Denote by {α∗ | α ∈ S} to be the basis dual to {α ∈ S}, i.e (α∗, r) = δα,r.
Define

E := Y (T )⊗Z R (2.1.0.4)

E′ := X(T )⊗Z R (2.1.0.5)

Most often, we in fact work with X(T )⊗Z Q and Y (T )⊗Z Q.

2.2. Parahoric subgroups. Let K be the field C((z)) or more generally a field
equipped with a discrete valuation v : K× → Z and which is complete. Let A be
the ring of integers, with residue field C.

For the notion of Bruhat-Tits buildings and their behaviour under field exten-
sions see J.Tits [33, Page 43].

Once we fix a root datum for G, we see that we have a choice of an affine
apartment; the choice of the maximal torus T then identifies E with an affine
apartment App(G,K) in the Bruhat-Tits building B(G,K).

A subset M ⊂ G(K) is said to be bounded if for any regular function f ∈ K[G],
the values v(f(m)) are bounded below, when m runs over all elements of M . In
particular, we may talk of bounded subgroups. A subgroup M ⊂ G(K) is therefore
bounded if the “order of poles” of elements of M is bounded. This can be made
precise by taking a faithful representation G →֒ GL(n) so that elements of M are
represented by matrices with entries in K.

Let Ω ⊂ E be a nonempty subset. Denote by PΩ(K) ⊂ G(K) the subgroup
generated by T (A) and the root groups Ur(z

mrA) for all the roots r ∈ R, where

mr = mr(Ω) = −[inf
θ∈Ω

(θ, r)] (2.2.0.6)

where [h] stands for the biggest integer smaller than h.
The group P

Ω
(K) is a bounded subgroup, more precisely it is a parahoric sub-

group of G(K) in the sense of Bruhat-Tits and conversely, any parahoric subgroup
is bounded in the above sense (cf. Bruhat-Tits [7]) .

The choice of a root datum identifies a parahoric subgroup P
Ω
(K) ⊂ G(K) as the

stabilizer subgroup of G(K) of a facet of the affine apartment App(G,K). By Tits
[33, Section 3.1, page 50], since we work with a semisimple and simply connected
group G we could in turn take any point in general position i.e an interior point in
the facet and consider the parahoric subgroup as the stabilizer of that point. Thus
one can make an identification P

Ω
(K) ≃ P

θ
(K) for an interior point θ in the facet

determined by Ω.
By the main theorem of Bruhat-Tits ([7]), there exist smooth group schemes

G
Ω
over Spec(A) such that the group G

Ω
(A) = P

Ω
(K) and moreover, since A is

a complete discrete valuation ring, the group scheme is uniquely determined upto
unique isomorphism by its A–valued points (see [7, Section 1.7]).
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Let θ ∈ E. Thus,

mr = mr(θ) = −[(θ, r)] (2.2.0.7)

In other words, we have:

P
θ
(K) = 〈T (A), Ur(z

mr(θ)A), r ∈ R〉 (2.2.0.8)

i.e the subgroup generated by T (A) and the root groups {Ur(z
mr(θ)A), r ∈ R}.

To summarize, since we work with a semisimple and simply connected group
G, all parahoric groups are, upto conjugacy by elements of G(K), precisely the
collection of groups {P

θ
(K)}θ∈E (see [33, Section 3.1, page 50]), and as such we will

work with these groups. In particular, associated to the “origin” 0 ∈ E we have the
group P

0
(K), which is nothing but the maximal bounded subgroup G(A) ⊂ G(K).

Note that if θ ∈ Y (T ) itself, then there exists t ∈ T (K) such that

P
θ
(K) = t.P

0
(K).t−1 (2.2.0.9)

2.2.1. Remark. Again we note that if mr(θ) < 1 for all r ∈ R, then P
θ
(K) ⊂ G(A).

These parahoric subgroups then correspond to the standard parabolic subgroups of
G.

2.3. Non-abelian functions and parahoric subgroups. Let X ≃ H/π be as
in the introduction.

2.3.1. A result due to A.Selberg ([25]) states that if A ⊂ GL(n,C) is a finitely
generated subgroup, then A has a normal subgroup A0 of finite index with no
torsion. It follows from this that the discrete group π ⊂ Aut(H) has a normal
subgroup π0 of finite index such that π0 operates freely on H. Let Y = H/π0 and
Γ = π/π0. Then there is a canonical action of Γ on Y such that X = Y/Γ. Let
p : Y → X be the covering map and note that Γ = Gal(Y/X). It is easily seen
that the study of (Γ, G)–bundles on Y is equivalent to the study of (π,G)–bundles
on H and thus the study of (π,G)–bundles on H reduces to an algebraic problem
since Y is a compact Riemann surface and hence a smooth projective curve.

Let q1 : H → Y be the simply connected covering projection of Y . We have the
following commutative diagram:

H

q
  

@@
@@

@@
@

q1
// Y

p
~~~~

~~
~~

~

X

(2.3.1.1)

with q = p ◦ q1. Let yi be the image of zi in Y and let R∗
p
= {yi | 1 ≤ i ≤ m}.

The map q1 : H → Y is a local isomorphism; in fact, if z ∈ Hmaps to y ∈ Y , then
q1 induces an isomorphism πz

∼
−→ Γy of isotropy subgroups of π and Γ respectively,

as well as an isomorphism of a sufficiently small (formal) neighbourhood of z onto
that of y, respecting the actions of the isotropy groups. Now a (Γ, G)–bundle E on
Y is locally a (Γy, G)–bundle at y.

Recall that this (Γy , G)–bundle is defined by a representation (see for example
Grothendieck [12, Proposition 1, page 06] and in the formal setting see the more
recent paper of Teleman-Woodward [32, Lemma 2.5]); i.e, if N

y
is a sufficiently

small Γy–stable formal neighbourhood of y, then this bundle is isomorphic to the
7



(Γy, G)–bundle Ny
×G, for the twisted Γ

y
-action on E×G given by a representation

ρy : Γy −→ G, defined as follows:

γ · (u, g) = (γu, ρy(γ)g), u ∈ Ny , γ ∈ Γy . (2.3.1.2)

2.3.2. Observation. It is easily seen that these (Γy, G)–bundles given by representa-
tions are isomorphic as (Γy, G)–bundles if and only if the defining representations
are equivalent. We call the representations ρy the local representations associated
to a (Γ, G)–bundle.

Let Dx = Spec(A), where A is the complete discrete valuation ring obtained
by taking the completion of the local ring O

X,x
and let K = Kx be its quotient

field. Similarly, for y ∈ R∗
p
, let N

y
= Spec(B), where B is the integral closure

of A in L = K(ω), where ω is a primitive dth–root of z, where d = |Γy| and z is
the uniformizer of A. Let p : N

y
→ D

x
≃ N

y
/Γ

y
be the totally ramified covering

projection. Let E be the (Γ, G)–bundle on Y and y ∈ R∗
p
. Consider the restriction

of E to N
y
. Then as we have seen above in (2.3.1.2), as a (Γ

y
, G) bundle we can

identify E|
Ny

with the trivial bundle N
y
×G together with the twisted Γ

y
–action.

2.3.3. Definition. Define Uy to be the group:

Uy = Aut
(Γy ,G)

(E|
Ny

) (2.3.3.1)

of (Γ
y
, G) automorphisms of E over N

y
. We call Uy the unit group (or more

precisely the local unit group at y ∈ Y ) associated to E.

We work with notations fixed above. Let ρ : Γ
y
→ G be a representation. Let

ℓ = rank(G) and we represent the maximal torus T ⊂ G in the diagonal form as
follows:

T =




t1 0
.
.

0 tℓ


 (2.3.3.2)

where {t1, . . . , tℓ} is a basis of X(T ).
Since Γ

y
is cyclic, we can suppose that the representation ρ of Γ

y
in G factors

through T (by a suitable conjugation).
The action of Γ

y
on N

y
canonically determines a character as follows. Since N

y

is “1–dimensional”, the action determines an action of Γy on the tangent space Ty

to N
y
at y. We denote this character by χ

o
(which is of order d). Fix a generator

γ in Γ
y
. We can choose the coordinate function ω of N

y
. Then the character χ

o
is

given by:

χ
o
(γ).ω = ζ.ω (2.3.3.3)

where ζ is a primitive dth–root of unity.

2.3.4. Lemma. Let Γ
y
be a cyclic group of order d acting on N

y
as above. Then we

have a canonical identification

Hom(Γ
y
, T ) ≃

Y (T )

d.Y (T )
(2.3.4.1)
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Proof: This lemma is obvious. Observe that X(Γy) ≃ Z/dZ by the canonical
choice of character χo as in (2.3.3.3). Then, we see that

Hom(Γy, T ) = Hom(X(T ), X(Γy)) = Hom(X(T ),Z/dZ) =
Y (T )

d.Y (T )
.

q.e.d

We now elaborate this identification for setting up the notations which play a key
role in the next theorem.

Given a representation ρ ∈ Hom(Γ
y
, T ), the image ρ(γ) takes the form

ρ(γ) =




χ
o
(γ)a1 0

.
.

0 χ
o
(γ)aℓ


 (2.3.4.2)

i.e ρ(γ) takes the form

ρ(γ) =




ζa1 0
.
.

0 ζaℓ


 with ai ∈ Z. (2.3.4.3)

We can suppose that |ai| < d for all i (or even 0 ≤ ai < d) and take

ηi = ai/d, so that |ηi| < 1 (2.3.4.4)

Note that the numbers {a1, a2, . . . , aℓ} are determined uniquely modulo d.
In terms of the local coordinates ω and z, we may identify the function ωai

with zηi where z = ωd. Define the rational map ∆ : N
y
−→ T , or equivalently a

morphism on the punctured disc N
y
− (0) as follows:

∆ = ∆(ω) =




ωa1 0
.
.

0 ωaℓ


 =




zη1 0
.
.

0 zηℓ


 (2.3.4.5)

Then we have

∆(γu) = ρ(γ)∆(u), u ∈ Ny (2.3.4.6)

where ∆ can be taken as a function ∆ : N
y
−→ G (through T →֒ G).

Consider the restriction of ∆ to the punctured disc and view it as a 1PS i.e,
∆|

Spec(L)
: Gm,L −→ G. More precisely, the data of giving the function ∆ together

with its Γy–equivariance automatically gives a rational 1–PS of G, i.e an element
θ
∆
∈ Y (T )⊗Q and the key point to note is that

d.θ
∆
= ∆ i.e θ

∆
∈

Y (T )

d.Y (T )
(2.3.4.7)

The association ρ 7→ θ
∆
gives explicitly the identification obtained in Lemma 2.3.4.

2.3.5. Remark. We note that the tuple of numbers {a1, a2, . . . , aℓ} are determined
uniquely modulo d through the above identification.
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2.4. The unit group. The unit group Uy has been defined in Definition 2.3.3.
The aim of this section is to prove the following:

2.4.1. Theorem. The unit group Uy is isomorphic to a parahoric subgroup P
θ∆

(K)

of G(K) associated to the element θ∆ ∈ Y (T ) ⊗ Q. Conversely, if P
θ
(K) is any

parahoric subgroup of G(K) then there exists a positive integer d, a field extension
L = K(ω) of degree d over K such that

P
θ
(K) ≃ Uy (2.4.1.1)

Proof: We first give a different description of the elements of Uy. By (2.3.1.2)
a (Γy , G)–bundle on Y gets a Γy -equivariant trivialization; in other words, the
Γ

y
-action on N

y
×G is given by a representation ρ : Γ

y
−→ G

γ · (u, g) = (γu, ρ(γ)g), u ∈ N
y
, γ ∈ Γ

y
. (2.4.1.2)

Let φ0 ∈ Uy, i.e, the map

φ0 : N
y
×G −→ N

y
×G. (2.4.1.3)

is equivariant for the Γ
y
–action. This implies that (equivariance under G)

φ0(u, g) = (u, φ(u)g)

where φ : N
y
−→ G is a regular map satisfying the following Γy–equivariance:

φ(γ · u) = ρ(γ)φ(u)ρ(γ)−1, u ∈ N
y
, γ ∈ Γy. (2.4.1.4)

We may thus identify Uy with the following:

Uy = {φ : N
y
→ G | (2.4.1.4) holds} =MorΓy (Ny, G) (2.4.1.5)

Since Ny = Spec(B), we can view Uy ⊂ G(B) ⊂ G(L).
Let ∆ be as in (2.3.4.5). Consider the inner automorsphism defined by ∆:

i
∆
: G(L) → G(L) (2.4.1.6)

given by i
∆
(η) = ∆−1.η.∆. Define

U
′
y := i∆(Uy) (2.4.1.7)

Let ψ = i∆(φ) = ∆−1.φ.∆ with φ ∈ Uy. Then we observe that

ψ(γu) = ψ(u)

so that ψ ∈ G(L)Γy . That is, it descends to a rational function ψ̃ : D
x
−→ G,

where ψ̃(z) := ψ(ω). In other words, we get

U
′
y ⊂ G(K) = G(L)Γy (2.4.1.8)

Then we claim the following:

U
′
y = P

θ∆
(K) (2.4.1.9)

where θ
∆

∈ Y (T ) ⊗ Q is as in (2.3.4.7). Recall the definition of the parahoric
subgroup:

P
θ∆

(K) = 〈T (A), Ur(z
mr(θ∆)A), r ∈ R〉 (2.4.1.10)

Let ψ ∈ U
′
y and let ψ = i

∆
(φ), with φ ∈ Uy. Thus,

φ = ∆ψ∆−1.

Consider the map φ : Ny → G. Let Go ⊂ G denote the big cell determined by the
roots R, (i.e the inverse image in G of a dense B–orbit in G/B).
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Let us assume for the moment that φ(Ny) ∈ Go. In other words, φ can be
described uniquely as a tuple

(
{φr}r∈R

, φt
)
, with φr(u) ∈ Ur and φt(u) ∈ T for

u ∈ Ny.
We first consider the tuples

(
φr(u)

)
r∈R

and the corresponding tuple for ψ,

namely,
(
ψr(u)

)
r∈R

first, where the φt : Ny → T and

{φr, ψr : Ga,L → G | r ∈ R}.

The uniqueness of the decomposition of elements in the big cell and the invariance
property of φ translates into invariance for each of the φr and φt. In other words,
we have the following:

φr(ω) = ∆ψr(ω)∆
−1. (2.4.1.11)

i.e

φr(ω) = ψr(ω)ω
r(∆) (2.4.1.12)

In terms of ψ̃, this gives:

φr(ω) = ψ̃r(z)z
r(∆)

d (2.4.1.13)

Now interpreting the condition that ψ̃ should satisfy so that the φ’s are regular
functions in the variable ω at ω = 0, we see that the order of pole for ψr(z) at

z = 0, is bounded above by [ r(∆)
d

] (the biggest integer smaller than r(∆)
d

) . In other
words ∀r ∈ R,

ψ̃r(z) ∈ Ur(z
−[r(θ

∆
)]A) = Ur(z

mr(θ∆ )A) (2.4.1.14)

and hence ψ̃ ∈ P
θ∆

(K).

Now, towards completing the proof of the claim (2.4.1.9), if φt(u) ∈ T , then by

(2.4.1.4), it follows that φt is Γy–invariant and hence, ψ̃t ∈ T (A).
We now take a closer look at the map φ : Ny → G. In general, the φ(Ny) need

not be contained in the big cell Go. So we consider the element φ(y) = go ∈ G.
Since the point y ∈ Ny is Γy–fixed, it implies that go ∈ GΓy . Thus, by (2.4.1.4),
the point go ∈ C

G
(ρ(γ)), the centralizer in G of ρ(γ), which is a Levi subgroup Lθ

of the standard parabolic subgroup of G determined by the coroot θ = θ∆. The
Levi subgroup can be described in terms of the ur : Ga → G given as in (2.1.0.2);
C

G
(ρ(γ)) = Lθ = 〈T, ur(C) | r ∈ R, and mr(θ) = (θ, r) = 0〉.
Furthermore, by the equation (2.3.4.5) which defines the function ∆ : Gm → T ,

it is immediate from (2.1.0.2) that ∆−1.ur.∆ = ur if mr(θ) = (θ, r) = 0. The
same obviously holds for the elements of the maximal torus. Hence the elements
which commute with ρ(γ) also commute with ∆. This implies immediately that
go = i

∆
(go) and therefore go is an element of the parahoric subgroup P

θ∆
(K).

Now define φ1 : Ny → G by φ1(u) = g−1
o φ(u). Then, φ1(y) = 1 and hence lies in

Go. Hence by the openness of Go and the fact that Ny is a formal neighbourhood
of y, it follows that φ1(Ny) ⊂ Go. Also, clearly φ1 satisfies (2.4.1.4) and hence
by the earlier argument together with the fact that i

∆
(go) ∈ P

θ∆
(K), we see that

i
∆
(φ) = ψ is an element in P

θ∆
(K). This completes the proof of the claim (2.4.1.9)

without any assumptions.
Conversely, we show that any parahoric subgroup of G(K) can be identified,

upto conjugation by a g ∈ G(K), with a unit group Uy. Let θ ∈ E and let P
θ
(K) be

a parahoric subgroup. We would like to modify θ to a θ
∆
for a suitable ∆ ∈ Y (T )

so that, interpreted as unit groups we get P
θ
(K) ≃ P

θ∆
(K) ≃ Uy.
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We observe firstly that the parahoric subgroup P
θ
(K) given by θ ∈ E remains

the same when another choice of θ is made in a neighbourhood. In other words, we
may assume without loss of generality that θ ∈ Y (T ) ⊗ Q. Expressing it in terms
of generators and clearing denominators, we see that there exists a positive integer
d so that d.θ ∈ Y (T ). Then the obvious choice is ∆ = d.θ which therefore forces
∆ ∈ Y (T ).

Now we view ∆ as a “rational” map ∆ : N
y
→ T and hence ∆ can be expressed

as in (2.3.4.5), the ai’s being determined by the following considerations: for r ∈ R
be any root we define

r(∆) = d.(θ, r)

By the discussion following Lemma 2.3.4, we have a θ
∆
∈ Y (T )

d.Y (T ) and the identifi-

cation of Lemma 2.3.4 gives the representation ρ : Γy → T ⊂ G. The representation
ρ gives the action on the root groups Ur(B) ⊂ G(B) which are given by (see 2.1.0.3):

ρ(γ).Ur(B).ρ(γ)−1 = Ur(ζ
r(∆)B) (2.4.1.15)

Retracing the steps in the first half of the proof, it is easy to see that P
θ
(K) ≃ Uy

completing the proof of the theorem.

q.e.d

2.4.2. Remark. In the notations used above, if mr(θ∆) < 1 for all r ∈ R, such
elements θ

∆
∈ E are precisely the points of the interior of the alcove A (see Remark

2.2.1 and Remark 3.0.7).

2.4.3. Definition. Let θ ∈ Y (T )⊗Q. Let ∆ = d.θ as above. To this data we asso-
ciate a representation ρ

θ
: Γ

y
→ G which acts on the root groups as in (2.4.1.15).

In particular, for α ∈ S a simple root, let θ
α

:= α∗

cα
(see the definition(3.0.3.2)

below) and ρ
θα

denote the corresponding representation.

2.4.4. Remark. It is remarked in [29, Case III, Page 8] that it was not clear whether
the unit group in the situation considered there is a parahoric subgroup at all. In
fact, this is indeed the case as can be seen from Theorem 2.4.1. Moreover, it is not
too hard to check by some elementary computations that the unit group considered
in [29, Case III, Page 8] does contain the standard Iwahori subgroup but only after
a conjugation by a suitable element of G(K) .

2.4.5. Example. Let us now take G = GL(m). We invite the reader to compare
this discussion with the one in Weil ([35, page 56]). Then we can write φ =

||φij(ω)||, ψ̃ = ||ψ̃ij(z)||, 1 ≤ i, j ≤ m (as matrices). Then the equation (2.4.1.13)
takes the form

φij(ω) = ψ̃ij(z)z
αi−αj . (2.4.5.1)

We can suppose that 0 ≤ α1 ≤ α2 ≤ · · · ≤ αm < 1. Since |αi − αj | < 1, we deduce

easily that ψ̃ij are regular i.e. Uy ⊂ G(A). (To see this suppose that ψ̃ij is not
regular. Then considered as a function in ω (z = ωd), ψij has a pole of order ≥ d,
whereas zαi−αj could have only a pole of order d (as a function in ω). But φij(ω)
is regular, which leads to a contradiction).

2.4.6. Remark. We refer the reader to the papers by Gille ([11, Lemma I.1.3.2]),
Larsen ([16, Lemma 2.4]) and Serre ([26, Proposition 8, p. 546]) where similar
phenomena are considered in the general setting of Bruhat-Tits theory.
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2.5. The Bruhat-Tits group scheme as invariant direct image. The aim
of this subsection is to prove Theorem 2.5.2 below, in other words to get a
parametrized version of Theorem 2.4.1. Towards this, we first give a different
description of the Bruhat-Tits group scheme associated to the parahoric subgroup
P

θ
∆
(K).

Let p : Y → X be a a finite flat morphism of smooth quasi-projective curves.
Let GY be a smooth group scheme over Y . Following [6], we can define the direct
image functor p∗ as the Weil restriction of scalars, i.e, we have a group scheme
p∗(GY

) := Res
Y/X

(G
Y
) with the following property; for any X–scheme T , we have

a canonical bijection:

HomX(T, p∗(GY
)) ≃ HomY (T ×X Y,G

Y
) (2.5.0.1)

which is functorial in T and G
Y
.

It is a fact that the group scheme G
Y

is quasi-projective, being over a smooth
quasi-projective curve. Hence, Res

Y/X
(G

Y
) is in fact representable by a group

scheme (see [6, Theorem 4 and Proposition 6]).
Now we consider the situation with a Galois group action. Let p : Y → X

be a a Galois cover (possibly ramified) of smooth quasi-projective curves and let
Γ = Gal(Y/X). Suppose also that Γ acts on the group scheme G

Y
. Then there is

a natural (right) action of Γ on Res
Y/X

(G
Y
) given by:

z.g = ρ
G
(g).z.ρ

T
(g)−1 (2.5.0.2)

where T is a scheme over X , and z ∈ Res
Y/X

(G
Y
)(T ) = Hom

Y
(T ×X Y,G

Y
), g ∈ Γ

and ρ
G
(g) the action on G

Y
induced by g and ρT (g) = the action on T×X Y induced

by its action on Y (see [10, Construction 2, page 292]).
We can now take the fixed points subscheme under the action of Γ. The generality

on fixed point subschemes given in [10, Section 3] can be applied to our situation
since we are in characteristic 0 and we have a canonically defined smooth closed
X–subgroup scheme Res

Y/X
(G

Y
)Γ ⊂ Res

Y/X
(G

Y
).

2.5.1. Definition. (Invariant direct image) Let p : Y → X be a a Galois cover
(possibly ramified) of smooth quasi-projective curves and let Γ = Gal(Y/X). Let
G

Y
be a smooth group scheme over Y . We define the invariant direct image of G

Y

as:

pΓ∗ (GY
) := Res

Y/X
(G

Y
)Γ (2.5.1.1)

i.e, for any X–scheme S, we have pΓ∗ (GY
)(S) = G

Y
(S ×X Y )Γ.

We now return to our setting, i.e p : Ny → Dx. Recall that Γy = Gal(Ny/Dx).
LetM ⊂ G(L) be themaximal bounded subgroup defined byM := ∆−1G(B)∆, with
∆ as in (2.3.4.5). Let G

∆
be the Bruhat-Tits group scheme on Spec(B) uniquely

defined by M , i.e

G
∆
(B) =M = ∆−1G(B)∆ (2.5.1.2)

Observe that the B–group scheme G
∆

is isomorphic to the trivial group scheme
G × SpecB.

The content of Theorem 2.4.1 is that

G
∆
(B)Γy = P

θ
∆
(K) (2.5.1.3)
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2.5.2. Theorem. Let G
θ
∆

be the Bruhat-Tits group scheme defined by the P
θ
∆
(K).

Let Dx = Spec A and Ny = Spec B. Let G∆ be the group scheme on Ny defined by
the bounded subgroup M . Then

G
θ
∆

≃ p
Γy
∗ (G

∆
) (2.5.2.1)

In particular, if T is a scheme over C, then we have the identification:

MorΓy (Ny × T,G) ≃Mor(Dx × T,G
θ
∆
) (2.5.2.2)

Proof: By Bruhat-Tits ([7, Section 1.7]), the smooth group scheme G
θ
∆

on Dx is

uniquely determined by its A–valued points which is the parahoric group P
θ
∆
(K).

By the functorial property of the functor p
Γy
∗ , we see (by (2.3.4.2)) that

p
Γy
∗ (G∆)(A) = Res

B/A
(G∆)

Γy = G∆(B)Γy = P
θ
∆
(K) (2.5.2.3)

Thus, by the uniqueness of the Bruhat-Tits group scheme, we have an isomorphism

of Spec(A)–group schemes: G
θ
∆

≃ p
Γy
∗ (G

∆
).

The identification (2.5.2.2) now follows from the functorial properties of restric-
tion of scalars and fixed point schemes since,

MorΓy (Ny × T,G) = p
Γy
∗ (G

∆
)(Dx × T ) = G

θ
∆
(Dx × T ) (2.5.2.4)

q.e.d

3. Remarks on Bruhat-Tits theory when G is simple

Let the notations be as in the beginning of §2. For this section alone we will
assume G is moreover simple. In this situation, the parahoric groups have a nicer
description which assist in more explicit computations in the later sections.

3.0.3. Remark.As we have seen earlier, when G is semisimple and simply connected,
it is known that every parahoric subgroup of G(K), upto conjugation by an element
of G(K), can be identified with a P

θ
(K) for a suitable θ ∈ E (see for example [33,

Section 3.1, page 50]). Again by [33, page 51], the conjugacy classes of maximal
parahoric subgroups of G(K) are the stabilizers of the vertices of the building and
they are precisely l + 1 in number, where l = rank(G).

Let αmax denote the highest root, noting that G is simple. Then we can express
it as:

α
max

=
∑

α∈S

cα · α (3.0.3.1)

with cα ∈ Z+.
One can have a nicer choice of the points whose stabilizers give the maximal

parahorics (see the last paragraph in [34, Page 662]), now that G is simple. For
every α ∈ S, we define

θα =
α∗

cα
∈ E, (3.0.3.2)

then in fact, {P
θα
(K) | α ∈ S} and the group P

0
(K) represent the conjugacy classes

under G(K) of all maximal parahoric subgroups of G(K). In other words, these
are indexed precisely by the vertices of the extended Dynkin diagram.
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We now recall the description of the set of conjugacy classes in a compact
semisimple and simply connected group in terms of the affine Weyl group W

aff
.

Fix a maximal torus T ⊂ G. Let Y (T ) denote the group generated by the coroots
α̌i (see Section 2 for notations). Then one has the identifications:

{Elements of finite order}/conjugation ≃ {Elements of finite order in T}/W

and this is the same as

(Y (T )⊗Q/Z)/W ≃ (Y (T )⊗Q)/W
aff
.

Further, since G is simple, (Y (T ) ⊗ Q)/W
aff

gets identified with the simplex (the
(rational) Weyl alcove)

A := {x ∈ Y (T )⊗Q | (x, αmax) ≤ 1, (x, αi) ≥ 0, ∀ positive roots αi}

3.0.4. Observation. It is well-known that the set of conjugacy classes of element in
KG is identified with points of the Weyl alcove. Under this identification, elements
of finite order get mapped to the points of A defined above.

3.0.5. Remark. Recall that vertices of the alcove A correspond to the vertices of
the extended Dynkin diagram. Furthermore, to each point of A one can associate
a parahoric subgroup of G(K) and hence a canonically defined parahoric Bruhat-
Tits group scheme. Thus, for each tuple τ = {τ i}

m
i=1 of conjugacy classes of

elements of finite order in KG we have a subset Θ(τ ) = {θi}
m
i=1 ⊂ Am, where

m = #{ of conjugacy classes} and hence an associated parahoric Bruhat-Tits
group scheme G

Θ(τ)
.

3.0.6. Remark. By the description of the (rational) Weyl alcove A (see Definition
3.0.4) and the fact that the parahoric subgroups are determined by general points of
E, G being simple and simply connected, it follows that upto conjugacy by G(K),
every parahoric subgroup of G(K) can be identified with a P

θ
(K) for a suitable

θ ∈ A. Moreover, by Remark 2.2.1, if mr(θ) < 1 for all r ∈ R, then P
θ
(K) ⊂ G(A).

3.0.7. Remark. We remark that when G is semisimple, we still have the notion of
an alcove A, but it will no longer be a simplex as in the case when G is simple since
there is no unique αmax but A will now be a product of the Weyl alcoves associated
to the simple factors of G.

3.1. Hyperspecial Parahorics. In Bruhat-Tits theory, we encounter the so-called
hyperspecial maximal parahorics which have the following characterizing property:
each parahoric group P

Ω
(K) is identified with G

Ω
(A), the A–valued points of a

certain canonically defined smooth group scheme G
Ω
defined over A. It is a fact

that the parahoric subgroup P
θα
(K) is hyperspecial if and only if cα = 1 in the

description of the long root α
max

. This can be checked by an inspection of the
tables and some easy computations. In particular, type-wise we have the following
description upto conjugation by G(K):

(1) In type An, all the n + 1 maximal parahoric subgroups are hyperspecial
parahorics.

(2) In types Bn, Cn we have exactly 2 hyperspecial maximal parahoric sub-
groups.

(3) Type Dn, has exactly 4 hyperspecial maximal parahoric subgroups.
(4) Type E6 has exactly 3 parahoric subgroups.
(5) Type E7 has exactly 2 parahoric subgroups.
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(6) In types G2, F4, E8, we have only one hyperspecial maximal parahoric sub-
group each.

3.2. Standard parahorics. (See Remark 2.2.1, Remark 2.4.2 and Remark 3.0.6)
Following the loop group terminology, the standard parahoric subgroups of G(K)
are parahoric subgroups of the distinguished hyperspecial parahoric subgroupG(A).
These are realized as inverse images under the evaluation map ev : G(A) → G(k)
of standard parabolic subgroups PI ⊂ G, where I ⊂ S is any subset of the simple
roots. In particular, the Iwahori subgroup I is a standard parahoric and indeed,
I = ev−1(B), B ⊂ G being the standard Borel subgroup containing the fixed
maximal torus T .

Since the standard parahoric subgroups of G(A) are also indexed by the subsets of
the set of simple roots, to avoid any confusion, we will henceforth denote the stan-
dard parahoric subgroups of G(A) by Pst

I
(K) for every subset I ⊂ S. For instance

let α ∈ S. Then P
α
⊂ G is a maximal parabolic subgroup while ev−1(P

α
) = Pst

α
(K)

is a standard parahoric, and we have the obvious inclusions:

I ⊂ Pst
α
(K) ⊂ P

θα
(K) ∩ P0(K) (3.2.0.1)

These standard parahorics will play a role when we re-look at Hecke correspon-
dences.

4. The adèlic picture of (Γ, G)–bundles

We work with the notations of §2. Let E be a (Γ, G)–bundle on Y .

4.0.1. Definition. The local type of E at y is defined as the equivalence class of
the local representation ρy and is denoted by τ y.

We denote by τ (R∗
p
) the set {τ y | y ∈ R∗

p
}. Let us denote by

Bunτ

Y
(Γ, G) =

{
the set of isomorphism classes of
(Γ, G) bundles with fixed local type τ (R∗

p
)

}
(4.0.1.1)

Since the action of Γ on Y − p−1(Rp) is free, there is a principal G–bundle F on
X −Rp such that then E|

Y −p−1(Rp)
≃ p∗(F ).

Since G is semisimple and simply connected by the theorem of Steinberg and
Borel-Springer, F is trivial. Hence so is E|

Y −p−1(Rp)
as a (Γ, G)–bundle.

Again, by [32, Lemma 2.5], it follows that around each point yi ∈ p−1(Rp), we
have formal neigbourhoods Nyi = Spec Byi with Γyi–equivariant trivializations of
E|Nyi

(see (2.3.1.2)). Recall that by Theorem 2.4.1 each unit group U
′
y, y ∈ R∗

p
is

identified with a parahoric group P
θi
(Kxi), xi ∈ Rp .

4.0.2. Proposition. We have the following set-theoretic identification of
Bunτ

Y
(Γ, G) with the adèlic type set of double cosets.

Bunτ

Y
(Γ, G) ≃

[ ∏

x∈Rp

P
θi
(Kxi)\

∏
x∈Rp

G(Kx)
/G(k(X))

]
(4.0.2.1)

Kx being the quotient field of the complete local rings Ax at x ∈ R
p
and k(X) being

the quotient field of X.
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Proof: Recall (2.3.1.2), that (Γy, G)–bundles are locally given by

γ · (u, g) = (γu, ρ(γ)g), u ∈ N
y
, γ ∈ Γ

y
. (4.0.2.2)

Let E ∈ Bunτ

Y
(Γ, G) be a (Γ, G) bundle on Y of local type τ (see Definition 4.0.1).

Let

X1 = X − x, and Y1 = p−1(X1) (4.0.2.3)

Now Γ acts freely on Y1 so that the restriction of E to X1 goes down to a principal
G-bundle on X1 which is trivial (in the algebraic sense) since G is semi-simple.
Hence we have:

E|Y1 ≃ Y1 × G with the action of Γ given by γ · (u, g) =
(γu, g), γ ∈ Γ and u ∈ Y1.

(4.0.2.4)

Let

E|
Ny

= E1 and E|
Y1

= E2 (4.0.2.5)

We note that E1 is given by (4.0.2.2) and E2|Ny
by (4.0.2.4).

The (Γ, G)–bundle E is given by a (Γ, G)–isomorphism

Θ : E2|Ny∩Y1 −→ E1|Ny∩Y1 . (4.0.2.6)

Observe that if Q is any (Γ, G)–bundle in Bunτ

Y (Γ, G), then Q|
Ny

≃ E1 and Q|
Y1

≃

E2 as (Γ, G)–bundles by (4.0.2.2) and (4.0.2.4) above. Thus Q is defined by an
isomorphism (i.e transition function) as in (4.0.2.6) above. Let us denote it by η.
Then E is (Γ, G)–isomorphic to Q if and only if we have the following:

φ Θ µ = η (4.0.2.7)

where φ is a (Γy , G)–automorphism of E1 and µ a (Γ, G)–automorphism of E2 .
Observe that by (4.0.2.4) the map µ is given by a morphism:

µ : Y1 ×G −→ Y1 ×G,
(u, g) → (u, µ(u)g),

(4.0.2.8)

where µ(γ · u) = µ(u), γ ∈ Γ. In other words, the map µ goes down to a morphism
X1 −→ G and we can view µ as an element in G(X − x).

We now trace the various identifications by restricting the above picture to the
punctured disc N∗

y
= N

y
− (0); note that the (Γ, G)–isomorphism Θ is completely

characterized by its restriction to N∗
y
.

We observe by (4.0.2.4) that the restriction of E2 to N∗
y
is the (Γ

y
, G)–bundle

N∗
y
×G over N∗

y
with the action of Γy given by

γ : N∗
y
×G −→ N∗

y
×G, γ ∈ Γ

y

γ(u, g) = (γu, g).
(4.0.2.9)

The restriction of E1 to N∗
y
is the (Γy , G)–bundle N

∗
y
×G on N∗

y
with the action

of Γy given by

γ : N∗
y
×G −→ N∗

y
×G

γ(u, g) = (ρu, ρ(γ)g), γ ∈ Γy .
(4.0.2.10)

The restriction of Θ|N∗
y

of Θ to N∗
y

(denoted again by Θ) is then a (Γy , G)–

isomorphism of the bundle in (4.0.2.8) with the one of (4.0.2.7). We see easily
17



that Θ is defined by the map:

N∗
y
×G −→ N∗

y
×G

(u, g) −→ (u,Θ(u)g)
(4.0.2.11)

where Θ : N∗
y
→ G is such that Θ(γ · u) = ρ(γ)Θ(u).

Recall that the map ∆ as in (2.3.4.5) is a morphism N∗
y
−→ G and has similar

properties. Thus we can write

Θ = ∆Θo such that Θo(γu) = Θo(u) (4.0.2.12)

i.e. Θo descends to a regular map D∗
x
−→ G, D∗

x
= D

x
− (0).

The equivalence relation (4.0.2.7) therefore takes the following form:

φ (∆Θo) µ = η (4.0.2.13)

Multiplying on either side by ∆−1 we get

(∆−1φ∆) Θo µ = ∆−1η = ηo. (4.0.2.14)

Thus, by the proof of Theorem 2.4.1, φ identifies with an element i∆(φ) = ψ of the
unit group U

′
y and we can write (4.0.2.14) as

ψ Θo µ = ∆−1η = ηo. (4.0.2.15)

Thus, Θo ∈ G(Kx) and ψ ∈ U
′
y and by (4.0.2.8), µ becomes a regular map

X1 −→ G i.e. µ ∈ G(X − x). Thus from (4.0.2.15) together with the identification
U
′
y = P

θ
(Kx), we deduce the following set-theoretic identification of Bunτ

Y
(Γ, G)

with a set of double cosets:

Bunτ

Y
(Γ, G) ≃

[
P

θ
(Kx)\

G(Kx)/G(X − x)
]

(4.0.2.16)

q.e.d

4.0.3.Definition.Define the set of double cosets associated to the parahoric groups
{P

Ωi
(Kxi)}:

MX({P
Ωi
(Kxi)}) =

[ ∏

xi∈Rp

P
Ω
(Kxi)\

∏
xi∈Rp

G(Kxi)/G(k(X))
]

(4.0.3.1)

4.0.4. Remark. If P
Ω
(K) = P

0
(K) is the distinguished hyperspecial parahoric

G(A) ⊂ G(K), then the set of double cosets M
X
(P

0
(K)) is simply the C–points of

the moduli functor BunX (G) of isomorphism classes of principal G–bundles on X
(see (5.2.0.2)).

The next proposition shows that M
X
(P

Ω
(K)) depends only on the conjugacy

class of the parahoric subgroup.

4.0.5. Proposition. Let g ∈ G(K) and consider parahoric subgroups P
Ω
(K)g =

g.P
Ω
(K).g−1 and P

Ω
(K) of G(K). Then there is a natural bijection

φg : M
X
(P

Ω
(K)g) → M

X
(P

Ω
(K)) (4.0.5.1)

Proof: This follows easily from the following observation. Given a g ∈ G(K),
define the map

φg : MX (PΩ(K)g) → MX (PΩ(K))

by φg(θ) = g.θ. That this defines a bijection of set of double cosetss is easy to
check.

q.e.d
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5. Torsors under Bruhat-Tits group schemes

5.1. Bruhat-Tits group schemes and patching. By the main theorem of
Bruhat-Tits ([7]), there exist smooth group schemes G

Ω
over Spec(A) such that

the group G
Ω
(A) = P

Ω
(K).

We now recall a result due to Raghunathan and Ramanathan as formulated in
[8, Lemma 3.18].

5.1.1. Lemma. Let X be a smooth projective curve and k(X) be its function field.
Let x ∈ X and let Ax be the completion of OX,x and Kx the completion of k(X).
Assume that we are given a triple (G1, G2, f) consisting of:

(a) An affine group scheme G1 over U = X − x of finite type.
(b) An affine and finitely presented group scheme G2 over Ax.
(c) A Kx–group scheme isomorphism f : G1 ×U Kx ≃ G2 ×U Kx.

Then there exists a group scheme G, affine and of finite type over X such that
G ×X U ≃ G1 and G ×X Ax ≃ G2 and both isomorphisms are compatible with f .
Furthermore, if Gi are smooth then so is G.

We now have the following key observation in the context of parahoric Bruhat-
Tits group schemes on X (Definition 1.0.2).

5.1.2.Observation. From Lemma 5.1.1 it follows that given a finite Rp ⊂ X a subset
Ω ⊂ Em together with patching data f as in Lemma above, we have a parahoric
Bruhat-Tits group scheme Gf

Ω,X
with Ram(Gf

Ω,X
) = Rp (see Remark 3.0.5).

5.1. Notation. In what follows, in the notations of Lemma 5.1.1, we will assume that
G1 = G× (X −Rp) and Gj = G

Ωj
for j = 1, . . . ,m, the G

Ωj
being the Bruhat-Tits

group schemes on Spec Aj associated to Ωi ⊂ E. The patching isomorphism f is
the identity map. The parahoric Bruhat-Tits group scheme thus obtained will be
denoted by GΩ,X .

5.1.3. Remark. In Heinloth [14] the parahoric Bruhat-Tits group scheme is defined
with a restriction that the fibres Gx for points x ∈ Ram(G) are not semisimple. We
do not make this assumption since there are the maximal hyperspecial parahoric
group schemes whose closed fibres are in general reductive (and even semisimple
when G is simple) and the moduli spaces of torsors for such group schemes are
very much a part of the theory presented here. Indeed, in the case of G = SL(n),
the maximal parahoric groups are all hyperspecial and the moduli spaces of torsors
for the corresponding parahoric Bruhat-Tits group schemes (in our definition) are
precisely the spaces of vector bundles of rank n and fixed determinants.

5.2. G–torsors. Let G be a parahoric Bruhat-Tits group scheme on X . Recall
that we have assumed that the generic fibre is connected and G is a smooth group
scheme of finite type. Under these conditions, one has as a consequence of theorems
of Steinberg and Borel-Springer (see [14, page 511]) the following description of G–
torsors.

Any G–torsor E can be obtained by gluing the trivial torsor on some open subset
U ⊂ X and the trivial torsors on the formal completions at the points Rp = X−U .
Thus, if Bun

X
(G

Ω,X
) denotes the set of isomorphism classes of G

Ω,X
–torsors on

X , then we have the following bijection which gives an adèlic description of G
Ω,X

–
torsors on X :

MX (PΩ(K)) ≃ Bun(GΩ,X ) (5.2.0.1)
19



Let P
Ωi
(K) ⊂ G(K) i = 1, . . .m, be parahoric subgroups. Let Ω = {Ωi}. From

the discussions in 2.2 we have identifications w
θi

: P
Ωi
(K) ≃ P

θi
(K), where θi ∈ E,

for each i. By Theorem 2.4.1 we can identify these parahorics P
θi
(K) with unit

groups.
By abuse of notation, let Bun(G

Ω,X
) and Bunτ

Y
(Γ, G) also denote the functors

given by:

Bun(G
Ω,X

)(T ) =

{
the set of isomorphism classes of
G

Ω,X
–torsors on X × T

}
(5.2.0.2)

Bunτ

Y
(Γ, G)(T ) =

{
isomorphism classes of (Γ, G) bundles
with fixed local type τ on Y × T

}
(5.2.0.3)

5.2.1. Lemma. Let E be a family of (Γ, G)–bundles of local type τ on Y
parametrized by T . Then there is an étale cover φ : T ′ → T such that the bun-
dle (idY × φ)∗(E)|

(Y −R∗
p)×T ′ is trivial as a (Γ, G)–torsor.

Proof: This lemma is an analogue of the theorem of Drinfeld-Simpson for the
equivariant case. We work over C. The first step is to show that the bundle E
has a Γ–equivariant reduction of structure group to a Borel subgroup B ⊂ G. For
this we follow the proof in Heinloth [14, Proposition 25 and Corollary 26]. Then
to complete the proof one uses the (Γ, B)–reduction and complete the argument
following that of Drinfeld-Simpson.

The notion of Γ–cohomology for Γ–sheaves on Y has been constructed and dealt
with in great detail in [12]. These can be realised as higher derived functors of the
sub-functor of Γ–fixed points, namely, (H0)Γ of the section functor H0. We note
immediately that since we work over fields of characteristic zero, the sub-functor
(H0)Γ ⊂ H0 is in fact a direct summand (by the operation of averaging). Hence,
we see immediately that the higher derived functors of the functor(H0)Γ are all sub
objects of the derived functors of H0.

Observe that the infinitesimal deformation space for the (Γ, B) and (Γ, G)
bundles are respectively the Γ–cohomology modules H1

Γ
(Y,EB ×B (Lie B)) and

H1
Γ
(Y,E×G (Lie G)), for the standard adjoint action of G on Lie G. The vanishing

of H1
Γ
(Y,EB ×B (Lie G/Lie B)) now follows by noting that it is a submodule of

the usual cohomology module H1(Y,EB ×B (Lie G/Lie B)).
Now one follows the argument in Heinloth [14] to get hold of a modified reduction

section s′ with the following property: let E′
B be the B–bundle obtained from the

new section s′. ThenH1(Y,E′
B×

B(Lie G/Lie B)) = 0 (see [14, Proof of Proposition
25]).

The vanishing of the obstruction implies that the space of Γ–equivariant reduc-
tions of E to B is smooth at E

t,B
for each t ∈ T and hence there is a smooth

neighbourhood T ′
t such that the reduction extends to this neighbourhood.

Having obtained the (Γ, B)–reduction for families, we restrict to (Y − R∗
p), to

get the (Γ, B)–torsor (idY × φ)∗(EB)|(Y −Rp)×T ′ . By usual Galois descent, since

the action of Γ is free on Y −Rp, we see immediately that there is a G–torsor F on
(X − Rp) × T ′ together with an isomorphism: (idY × φ)∗(E)|

(Y −R∗
p)×T ′ ≃ p∗(F )

and such that F has a B–reduction on (X −Rp)× T ′′.
Once we have the B–reduction, to complete the proof we simply observe that

the proof in Drinfeld-Simpson [9, page 826] applies to the G–torsor F to give a
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new et́ale cover T ′′ → T such that F gets trivialized as a principal G–torsor on
(X−Rp)×T ′′. This in turn gives the required Γ–equivariant trivialization of E on
(Y −R∗

p)× T ′′.

q.e.d

We now have the following key theorem:

5.2.2. Theorem. Fix a Bruhat-Tits group scheme G
Ω,X

over X ramified over Rp ⊂
X. Then there exists a cover p : Y → X ramified along Rp ⊂ X, such that we have
an isomorphism of functors pΓ : Bunτ

Y
(Γ, G) ≃ Bun(G

Ω,X
).

Proof: Without loss of generality, we will assume that Rp = {x}. Let θ be a
point in the interior of the facet determined by Ω. This gives an identification
w

θ
: PΩ(K) ≃ P

θ
(K). Now Theorem 2.4.1 and Proposition 4.0.2 immediately

gives the ramified cover p : Y → X and the set-theoretic identification of the C–
points of the respective functors. The transformation (4.0.2.12) in the proof of
Proposition 4.0.2 identifies the transition function of the (Γ, G)–bundle with that
of the G

θ,X
–torsor and the transformation φ 7→ i∆(φ) = ψ in the proof of Theorem

2.4.1 identifies the local automorphism group Uy with the parahoric group P
θ
(K).

We need to show that we have an isomorphism of the corresponding functors.
Let T be a scheme over C. The question boils down to defining a family of

(Γ, G)–bundles of local type τ . Let E = E
T
→ Y ×T be a family of (Γ, G)–bundles.

Then by [32, Lemma 2.5], for any t ∈ T , there exists an étale neighbourhood Tt of

t and a formal neighbourhood Ñy of y ∈ Y , such that the action of Γ on E|
Ñy×Tt

gets a uniform trivialization by a representation ρ : Γy → G. Thus, there exists an
étale covering T ′ → T such that the pull-back E|

Ñy×T ′
has uniform local type τ .

By Theorem 2.4.1 and the discussion following it, together with Theorem 2.5.2, we
get a trivial GA–torsor E|Dx×T ′ , where Dx = Spec(A), a formal neighbourhood of
x ∈ X .

We now consider the restriction of E to (Y −p−1(x))×T . By Lemma 5.2.1 we get
an étale cover T ′ → T and a Γ–equivariant trivialization of E on (Y − p−1(x))×T ′

This immediately gives a trivial G–torsor on (X − x) × T ′. Gluing as well as
étale descent, gives us a G

Ω
–torsor on X ×T ′. For the descent by the map T ′ → T ,

we use an étale descent argument as shown below in the argument for the converse;
this gives a G

Ω
–torsor on X × T .

Conversely, let E be a GΩ–torsor on X×T . Since G is assumed to be semisimple
and simply connected and since the group scheme G

Ω
is trivial on X − x, by the

theorem of Heinloth ([14, Theorem 1]) there is an étale covering T ′ → T such that
the pull-back E′ has a trivializing cover U1 = (X − x) × T ′. By Theorem 2.5.2
and the discussion above, E is trivial on U2 = Dx × T ′ with a transition function
ψ : D∗

x × T ′ → G
Ω
.

Let XS denote the product X × S. Since E′ comes as a pull-back, it comes
equipped with the obvious descent datum, i.e an isomorphism:

α : p∗1(E
′) ≃ p∗2(E

′) (5.2.2.1)

which satisfies the “cocycle” condition:

p∗31(α) = p∗32(α) · p
∗
21(α) (5.2.2.2)

where p1 : X ′′
T ′ = XT ′ ×XT XT ′ → XT ′ is the first projection etc. Giving the

isomorphism α in terms of the trivializing cover Ui implies that there are maps
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αi : Ui → G
Ω
such that on the inverse image of U1 ∩ U2 in X ′′

T ′ we have

α1ψ = ψα2 (5.2.2.3)

Let V1 = (Y − p−1(x)) × T ′ and V2 = Ny × T ′. By Theorem 2.5.2, giving the
map α2 : U2 → G

Ω
is equivalent to giving a map β2 : V2 → G which is Γ-equivariant

and the map α1 obviously gives a Γ-equivariant map β1 : V1 → G. We also get the
transition function φ : N∗

y × T ′ → G which is Γy–equivariant, coming from ψ.
Further, β1φ = φβ2 on the inverse image of V1 ∩ V2 in Y ′′

T ′ . The gluing data,
gives a (Γ, G)–torsor F ′ on Y × T ′.

This further gives a Γ–equivariant isomorphism:

β : p∗1(F
′) ≃ p∗2(F

′) (5.2.2.4)

which satisfies the cocycle condition. Hence by étale descent of torsors, we get a
(Γ, G)–torsor F on Y × T .

q.e.d

5.2.3. Remark.We remark that the proof given above can be made more transparent
as follows. Giving a (Γ, G)–bundle on Y×T is equivalent to giving (Γ, G)–bundles on
(Y −p−1(x)×T ) and onNy×T together with a Γ–equivariant patching isomorphism.
This observation can be thought of as a parametrized analogue of Lemma 5.1.1,
which of course needs to be formally proven. By Galois descent, we get a G–bundle
on (X − x) × T and by Theorem 2.5.2, we get a GΩ–torsor on Dx × T ; finally the
patching datum also descends (being Γ–equivariant), giving a torsor on X×T . The
converse is similar.

5.2.4. Remark. This theorem is the exact analogue of the fact that the invariant
direct image functor pΓ∗ sets up an isomorphism between the stack of Γ–vector
bundles and that of quasi-parabolic vector bundles; this is precisely the point of
view in Seshadri [28] and Mehta-Seshadri [17] (see also Grothendieck[12] and §2.5
above).

5.3. Hecke Correspondences. In what follows, we consider parahoric subgroups
P

Ω
(K) of G(K) which contain a fixed Iwahori subgroup I (see 3.2 for notation).

Using (3.2.0.1), we get I ⊂ Pst
α
(K) ⊂ P

θα
(K) ∩ P

0
(K). These maps of parahoric

groups induce maps of the corresponding parahoric Bruhat-Tits group schemes,
G

I
→ Gst

α
and G

I
→ G

θα
and natural maps which are in fact morphisms at the

level of stacks and get the following generalized Hecke correspondences. Recall
that for the linear group case one has the classical Hecke correspondences due
to Narasimhan and Ramanan [18]. The dimension formulae obtained later (see
Corollary 8.1.9 below) reflect the picture accurately.

Bun(GI)

Bun(Gst
β
)

Bun(Gθβ
) Bun(G)

Bun(Gst
α
)

Bun(G) Bun(Gθα
)

(5.3.0.1)
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For example we have the Hecke correspondence induced by GI → G
Ω
and GI →

G
0
= G given by:

BunX(GI)

xxppppppppppp
G/B

&&NNNNNNNNNNN

BunX(GΩ ) BunX(G0 )

(5.3.0.2)

5.3.1. Remark. It would be interesting to express these relations as morphisms
between moduli spaces which have been constructed below as projective varieties.

6. Stability and semistability

The aim of this section is to introduce the notion of semistability and stability of
torsors under parahoric group schemes introduced in the last section. We recall that
once a root datum for G is fixed, there is a natural choice of an affine apartment
and this identifies a parahoric subgroup P

Ω
(K) ⊂ G(K) as the stabilizer subgroup

of G(K) of a facet of the affine apartment App(G,K) which can then be identified
with E (see §2.2 for these notions). Again, as we have seen earlier, we could in turn
take any point in general position i.e an interior point in the facet and consider
the parahoric as the stabilizer of that point. Thus one can make an identification
P

Ω
(K) ≃ P

θ
(K) for an interior point θ in the facet determined by Ω.

6.1. Quasi-parahoric torsors. The notion of boundedness of subsets of G(K)
has been defined in §2.2 . Let G

Ω,X
be a Bruhat-Tits group scheme on the curve X

associated to a subset Ω ∈ E (see the notation 5.1). For simplicity we have assumed
thet |Rp| = {x} but it is seen easily enough that the definitions go through when
more generally we take Ω ⊂ Em.

6.1.1. Definition. Fix a parahoric subgroup PΩ(K) ⊂ G(K). A quasi-parahoric
torsor is an element E of the set of double cosets M

X
(P

Ω
(K)); equivalently (by

(5.2.0.1)), giving E is giving an element in Bun(G
Ω,X

).

6.2. Notion of weights and parahoric torsors. Let PΩ(K) be a parahoric sub-
group and let θ ∈ Y (T ) ⊗ Q a point in the interior of the facet determined by Ω.
This θ gives rise to an identification

w
θ
: PΩ(K) ≃ P

θ
(K) (6.2.0.1)

of the parahoric subgroup PΩ(K) with a specific parahoric P
θ
(K) (and hence a

local unit group Uy and not just the conjugacy class Ux) (see Theorem 2.4.1).
Equivalently, the choice of θ gives an isomorphism of group schemes:

w
θ
: GΩ ≃ G

θ
(6.2.0.2)

and hence a consequent identification of the functors defined in(5.2.0.2):

fθ : Bun(G
Ω,X

) ≃ Bun(G
θ,X

) (6.2.0.3)

6.2.1. Definition. (Weights) Let E ∈ Bun(GΩ,X ) be a quasi-parahoric torsor. A
weight attached to E is an element θ ∈ Y (T ) ⊗ Q in the interior of the facet
determined by Ω.

6.2.2. Remark. The choice of a weight gives the isomorphism w
θ
which identifies E

as an element in Bun(G
θ,X

) via fθ.
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6.2.3. Definition. (Parahoric torsor) A parahoric torsor is the pair (E , θ) of a
quasi-parahoric torsor E together with a rational weight θ ∈ Y (T )⊗Q.

6.2.4. Remark. Recall that by Theorem 5.2.2, fixing θ gives the following identifica-
tion:

Bun
X
(G) ≃ Bunτ

Y
(Γ, G) (6.2.4.1)

for a suitably defined covering p : Y → X with Galois group Γ. Thus, a family of
parahoric torsors on X parametrized by T gets identified with a family of (Γ, G)–
bundles on Y of local type τ .

6.2.5. Remark. The notion of weight defined above is the precise analogue of the
classical weight for a parabolic vector bundle with multiplicity (cf. [17, Definition
1.5, page 211]).

6.3. Parabolic line bundles. Fix a finite subset D ⊂ X with |D| = m.

6.3.1. Definition. (see [17, Definition 1.5, page 211]) A parabolic line bundle on
(X,D) is a pair (L, {α1, . . . , αm}), where L is a line bundle on X together with a
m–tuple of rational numbers (α1, . . . , αm) with 0 ≤ αi ≤ 1. The parabolic degree
of a parabolic line bundle is defined as

pardeg(L) = deg(L) +
m∑

i=1

αi

6.3.2. Remark. Let p : Y → X be a Galois cover ramified over Rp ⊂ X with ramifi-
cation indices nyi , i = 1, . . . ,m at the points yi ∈ Y overRp and let Gal(Y/X) = Γ.

Let L be a a Γ–line bundle on Y of local type τ = {τ i}, where each τ i acts a
character τ i(ζ) = ζayi with |ayi | < nyi , ∀i. Then by [28] and [17], the invariant di-
rect image L ≃ pΓ

∗
(L) determines a parabolic line bundle on (X,Rp) with parabolic

weights (
ay1

ny1
, . . . ,

aym

nym
) and parabolic degree:

pardeg(pΓ
∗
(L)) = deg(pΓ

∗
(L)) +

m∑

i=1

ayi

nyi

6.3.3. Remark. In fact, all parabolic line bundles on (X,D) can be realized in this
manner namely, as invariant direct images; this is done by constructing a cover
ramified over D with suitable ramification indices.

6.4. Parabolic subgroup scheme of Bruhat-Tits group schemes. Let G
Ω,X

be a Bruhat-Tits group scheme on the curve X as in Notation 5.1. Following
Heinloth [14, Definition 17], we have:

6.4.1. Definition. A maximal parabolic subgroup P ⊂ G
Ω,X

of the group scheme
G

Ω,X
is defined as the flat closure of a maximal parabolic subgroup of the generic

fibre GK of G
Ω,X

.

6.4.2. Remark. Since we work over C, by Cartier’s theorem flat group schemes are
automatically smooth (cf. [14, Lemma 21]).

Let E be a G
Ω,X

–torsor on X . Then we have (Heinloth [14, Lemma 23])

6.4.3. Lemma. Let PK ⊂ GK be a maximal parabolic subgroup and let E be a GΩ,X–
torsor on X. Any choice of reduction section sK ∈ EK(GK/PK) = EK/PK defines
a maximal parabolic subgroup P ′ ⊂ GΩ,X together with a reduction s′ of E to P ′.
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Proof: This follows immediately from [14] where the proof is given for Borel sub-
group schemes. The only ingredients needed are Heinloth’s uniformization theorem
of ([14, Theorem 1]) and the projectivity of E(GK/PK) over X −Ram(G

Ω,X
).

6.4.4. Remark. Note however that G
Ω,X

/P need not be a projective scheme over A
for all parahorics. It is so for instance if G

Ω,X
is a hyperspecial parahoric.

Let χ : PK → Gm,K be a dominant character of the parabolic subgroup PK .
Then one knows that this defines an ample line bundle L

χ
on GK/PK . Of course,

the quotient G
Ω,X

/P for a flat closure of PK is not projective over X but GK/PK is
projective over K. We see immediately that χ defines a line bundle L

χ
on EK/PK

as well and using a reduction section sK , we therefore get a line bundle s∗K(Lχ) on
X − x.

6.4.5. Proposition. Suppose that we are given the Bruhat-Tits group scheme G =
G

Ω,X
extending the generic group GK . Suppose further that we are given a weight

θ ∈ Y (T )⊗Q, a point in the facet determined by the parahoric subgroup G(A) and
hence a w

θ
: G(A) ≃ P

θ
(K). Let sK be a generic reduction of structure group of

EK to PK . Then the line bundle s∗K(L
χ
) on X − x has a canonical extension Lθ

χ

to X as a parabolic line bundle.

Proof: By Theorem 2.4.1 once the identification w
θ
is fixed along with the choice

of θ ∈ Y (T ) ⊗ Q, we have a ramified cover p : Y → X with Γ = Gal(Y/X) so
that GΩ,X (A) = G(B)Γ. The data (E,w

θ
), of a G–torsor together with weights is

therefore equivalent to giving a (Γ, G)–principal bundle F on Y .
The maximal parabolic subgroup PK ⊂ GK immediately gives a maximal par-

abolic Q ⊂ G and the reduction sK gives in turn a Γ–equivariant reduction of
structure group tL of FL/QL, where L denotes the quotient field of B the local
ring in Y over x ∈ X . By virtue of the projectivity of Y , the reduction section tL
extends to a Γ–equivariant reduction of structure group t ∈ F/Q. The dominant
character χ gives a dominant character η of Q and the section t gives a Γ–line
bundle t∗(Lη).

Now observe that the GIT quotient of F/Q by the finite group Γ gives a natural
compactification of G

Ω,X
/P ′. We observe that the line bundle Lθ

χ
:= pΓ

∗
(t∗(L

η
))

gives the required extension of s∗K(L
χ
). By the very definition of the invariant

direct image (see Remark 6.3.2), we see that Lθ
χ

= pΓ
∗
(t∗(L

η
)) gets the natural

structure a parabolic line bundle.

q.e.d

6.4.6. Lemma. Let qi : Yi → X be two coverings, ramified at R ⊂ X with the
same ramification indices. Let Γi = Gal(Yi/X) such that GΩ,X (A) = G(Bi)

Γi,y , for

i = 1, 2. Then parabolic line bundle Lθ
χ
obtained in Proposition 6.4.5 is independent

of the covering qi : Yi → X.

Proof: Since the ramification locus and ramification indices are the same for
the coverings qi, it follows that we have a common covering pi : Y → Yi, such
that Y dominates the coverings qi, i = 1, 2 and the composite covering maps qi ◦ pi
are also ramified over R. The existence of Y can be seen as follows: by (2.3.1),
the ramification datum of the coverings Yi, i = 1, 2, implies that there exist finite
index normal subgroups πi ⊂ π, such that πi act freely on H and H/πi ≃ Yi. It is
immediate that π3 = π1 ∩ π2 is a normal subgroup of π of finite index and we can
take Y = H/π3.
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Thus to check the non-dependence of the parabolic line bundle Lθ
χ
on the choice

of the covering, it is enough to look at the map p : Y → Y1 → X , with p = q1 ◦ p1.
Clearly, p1 : Y → Y1 is étale. In other words, the local automorphism group of the
covering p : Y → X is the same as q1 : Y1 → X .

Let Γ0 be the Galois group of the étale covering p1 : Y → Y1. Then line bundle
t∗(L

η
) on Y1 obtained in Proposition 6.4.5 from the character η when pulled-back

to Y gets identified with the similar line bundle on Y defined the by the same
character η. It is now easy to see that we have an identification of invariant direct
images, pΓ1

∗
(t∗(L

η
)) = pΓ

∗
(t∗(L

η
)), where Γ = Gal(Y/X).

q.e.d

6.4.7. Remark. The essential point in the independence statement made above is
that the parabolic line bundle Lθ

χ
depends only on the local automorphism groups

and the ramification indices, i.e the datum which provides the parabolic weights
and these are the same for the coverings qi.

We have the following general definition of stability and semistability for (Γ, G)–
bundles following A. Ramanathan [24, Lemma 2.1].

6.4.8. Definition. ( Semistability and stability) Let G be a reductive algebraic
group. A (Γ, G)–bundle E on Y is called Γ-semi-stable (resp. Γ-stable) if for every
maximal parabolic subgroup P ⊂ G and every Γ–invariant reduction of structure
group σ : Y → E(G/P ), and for every dominant character χ : P → Gm we have
deg σ∗(L

χ
) ≤ 0. (resp < 0).

We then make the analogous definition:

6.4.9.Definition. Let G = GΩ,X . A parahoric G–torsor (E, θ) is called stable (resp.
semistable) if for every maximal parabolic PK ⊂ GK , for every dominant character
χ as above, for every reduction of structure group sK , we have:

pardeg(Lθ
χ
) < 0(resp. ≤ 0)

6.4.10. Theorem. The functorial identification

Bun(GΩ,X ) ≃ Bunτ

Y
(Γ, G)

given by Theorem 5.2.2 identifies stable (resp. semistable) objects in the set
Bun(G

Ω,X
) with stable (resp. semistable) (Γ, G)–bundles of local type τ on the

ramified cover Y .

Proof: The proof of the theorem follows immediately from the above discussions
together with Definition 6.4.8 .

q.e.d

6.4.11. Remark. (Harder-Narasimhan reduction) With the definition of semistability
in place, it is routine now to define the Harder-Narasimhan reduction for a G–torsor
by using the identification of Theorem 6.4.10. The existence of a parahoric HN re-
duction is immediate from the exietence of a Γ–equivariant parabolic HN reduction
for a (Γ, G)–bundle. The uniqueness follows as in the proof of the independence
of the parabolic line bundle (see Lemma 6.4.6). Since the covering p1 : Y → Y1 is
étale and Galois, the uniqueness of the HN reduction for (Γ, G)–bundles shows the
uniqueness of the HN reduction of a parahoric bundle as well.
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7. Unitary representations of π

7.1. Manifold of irreducible unitary representations of π. Notations in this
section are as in the introduction. Recall also the notion of local type of unitary
representations ρ : π → KG from Definition 1.0.1. We now recall the following
result from Weil [36, Page 157].

7.1.1. Proposition. Let ρ be a representation of π on a vector space V (over
R) such that d = dimV and ρ is unitary (or more generally leaving invariant a
non-degenerate bilinear form on V ). Then we have

dimRH
1(π, ρ) = 2d(g − 1) + 2 dimRH

0(π, ρ) +

m∑

ν=1

eν

where eν is the rank of the endomorphism (I − ρ(Cν)) of V.

Let KG be the maximal compact subgroup of G and κ
G
≃ Lie(KG) denote the

Lie algebra of KG, which is a real vector space of dimension d, where d = dim(G).
As in the introduction, we assume that X = H/π, with x ∈ X corresponding to

z ∈ H. Let πz be the stabilizer at z (cyclic of order nx) and let γ be a generator of
πz and let ρ : π → KG be a unitary representation of π.

7.2. Explicit computation when G is simple: Let α ∈ S and let ρ
θα

be as in
Definition 2.4.3. Let ρ

θα
(γ) ∈ KG be the image of the generator γ of πz. Note that

the choice of the simple root α and identification of the representation ρ with ρ
θα

amounts to fixing the local type of the representation ρ : π → KG, i.e the conjugacy
class of ρ(γ) in KG.

We denote by Ad ρ
θα
, the adjoint transformation on κ

G
, namely if M ∈

κ
G
, M 7→ ρ

θα
(γ)Mρ

θα
(γ)−1. Then we have:

7.2.1. Proposition. Let e(θα) denote the rank of (Id−Ad ρ
θα
) on κ

G
. Then

e(θα) = dimR(KG)− 2µ(α) − 2ν(α)− ℓ = 2.(dim
C
(G/Pα ))− µ(α)) (7.2.1.1)

where Pα is the maximal parabolic subgroup of G associated to α and

µ(α) = #{r ∈ R+ | r = cα.α+
∑

β 6=α

xβ.β} (7.2.1.2)

ν(α) = #{r ∈ R− | r involves simple roots 6= α} (7.2.1.3)

and ℓ = | S |.

Proof. Make KG operate on itself by inner conjugation. Then, rank of (Id-Ad
ρ

θα
) acting on the Lie algebra κ

G
equals the dimension of the orbit through ρ

θα
(γ)

for the action of KG on itself by inner conjugation.
We may assume for the purpose of this computation that ρ

θα
(γ) lies in the maxi-

mal torus. We firstly compute the number of roots r ∈ R so that the corresponding
root group Ur(B) is centralized by ρ

θα
(γ). Recall from Definition 2.4.3 that the

action of ρ
θα
(γ) on Ur is given as follows:

ρ
θα
(γ).Ur(B).ρ

θα
(γ)−1 = Ur(ζ

r(∆α )B) (7.2.1.4)

where as seen earlier, r(∆
α
) = d.(θ

α
, r). Since ζ is a primitive dth–root of unity,

we need to compute the # {r ∈ R | (θ
α
, r) = ±1 or 0}. It is easy to see that

{r ∈ R | (θα , r) = ±1 or 0} =

4⋃

i=1

Ai(α) (7.2.1.5)
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where for i = 1, 2,

Ai(α) = {r ∈ R± | r = ±cα.α+
∑

β 6=α

±xβ .β} (7.2.1.6)

A3(α) = {r ∈ R− | r involves simple roots 6= α} (7.2.1.7)

and

A4(α) = {r ∈ R+ | r involves simple roots 6= α} (7.2.1.8)

Since the maximal torus centralizes ρ
θα
(γ), we see that the dimension of the cen-

tralizer of ρ
θα
(γ) is

#{r ∈ R | (θ
α
, r) = ±1 or 0} + | S | (7.2.1.9)

Observe that | A4 |=| A3 | and | A1 |=| A2 | . To compute the rank of (Id - Ad
ρ

θα
), we simply subtract the above number (7.2.1.9) from the dim

R
(KG) to get the

first expression for e(α). We see that

ν(α) = dim
C
(Pα/B) (7.2.1.10)

where P
α
is the maximal parabolic subgroup of G defined by the simple root α ∈ S.

Thus,

dim
R
(KG)− 2.ν(α)− ℓ = dim

C
(G)− 2.ν(α)− ℓ = 2.dim

C
(G/P

α
).

since 2.dim(B)− ℓ = dim(G).
Hence, e(θα) = 2.(dim

C
(G/P

α
))− µ(α)) and the proposition now follows.

q.e.d

7.2.2. Corollary. Let α ∈ S be such that P
θα
(K)hs is a maximal parahoric sub-

group in G(K) which is hyperspecial. Then e(θα) = 0 and conversely.

Proof: By Bruhat-Tits theory, the hyperspecial parahorics are simply the maxi-
mal parahorics {P

θα
(K) | ∀α ∈ S,with cα = 1} upto conjugacy by G(K). In these

cases, the number µ(α) will now be

µ(α) = #{r ∈ R+ | r involves α}

since the largest possible coefficient for such an α in any positive root is 1. Hence
α is hyperspecial if and only if µ(α) = dim(G/Pα) and we are through by the
Proposition 7.2.1.

q.e.d
7.3. The moduli dimension. Let G be semisimple and simply connected.

7.3.1. Corollary. Let θ ∈ E be an arbitrary element in the affine apartment E and
let ρ

θ
be the representation defined in Definition 2.4.3. Let e(θ) denote the rank of

(Id−Ad ρ
θ
) on κ

G
. Then,

e(θ) = dimR(KG)− | S | −#{r ∈ R | (θ, r) = ±1 or 0} (7.3.1.1)

Proof: The proof is immediate from the above discussion. Note that when θ = θα,
the number e(θ) gets the explicit expression (7.2.1.1).

Let τ = {τ i} be a set of conjugacy classes and let θ = {θi} ∈ Em the corre-
sponding set of points of the product of the affine apartments, with m = |Rp|.
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7.3.2. Theorem. The subset Ro ⊂ Rτ (π,KG) of irreducible representations is open
and non-empty and is further smooth of real dimension equal to

(2g − 1)dim(KG) +

m∑

i=1

e(θ). (7.3.2.1)

Let KG act on Rτ (π,KG) by inner conjugation. Let KG = KG/centre. Then the
equivalence classes of irreducible representations corresponds to the quotient space
Ro/KG and has the natural structure of a complex analytic orbifold (i.e, with at
most finite quotient singularities) of dimension

dim
C
(Ro/KG) = dim

C
(G)(g − 1) +

m∑

i=1

1

2
e(θ) (7.3.2.2)

Proof: The theorem follows in much the same fashion as in Seshadri [28, Page
180] and is an immediate consequence of Proposition 7.2.1.

q.e.d

8. The moduli space of parahoric torsors

In this section we study the moduli space of semistable (Γ, G)–bundles on Y
of local type τ (see Definition 6.4.8) and prove the basic geometric properties of
this space. We use these to conclude similar facts about the space of semistable
and stable parahoric torsors by appealing to Theorem 6.4.10. We essentially follow
the strategy of Balaji-Seshadri [4] and Balaji-Biswas-Nagaraj [2]. It is shown in
[2, Theorem 5.8] that the moduli space M

Y
(Γ, G) of Γ–stable (Γ, G)–bundles is

realized as a good quotient Q
(Γ,G)

//H of a suitably defined scheme Q
(Γ,G)

.

We fix a faithful representation G →֒ GL(n) and consider the subscheme of a
suitable “Quot–scheme” parametrizing Γ–vector bundles on the curve Y which are
Γ–semistable of fixed local type τ and we denote this scheme by Qτ

(Γ,GL(n))
(see [28]

for details where this space is denoted Rτ ,ss). We may equivalently view the points
in Qτ

(Γ,GL(n))
as Γ–semistable principal (Γ, GL(n))–bundles of local type τ .

We then define the scheme Qτ

(Γ,G)
as the space of Γ–equivariant reductions of

structure group of the bundles in Qτ

(Γ,GL(n))
which consists of those (Γ, G)–bundle

which are of local type τ .
We now use the results in [28] which shows that there is an action of a certain

reductive group H on Qτ

(Γ,GL(n))
and the good quotient Qτ

(Γ,GL(n))
//H exists and

gives a coarse moduli scheme for the functor of equivalence classes of Γ–stable
principal (Γ, GL(n))–bundles on Y of local type τ .

The map Qτ

(Γ,G)
→ Qτ

(Γ,GL(n))
obtained by taking extension of structure groups

via the inclusion G →֒ GL(n), is shown to be affine and the action of H lifts to
Qτ

(Γ,G)
to give a good quotient Qτ

(Γ,G)
//H which we denote by Mτ

Y
(Γ, G) (see [4]

and [2]). This scheme Mτ

Y
(Γ, G) is indeed the coarse moduli space for equivalence

classes of (Γ, G)–bundles on Y which are Γ–semistable and of fixed local type τ .
In this paper we show that the points of the scheme Mτ

Y
(Γ, G) parametrizes

isomorphism classes of (Γ, G)–bundles of type τ which are unitary and hence
polystable. Using this we show that Mτ

Y
(Γ, G) is normal and projective.

8.0.3. Remark. We note that the arguments of [2] are not sufficient for showing this
since the local type of the bundles was not fixed in [2]. A key step in the arguments
is the connectedness of the moduli space which fails if the local type is not fixed.
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8.0.4. Let g ≥ 2 be the genus of X. Recall that the Fuchsian group π can be
identified with the group on the letters A1, B1, . . . , Ag, Bg, C1, . . . , Cm, modulo the
relations

[A1, B1] · · · [Ag, Bg] · C1 · · ·Cm = I. (8.0.4.1)

Cn1
1 = Cn2

2 = · · · = Cnm
m = I. (8.0.4.2)

where πzi the isotropy subgroup of π at some zi ∈ H is the cyclic subgroup of π of
order ni generated by Ci. Let yi be the image of zi in Y and let R∗

p
= {yi | 1 ≤

i ≤ m} be the set of ramification points of the cover p : Y → X .

Let ρ : π → G be a homomorphism. Let E(ρ) denote the (Γ, G)–bundle on Y
defined by the twisted action given by (2.3.1.2). We observe that the local type τ i

of the bundle E(ρ) at yi in the sense of Definition 4.0.1 is equivalently given by the
conjugacy class of ρ(Ci) in G. Thus if τ (R

∗
p
) = {τ i}, then we have

ρ is of type τ = {τ i} ⇐⇒ E(ρ) is of local type τ (R∗
p
) (8.0.4.3)

8.0.5.Definition. Fix a maximal compact subgroup KG of G. If the representation
ρ factors through KG, one says that E(ρ) is a unitary (π,G)–bundle.

Recall the functor Bunτ

Y
(Γ, G) defined in (5.2.0.3). It is well-known that the

functor Bun
Y
(G) of principal G–bundles on Y is representable by an Artin stack,

which we again denote by Bun
Y
(G). It is a fact (as for example shown in [28])

that the subfunctor Bun
Y
(Γ, G) of (Γ, G) bundles as well as Bunτ

Y
(Γ, G) are both

closed subfunctors of BunY (G) and hence representable by Artin substacks.
Let τ = τ (R∗

p
). Then we get a canonical map

ψ1 : Rτ (π,KG) → Bunτ

Y
(Γ, G) (8.0.5.1)

which send ρ 7→ E(ρ).

8.0.6. Proposition. The moduli stack Bunτ

Y
(Γ, G) of (Γ, G)–bundles on Y of fixed

local type τ is irreducible and smooth when the group G is semisimple and simply
connected.

Proof: This is immediate from Theorem 5.2.2, [14, Theorem 2] and [14, Proposi-
tion 1]. We now indicate a different proof of the connectedness from the Hecke cor-
respondence shown above in (5.3.0.2). Observe that from Drinfeld-Simpson[9] (see
also Ramanathan [23]), it follows that for the distinguished hyperspecial parahoric
P0(K) = G(A), the moduli stack BunX (G) is irreducible because G is semisimple
and simply connected. Further, the morphism Bun(G

I,X
) → Bun

X
(G) is surjective

and has fibre G/B, B being the Borel subgroup. Hence, Bun(G
I,X

) is connected.
Now observe that the map Bun(G

I,X ) → Bun(GΩ,X ) given by (5.3.0.2) is also
surjective since it comes from the inclusion I ⊂ P

Ω
(K). Hence Bun(G

Ω,X
) is con-

nected. The irreducibility follows from the formal smoothness of the functor of
torsors (see [14, Proposition 1]; the obstruction to smoothness vanishes since we
work on curves.

q.e.d
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8.1. Properness of the moduli of (Γ, G)-bundles. Let H = G/Z(G), the as-
sociated adjoint group. For such semisimple adjoint type groups we have the fol-
lowing obvious property. Let h = Lie(H). Consider the adjoint representation
ρ : H → GL(h). It is clear that ρ is faithful irreducible representation.

Fix the representation ρ : H →֒ GL(n) (where n = dimh) and a maximal
compact KH of H such that KH →֒ U(n). Consider the subset Bunτ

Y
(Γ, n)s ⊂

Bunτ

Y
(Γ, n) consisting of the stable (Γ, GL(n))-bundles.

8.1.1. Lemma. Let φ : Bunτ

Y
(Γ, H) −→ Bunτ

Y
(Γ, n) be the morphism induced by the

representation ρ. Then the inverse image of the stable points φ−1(Bunτ

Y
(Γ, n)s) =

Bunτ

Y
(Γ, H)s, (when nonempty), consists of unitary (Γ, H)-bundles.

Proof: We claim that a principal (Γ, H) bundle E is unitary if and only if the
associated (Γ, GL(h))–bundle E(h) is so. If E is unitary obviously so is E(h).

We now show the converse. Let A(h) denote the stabilizer of the GL(h)–action
on the tensor space h∗ ⊗ h∗ ⊗ h at the point [ , ], i.e the Lie bracket. Since we have
assumed that H is of adjoint type it implies that A(h) = Aut(h).

Now assume that E(h) comes from a unitary representation of π, then we take
the Lie bracket morphism E(h) ⊗ E(h) → E(h). Either side comes from unitary
representations of π and by local constancy ([17, Proposition 1.2]), i.e morphisms
of bundles are induced by morphisms of π–modules. It now follows that E(h) gets
a reduction of structure group to the group A(h) = Aut(h).

Since H is an adjoint group we have a short exact sequence:

1 → H → A(h) → F → 1

sinceH is the component of identity of A(h). Again we have a similar exact sequence
of compact groups:

1 → KH → KA(h) → F → 1

The bundle E is therefore such that E(A(h)) is a unitary bundle and comes from
a representation χ̄ : π → KA(h). Furthermore, the extended bundle E(A(h))(F ) is
trivial since it comes with a section (giving E). By composing the representation
χ̄ with the map KA(h) → F , we see that the triviality of E(A(h))(F ) forces the
composite to be the trivial homomorphism, implying that χ̄ factors via χ : π → KH

to give the bundle E (cf. Atiyah-Bott [1, Lemma 10.12]).
Now using the main theorem of [28] we see that points of Bunτ

Y
(Γ, n)s, being

stable bundles, are all unitary. Hence by the claim above the bundles in the inverse
image φ−1(Bunτ

Y
(Γ, n)s) are also unitary.

q.e.d

8.1.2. Proposition. Let ρ be the adjoint representation of H. Then the inverse
image of Bunτ

Y
(Γ, n)s by the induced morphism φ is nonempty.

Proof: Let π = Aut(H) .Then one knows that Γ = Gal(Y/X) is the quotient of
π by a normal subgroup πo which acts freely on Y and by [17] a Γ-bundle is stable
if and only if it arises from a unitary representation of π. The group π can be
identified with the free group on the letters A1, B1, · · · , Ag, Bg, C1, · · · , Cm modulo
the relations (8.0.4.1) and (8.0.4.2).

So to prove that the inverse image φ−1(Bunτ

Y
(Γ, n)s) is nonempty, we need to

exhibit a representation χ : π → KH such that the composition

ρ ◦ χ : π → U(n) is irreducible. (8.1.2.1)
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Choose elements h1, · · · , hm ∈ KH so that they are elements of order ni, where
i = 1, · · · ,m (these correspond to fixing the local type τ of our bundles).

It is a well–known fact that every element of a compact connected real semisimple
Lie group is a commutator. Further it is well-known (see for example [30, Lemma
3.1]) that there exists a dense subgroup 〈α, β〉 of KH generated by two general
elements {α, β}. Recall that the genus g ≥ 2 and define the representation χ : π →
KH as follows :

χ(A1) = α, χ(B1) = β, χ(A2) = β, χ(B2) = α, (8.1.2.2)

χ(Ai) = ai, χ(Bi) = bi, for i = 3, · · · , g, χ(Cj) = hj , and j = 1, · · · ,m (8.1.2.3)

It is clear that χ gives a representation of the group π. Since ρ is irreducible,
and the image of χ contains a dense subgroup, the composition ρ ◦ χ gives an
irreducible representation of π in the unitary group U(n). Therefore, it gives a
stable Γ-linearized vector bundle, which comes as the extension of structure group
of a H-bundle. This completes the proof of the Proposition.

q.e.d

8.1.3. Corollary. In the stack Bunτ

Y
(Γ, H) for the H-bundles, there is a non-

empty Zariski open substack consisting of unitary bundles of local type τ .

Proof: This follows immediately from the Lemma 8.1.1 and Proposition 8.1.2.

q.e.d

We now return to G which is as before a semisimple, simply connected algebraic
group.

8.1.4. Proposition. In the stack Bunτ

Y
(Γ, G) for the G-bundles, there is a non-

empty Zariski open substack consisting of stable unitary bundles of local type τ .

Proof: Let η : Bunτ

Y
(Γ, G) → Bunτ

Y
(Γ, H) be the morphism induced by the

quotient map G → H . We claim that the required open subset of Bunτ

Y
(Γ, G) is

(φ ◦ η)−1(Bunτ

Y
(Γ, n)s).

Let E be a (Γ, G)–bundle in (φ ◦ η)−1(Bunτ

Y
(Γ, n)s). It follows that E(H) ∈

φ−1(Bunτ

Y
(Γ, n)s). By Lemma 8.1.1 the H–bundle E(H) comes from a unitary

representation ρ : π → KH .
Recall that, by the structure of π described above, there is a central extension

1 → Zπ̃ → π̃ → π → 1 (8.1.4.1)

where π̃ is generated by A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cm together with a central
element J satisfying the extra relation

[A1, B1] · · · [Ag, Bg] · C1 · · ·Cm = J. (8.1.4.2)

It is easy (as in [19]), by adding an extra lasso around a dummy point (other
than the parabolic points) to choose a lift of ρ to a representation ρ̃ : π̃ → KG so
that the associated (Γ, G)–bundle E(ρ̃) also maps to E(H). Thus, both E and E(ρ̃)
give E(H) under the quotient map G → H . Therefore, by twisting by a central
character of π̃, we get a representation π̃ → KG which gives the (Γ, G)–bundle E
(cf. [23, Page 148]).

We observe that this representation π̃ → KG in fact descends to a representation
π → KG. This follows from the fact that the local type of E at the dummy point
is trivial.
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From this we can now conclude that all bundles in (φ ◦ η)−1(Bunτ

Y
(Γ, n)s) are

unitary (cf. [1, Lemma 10.12]). Furthermore, it is easy to see that a (Γ, G)–bundle
is stable if and only if the associated (Γ, H)–bundle is so (cf. [23, Proposition 7.1]).
It follows that all points of (φ ◦ η)−1(Bunτ

Y
(Γ, n)s) are also stable (Γ, G)–bundles.

q.e.d

Let f : Bunτ

Y
(Γ, G)ss → Mτ

Y
(Γ, G) be the canonical quotient map obtained by

the categorical quotient property of the moduli spaceMτ

Y
(Γ, G). Composing f with

ψ1 of (8.0.5.1), we get a continuous map ψ = f ◦ ψ1 : Rτ (π,KG) →Mτ

Y
(Γ, G).

8.1.5. Remark. The open substack obtained in Proposition 8.1.4 gets identified with
the open subspace of Mτ

Y
(Γ, G) of (Γ, G)–bundles with full holonomy and is hence

smooth since such bundles have trivial automorphism groups.

8.1.6. Theorem. The map ψ : Rτ (π,KG) → Mτ

Y
(Γ, G) is surjective and hence

Mτ

Y
(Γ, G) is compact. Thus the variety Mτ

Y
(Γ, G) gets a structure of a normal

projective variety. Moreover, this in turn implies that the stack Bunτ

Y
(Γ, G)ss is

proper.

Proof: Consider the canonical categorical quotient map f : Bunτ

Y
(Γ, G) →

Mτ

Y
(Γ, G). Let

Bunτ

Y
(Γ, G)s := (φ ◦ η)−1(Bunτ

Y
(Γ, n)s)

Since f is surjective (and hence dominant), by Chevalley’s lemma, the image
f(Bunτ

Y
(Γ, G)s) in Mτ

Y
(Γ, G) contains a Zariski open subset.

By the Proposition 8.1.4 above the subset Bunτ

Y
(Γ, G)s is nonempty and consists

entirely of unitary bundles. That is, the image f(Bunτ

Y
(Γ, G)s) is a subset of the

image ψ(Rτ (π,KG)) in M
τ

Y
(Γ, G). Thus, it follows that ψ(Rτ (π,KG)) contains a

Zariski open subset of Mτ

Y
(Γ, G). But then, since Rτ (π,KG) is compact the image

ψ(Rτ (π,KG)) is closed in Mτ

Y
(Γ, G) and contains a dense subset, and is therefore

the whole of Mτ

Y
(Γ, G), since these moduli spaces Mτ

Y
(Γ, G) are irreducible (by

Proposition 8.0.6).
This proves that Mτ

Y
(Γ, G) is topologically compact and hence by GAGA

a projective variety. The normality follows from the smoothness of the stack
Bunτ

Y
(Γ, G)ss, again by Proposition 8.0.6.

That this implies the properness of the stack Bunτ

Y
(Γ, G)ss follows for instance

from [4, Lemma 3.1].

q.e.d

8.1.7. Corollary. The map ψ : Rτ (π,KG) → Mτ

Y
(Γ, G) defined above descends

to a map

ψ∗ : Rτ (π,KG)/KG →Mτ

Y
(Γ, G)

which gives a homemorphism of topological spaces. Further, the subset Ro/KG of
equivalence classes of irreducible unitary representations maps bijectively onto the
subset of stable (Γ, G)-bundles.

Proof: Follows from the above discussions. The fact that irreducible representa-
tions give stable bundles follows exactly as in [23].

q.e.d
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Let G
Ω,X

be a parahoric Bruhat-Tits group scheme on X associated to a subset
Ω ⊂ Em. Let

M(G
Ω,X

) =

{
the set of equivalence classes of
semistable G

Ω,X
–torsors on X

}
(8.1.7.1)

and let M(G
Ω,X

)s ⊂M(G
Ω,X

) the subset of stable torsors.
By Theorem 6.4.10 the identification

Bun(G
Ω,X

) ≃ Bunτ

Y
(Γ, G)

given by Theorem 5.2.2 identifies stable (resp. semistable, polystable) objects in
Bun(G

Ω,X
) with stable (resp. semistable, polystable) (Γ, G)–bundles of local type

τ on the ramified cover Y . This gives the following set-theoretic identification:

Mτ

Y
(Γ, G) ≃M(G

Ω,X
) (8.1.7.2)

We then have the following:

8.1.8. Theorem. The set M(GΩ,X ) gets a natural structure of an irreducible normal
projective variety with M(G

Ω,X
)s as an open subset. It gives a coarse moduli space

for the open subfunctor Bun(G
Ω,X

)ss of Bun(G
Ω,X

) (see (5.2.0.3)). Furthermore,
we have a homeomorphism

φ∗ : Rτ (π,KG)/KG →M(G
Ω,X

) (8.1.8.1)

where Ω = Ω(τ ), which identifies the sub-orbifold Ro/KG with M(G
Ω,X

)s.

Proof: This follows immediately from Theorem 8.1.6.

q.e.d

8.1.9. Corollary. Fix the local types τ = {τ i} (see Definition 1.0.1) and let
θ = θi ∈ Em be the corresponding point in the product of the affine apartment.
Then the dimension of the moduli space M(G

Ω,X
) is given by

dim
C
(G)(g − 1) +

m∑

i=1

1

2
e(θ) (8.1.9.1)

Proof: This follows from Theorem 7.3.2 and the Corollary 8.1.8 .

8.1.10. Remark. When G is simple the expression for e(θ) in the dimension formula
takes a more concrete shape (see Proposition 7.2.1).

8.1.11. Remark. A proof of properness of the functor of (Γ, G)-semistable bundles
along the lines of [4] or [13], i.e as a semistable reduction theorem can also be given.

8.1.12. Extension to the case when the structure group is reductive. We
now close by indicating briefly how to extend the construction of the moduli space
of (Γ, H)–bundles to the case when the structure group H is a connected reductive
algebraic group and identify it with the space of homomorphisms from π toKH . Let
S = [H,H ] be the derived group, i.e the maximal connected semisimple subgroup
of H . Let Z0 be the connected component of the centre of H (which is a torus)
and one know that S and Z0 together generate H . Let G = Z0 × S. Then in fact,
G → H is a finite covering map. It is easy to see (following [23, page 145]) that
(Γ, G)–bundles gives rise to (Γ, H)–bundles and the stability and semistability of
the associated (Γ, H)–bundles follows immediately from that of the (Γ, G)–bundles.
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The problem of handling the reductive group G reduces to the problem of han-
dling the semisimple group H but which is not simply connected. Let G be the
semisimple, simply connected algebraic group which is the covering group of H .

We are in the situation of Proposition 8.1.4. Recall the central extension
(8.1.4.1). By adding a dummy point other than the parabolic point, the theory
of (π,H)–bundles is recovered from that of (π̃, G)–bundles. Notice that a homo-
morphism π → KH has as many liftings π̃ → KG as the order of the centre of G.
It follows quite easily, following arguments as in Lemma 8.1.1, that the number
of connected components of the moduli space in the non-simply connected case is
given by the order of the centre of G. In fact, Hom(π̃,KG) is a union of spaces
labelled by elements of the centre of G. Let Z0 = Ker(G→ H). Then, there is an
action of H1(X,Z0) on a specific labelled subset of Hom(π̃,KG). A component of
the moduli space of representations into KH can be obtained as a quotient of each
of these by the action of H1(X,Z0). Details of these ideas are again found in [23,
page 148] and follow the ideas of Narasimhan and Seshadri [19], where the data
over a dummy point is called a special parabolic structure.
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