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Overview of the Tutorial I

Multi-objective optimization

Classical methods

History of multi-objective evolutionary algorithms (MOEAS)

Non-elitst MOEAs
Elitist MOEAs
Constrained MOEAs
Applications of MOEAs

Salient research issues




Multi-Objective Optimization

e We often face them

90%




More Examples

A cheaper but inconvenient A convenient but expensive
flight flight




Which Solutions are Optimal?

fo (mninze)
Domination:

x(1) dominates x(2) if

1. x1) is no worse than x2 in all

objectives

. x) ig strictly better than x(?)

in at least one objective 18
f 1 (maxini ze)




Pareto-Optimal Solutions

Non-dominated solutions: Among

a set of solutions P, the non-
dominated set of solutions P’
are those that are not dominated
by any member of the set P.
O(MN?) algorithms exist.

Pareto-Optimal solutions: When
P =S, the resulting P’ is Pareto-

optimal set

fb (minimize)

Non—-dominated
front

14

Ty (maximize)

A number of solutions are optimal




Pareto-Optimal Fronts

Min——Min Min——Max

Max——Min Max——Max




Preference-Based Approach

("7 Multi-objective Estimate a Single-objective
optimization problem

optimization problem
Minimize f, Higher-level relative
. 9 importance F=wf+wf+ .+ wf

or

Minimize f, information vector

Minimize f,
" W Wy- - W) a composite function

subject to constraints

Single-objective
optimizer

\ 4

One optimum
solution

N\

e Classical approaches follow it




Classical Approaches

No Preference methods (heuristic-based)

Posteriori methods (generating solutions)
A priori methods (one preferred solution)

Interactive methods (involving a decision-maker)



Weighted Sum Method

e Construct a weighted sum of

objectives and optimize

F(x) =Y wpfm(x).

e User supplies weight vector w

LYY

Feasible objective space

Wy

\
\
WA
2
\\‘d/

4

reto-optimal front




Difficulties with Weighted Sum Method

Feasible objective space

e Need to know w

e Non-uniformity in Pareto-

optimal solutions

e Inability to find some

Pareto-optimal solutions

~f,

ZPareto—optimal front

11



e-Constraint Method I

Optimize one objective, Py
constrain all other

Minimize f,(x),

subject to  fi(x) < €, M # U;

User supplies a € vector

Need to know relevant € vectors

Non-uniformity in Pareto-optimal solutions




Difficulties with Most Classical Methods

Need to run a single-
objective optimizer many

times

Expect a lot of problem
knowledge

Even then, good distribu-

tion is not guaranteed

Multi-objective  optimiza-
tion as an application of
single-objective  optimiza-

tion

front

i
i

|

|

i

i

i

i .

| “Pareto-optimal - _
| N
i

|

i

i

|

i

|

i

01 02 O

| |
3 04 05 0
Lt

6 0.

|- 1
7 08 09 1




Ideal Multi-Objective Optimization

’,’—7 Multi-objective

optimization problem
Minimize f;
Minimize T,
Minimize f,

subject to constraints

\ 4

I1DEAL
Multi-objective
optimizer

\ 4

Multiple trade-off Choose one
solutions found solution

Higher-level
information /ﬁ////

N\ J

Step 1 Find a set of Pareto-optimal solutions

Step 2 Choose one from the set




Advantages of Ideal Multi-Objective Optimization

e Decision-making becomes easier and less subjective

e Single-objective optimization is a degen-
erate case of multi-objective optimiza-

tion

— Step 1 finds a single solution

— No need for Step 2

e Multi-modal optimization is a special

case of multi-objective optimization




Two Goals in Ideal Multi-Objective Optimization

1. Converge on the Pareto-

optimal front

2. Maintain as diverse a distri-

bution as possible




Why Evolutionary?

e Population approach suits well to find multiple solutions

e Niche-preservation methods can be exploited to find diverse

solutions

1

0.8




History of Multi-Objective Evolutionary
Algorithms (MOEASs)

Early penalty-based ap-

proaches

VEGA (1984)

Goldberg’s suggestion
(1989)

MOGA, NSGA, NPGA
(1993-95)

Elitist MOEAs (SPEA,
NSGA-II, PAES, MOMGA
etc.) (1998 — Present)

Nunber of Studies

80

60

40

20

and bef

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
ore Year
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What to Change in a Simple GA? I

e Modify the fitness computation

{I nitialize Popul ati oa




Identifying the Non-dominated Set

Step 1 Set ¢ = 1 and create an empty set P’.

Step 2 For a solution j € P (but j # i), check if solution j

dominates solution i. If yes, go to Step 4.

Step 3 If more solutions are left in P, increment j by one and go
to Step 2; otherwise, set P’ = P’ U {i}.

Step 4 Increment ¢ by one. If 1 < N, go to Step 2; otherwise stop

and declare P’ as the non-dominated set.

O(M N?) computational complexity




‘ An Efficient Approach I

Kung et al.’s algorithm (1975)

Step 1 Sort the population in descend-

ing order of importance of f;

Step 2, Front(P) If |P|] = 1,
return P as  the  output
of Front(P). Otherwise,
T = Front(P)——PUPI/2)) and
B = Front(PUPI/2+D)__ p(rD),
If the ¢-th solution of B is not dom-
inated by any solution of T, create
a merged set M = T U{i}. Return

M as the output of Front(P).
O (N(log N)M=2) for M > 4 and O(Nlog N) for M =2 and 3




‘ A Simple Non-dominated Sorting Algorithm I

Identify the best non-dominated set
Discard them from population
Identify the next-best non-dominated set

Continue till all solutions are classified

We discuss a O(M N?) algorithm later




Non-Elitist MOEAs I

Vector evaluated GA (VEGA) (Schaffer, 1984)

Vector optimized EA (VOES) (Kursawe, 1990)

Weight based GA (WBGA) (Hajela and Lin, 1993)

Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)
Non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994)
Niched Pareto GA (NPGA) (Horn et al., 1994)

Predator-prey ES (Laumanns et al., 1998)

Other methods: Distributed sharing GA, neighborhood
constrained GA, Nash GA etc.




Non-Dominated Sorting GA (NSGA)

A non-dominated sorting of the population
First front: Fitness ' = N to all

Niching among all solutions in first front

Note worst fitness (say F.1)

Second front: Fitness Fl — ¢; to all
Niching among all solutions in second front

Continue till all fronts are assigned a fitness




Non-Dominated Sorting GA (NSGA)

Fitness

before after
3.00 3.00
6.00 6.00
3.00 3.00
6.00 3.43
6.00 3.43
2.00 2.00

e Niching in parameter space
e Non-dominated solutions are emphasized

e Diversity among them is maintained




Vector-Evaluated GA (VEGA)

Divide population into M equal blocks

Each block is reproduced with one objective function
Complete population participates in crossover and mutation
Bias towards to individual best objective solutions

A non-dominated selection: Non-dominated solutions are

assigned more copies

Mate selection: Two distant (in parameter space) solutions are

mated

Both necessary aspects missing in one algorithm




| Multi-Objective GA (MOGA) I

Count the number of domi- Asen. | Fit.

2.5
5.0
2.5
5.0
5.0
1.0

nated solutions (say n)

Fitness: F'=n+1
A fitness ranking adjust-

ment
Niching in fitness space

Rest all are similar to

NSGA




Niched Pareto GA (NPGA)

Solutions in a tournament are checked for domination with

respect to a small subpopulation (Zgom)

If one dominated and other non-dominated, select second

If both non-dominated or both dominated, choose the one with

smaller niche count in the subpopulation
Algorithm depends on 4om,

Nevertheless, it has both necessary components




NPGA (cont.)

Check for
domination

; Parameter Space

Population




Shortcoming of Non-Elitist MOEASs

Elite-preservation is missing

Elite-preservation is important for proper convergence in

SOEAs
Same is true in MOEAs

Three tasks
— Elite preservation
— Progress towards the Pareto-optimal front

— Maintain diversity among solutions




Elitist MOEAs

Elite-preservation:

e Maintain an archive of non-dominated solu-

tions

Progress towards Pareto-optimal front:

e Preferring non-dominated solutions

Maintaining spread of solutions:

e Clustering, niching, or grid-based competi-
tion for a place in the archive

12 (minimize)

[
L]

[Non-dominated
| front

/

14 18

T, (maximize)




Elitist MOEAs (cont.) I

Distance-based Pareto GA (DPGA) (Osyczka and Kundu,
1995)

Thermodynamical GA (TDGA) (Kita et al., 1996)
Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)
Non-dominated sorting GA-II (NSGA-II) (Deb et al., 1999)

Pareto-archived ES (PAES) (Knowles and Corne, 1999)

Multi-objective Messy GA (MOMGA) (Veldhuizen and
Lamont, 1999)

Other methods: Pareto-converging GA, multi-objective

micro-GA, elitist MOGA with coevolutionary sharing




Elitist Non-dominated Sorting (Genetic Algorithm
(NSGA-II)

Non-dominated sorting: O(M N?)

Calculate (n;, S;) for each f2

solution 2

dominating ¢

n;:  Number of solutions

S;: Set of solutions domi-
(0.{9.11}) _

nated by ¢ i,




NSGA-II (cont.)

Elites are preserved

Non—-dominated Crowding
sorting distance
sorting

} - Rejected




NSGA-II (cont.) I

Diversity is maintained: O(M N log N)

Overall Complexity: O(M N?)




NSGA-II Simulation Results

(NSGA-11 o)

|

| | | | | | | | |

01 02 03 04 05 06 07 08 09 -19
fl




Strength Pareto EA (SPEA)

Stores non-dominated solutions externally

Pareto-dominance to assign fitness

— External members: Assign number of dominated solutions

in population (smaller, better)

— Population members: Assign sum of fitness of external

dominating members (smaller, better)

Tournament selection and recombination applied to combined

current and elite populations

A clustering technique to maintain diversity in updated

external population, when size increases a limit




SPEA (cont.)

e Fitness assignment and clustering methods

_ Fitness Assignment
Population Ext_pop

Function Space

Clustering (d and p_max)

Function Space




Pareto Archived ES (PAES)

An (1+1)-ES
Parent p; and child ¢; are compared with an external archive A;
If ¢; is dominated by A:, pri1 = pr

If ¢; dominates a member of A;, delete it from A; and include

Ct in At and Pt+1 = C¢

If |A¢| < N, include ¢; and p;11 = winner(py, ¢;)

If |A;| = N and ¢; does not lie in highest count hypercube H,
replace ¢; with a random solution from H and

pra1 = winner(pg, ct).

The winner is based on least number of solutions in the hypercube




in PAES-(1+1)

ing in

Nich

1_  offspring

m]

Pareto-optimal

Pareto-optimal




Constrained Handling

e Penalty function approach

e Explicit procedures to handle infeasible solutions
— Jimenez’s approach

— Ray-Tang-Seow’s approach

e Modified definition of domination
— Fonseca and Fleming’s approach

— Deb et al.’s approach




Constrain-Domination Principle

A solution ¢ constrained-
dominates a solution j, if any is

true:

1. Solution 7 is feasible and so-

lution 7 is not. k 2\\
S 3
4

Solutions ¢ and j are both in- \6
5

feasible, but solution ¢ has a Front 2

. . Front 1
smaller overall constraint vi-

olation. b
01 02 03 04 05 06 07 08 09 1

Solutions ¢ and j are feasible f1

and solution 7 dominates so-

lution j.




Constrained NSGA-II Simulation Results

1.2

1

0.8

0.6

04

0.2

| | |
04 05 06 07 08 09 00 02 04 06




‘ Applications of MOEASs I

Space-craft trajectory optimization
Engineering component design
Microwave absorber design
Ground-water monitoring
Extruder screw design

Airline scheduling

VLSI circuit design

Other applications (refer Deb, 2001 and EMO-01 proceedings)




Spacecraft Trajectory Optimization

e Coverstone-Carroll et al. (2000) with JPL Pasadena

e Three objectives for inter-planetary trajectory design
— Minimize time of flight
— Maximize payload delivered at destination

— Maximize heliocentric revolutions around the Sun

e NSGA invoked with SEPTOP software for evaluation
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‘ Salient Research Tasks I

Scalability of MOEAs to handle more than two objectives

Mathematically convergent algorithms with guaranteed spread

of solutions
Test problem design
Performance metrics and comparative studies

Controlled elitism

Developing practical MOEAs — Hybridization, parallelization

Application case studies




‘ Hybrid MOEAs I

e Combine EAs with a local search method
— Better convergence

— Faster approach

e Two hybrid approaches

— Local search to update each solution in an EA population
(Ishubuchi and Murata, 1998; Jaskiewicz, 1998)

— First EA and then apply a local search




Posteriori Approach in an MOEA

Problem

-

Multiple

local searches

».

Clustering

Non—-domination

check
-t

e Which objective to use in local search?




‘ Proposed Local Search Method I

Weighted sum strategy (or a Tchebycheff metric)

fi is scaled

Weight w; chosen based on location of ¢ in the obtained front

P = B/ -
TS (e — f(x))/(fRex — fmin)

Weights are normalized




Fixed Weight Strategy

o Extreme solutions are as-

signed extreme weights

e Linear relation between

weight and fitness

e Many solution can converge

to same solution after local

search fr ”/
set after

| ocal search

100
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Base plate

Design of a Cantilever Plate

Scaled deflection

Scaled deflection

NSGA-11

[
%0 0 ogg
°®
L P°%00 %

30 35 40 45 50 55
Weight

Clustered solutions

000
o o,

30 35 40 45 50 55
Weight

Scaled deflection

Scaled deflection

[Ey
@
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Local search

o

©o
®, 4
Q)Qoo

© , 6 0900

NI\)-bCDm

30 35 40 45 50 55 60
Weight

v

Non-dominated solutions

o
©o
o, _
Q%oo
L L, ®, 2900

25 30 35 40 4

50 55 60
Weight

Nine trade-off solutions are chosen
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Trade-off Solutions I

(1.00, 0.00) (0.60, 0.40) (0.50, 0.50)

2> X

(0.43, 0.57) (0.38, 0.62) (0.35, 0.65)

(0.23, 0.77) (0.14, 0.86) (0.00, 1.00)

103



‘ Conclusions I

Ideal multi-objective optimization is generic and pragmatic
Evolutionary algorithms are ideal candidates
Many efficient algorithms exist, more efficient ones are needed

With some salient research studies, MOEAs will revolutionize
the act of optimization

EAs have a definite edge in multi-objective optimization and

should become more useful in practice in coming years
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