Multi-Objective Evolutionary Algorithms

Kalyanmoy Deb ^a

Kanpur Genetic Algorithm Laboratory (KanGAL) Indian Institute of Technology Kanpur Kanpur, Pin 208016 INDIA deb@iitk.ac.in

http://www.iitk.ac.in/kangal/deb.html

^aCurrently visiting TIK, ETH Zürich

Overview of the Tutorial

- Multi-objective optimization
- Classical methods
- History of multi-objective evolutionary algorithms (MOEAs)
- Non-elitst MOEAs
- Elitist MOEAs
- Constrained MOEAs
- Applications of MOEAs
- Salient research issues

More Examples

A cheaper but inconvenient flight

A convenient but expensive flight

Which Solutions are Optimal?

Domination:

- $\mathbf{x}^{(1)}$ dominates $\mathbf{x}^{(2)}$ if
 - 1. $\mathbf{x}^{(1)}$ is no worse than $\mathbf{x}^{(2)}$ in all objectives
 - 2. $\mathbf{x}^{(1)}$ is strictly better than $\mathbf{x}^{(2)}$ in at least one objective

Pareto-Optimal Solutions

Non-dominated solutions: Among a set of solutions P, the nondominated set of solutions P'are those that are not dominated by any member of the set P. $O(MN^2)$ algorithms exist. Pareto-Optimal solutions: When P = S, the resulting P' is Paretooptimal set

A number of solutions are optimal

• Classical approaches follow it

Classical Approaches

- No Preference methods (heuristic-based)
- Posteriori methods (generating solutions)
- A priori methods (one preferred solution)
- Interactive methods (involving a decision-maker)

Weighted Sum Method

• Construct a weighted sum of objectives and optimize

$$F(\mathbf{x}) = \sum_{m=1}^{M} w_m f_m(\mathbf{x}).$$

 $\bullet~$ User supplies weight vector ${\bf w}$

Difficulties with Weighted Sum Method

- $\bullet\,$ Need to know ${\bf w}$
- Non-uniformity in Paretooptimal solutions
- Inability to find some Pareto-optimal solutions

- Need to know relevant ϵ vectors
- Non-uniformity in Pareto-optimal solutions

Difficulties with Most Classical Methods

- Need to run a singleobjective optimizer many times
- Expect a lot of problem knowledge
- Even then, good distribution is not guaranteed
- Multi-objective optimization as an application of single-objective optimization

Ideal Multi-Objective Optimization

Step 1 Find a set of Pareto-optimal solutions

Step 2 Choose one from the set

Advantages of Ideal Multi-Objective Optimization

- Decision-making becomes easier and less subjective
- Single-objective optimization is a degenerate case of multi-objective optimization
 - Step 1 finds a single solution
 - No need for Step 2
- Multi-modal optimization is a special case of multi-objective optimization

Two Goals in Ideal Multi-Objective Optimization

- 1. Converge on the Paretooptimal front
- 2. Maintain as diverse a distribution as possible

Why Evolutionary?

- Population approach suits well to find multiple solutions
- Niche-preservation methods can be exploited to find diverse solutions

History of Multi-Objective Evolutionary Algorithms (MOEAs)

- Early penalty-based approaches
- VEGA (1984)
- Goldberg's suggestion (1989)
- MOGA, NSGA, NPGA (1993-95)
- Elitist MOEAs (SPEA, NSGA-II, PAES, MOMGA etc.) (1998 – Present)

Identifying the Non-dominated Set

Step 1 Set i = 1 and create an empty set P'.

- **Step 2** For a solution $j \in P$ (but $j \neq i$), check if solution j dominates solution i. If yes, go to Step 4.
- **Step 3** If more solutions are left in P, increment j by one and go to Step 2; otherwise, set $P' = P' \cup \{i\}$.
- **Step 4** Increment *i* by one. If $i \leq N$, go to Step 2; otherwise stop and declare P' as the non-dominated set.

 $O(MN^2)$ computational complexity

An Efficient Approach

Kung et al.'s algorithm (1975)

Step 1 Sort the population in descending order of importance of f_1

Step 2, Front(P) If |P| = 1, P as the output return **Front**(P). Otherwise, of $T = \text{Front}(P^{(1)} - P^{(|P|/2)})$ and $B = \operatorname{Front}(P^{(|P|/2+1)} - P^{(|P|)}).$ If the i-th solution of B is not dominated by any solution of T, create a merged set $M = T \cup \{i\}$. Return M as the output of **Front**(P). $O(N(\log N)^{M-2})$ for $M \ge 4$ and $O(N \log N)$ for M = 2 and 3

A Simple Non-dominated Sorting Algorithm

- Identify the best non-dominated set
- Discard them from population
- Identify the next-best non-dominated set
- Continue till all solutions are classified
- We discuss a $O(MN^2)$ algorithm later

Non-Elitist MOEAs

- Vector evaluated GA (VEGA) (Schaffer, 1984)
- Vector optimized EA (VOES) (Kursawe, 1990)
- Weight based GA (WBGA) (Hajela and Lin, 1993)
- Multiple objective GA (MOGA) (Fonseca and Fleming, 1993)
- Non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994)
- Niched Pareto GA (NPGA) (Horn et al., 1994)
- Predator-prey ES (Laumanns et al., 1998)
- Other methods: Distributed sharing GA, neighborhood constrained GA, Nash GA etc.

Non-Dominated Sorting GA (NSGA)

- A non-dominated sorting of the population
- First front: Fitness F = N to all
- Niching among all solutions in first front
- Note worst fitness (say F_w^1)
- Second front: Fitness $F_w^1 \epsilon_1$ to all
- Niching among all solutions in second front
- Continue till all fronts are assigned a fitness

Non-Dominated Sorting GA (NSGA)

	f_1	f_2		$\mathbf{Fitness}$	
x			Front	before	after
-1.50	2.25	12.25	2	3.00	3.00
0.70	0.49	1.69	1	6.00	6.00
4.20	17.64	4.84	2	3.00	3.00
2.00	4.00	0.00	1	6.00	3.43
1.75	3.06	0.06	1	6.00	3.43
-3.00	9.00	25.00	3	2.00	2.00

- Niching in *parameter* space
- Non-dominated solutions are emphasized
- Diversity among them is maintained

Vector-Evaluated GA (VEGA)

- Divide population into M equal blocks
- Each block is reproduced with one objective function
- Complete population participates in crossover and mutation
- Bias towards to individual best objective solutions
- A non-dominated selection: Non-dominated solutions are assigned more copies
- Mate selection: Two distant (in parameter space) solutions are mated
- Both necessary aspects missing in one algorithm

Multi-Objective GA (MOGA)

- Count the number of dominated solutions (say n)
- Fitness: F = n + 1
- A fitness ranking adjustment
- Niching in *fitness* space
- Rest all are similar to NSGA

	F	Asgn.	Fit.
1	2	3	2.5
2	1	6	5.0
3	2	2	2.5
4	1	5	5.0
5	1	4	5.0
6	3	1	1.0

Niched Pareto GA (NPGA)

- Solutions in a tournament are checked for domination with respect to a small subpopulation (t_{dom})
- If one dominated and other non-dominated, select second
- If both non-dominated or both dominated, choose the one with smaller niche count in the subpopulation
- Algorithm depends on t_{dom}
- Nevertheless, it has both necessary components

Shortcoming of Non-Elitist MOEAs

- Elite-preservation is missing
- Elite-preservation is important for proper convergence in SOEAs
- Same is true in MOEAs
- Three tasks
 - Elite preservation
 - Progress towards the Pareto-optimal front
 - Maintain diversity among solutions

Elitist MOEAs

Elite-preservation:

• Maintain an archive of non-dominated solutions

Progress towards Pareto-optimal front:

• Preferring non-dominated solutions

Maintaining spread of solutions:

• Clustering, niching, or grid-based competition for a place in the archive

Elitist MOEAs (cont.)

- Distance-based Pareto GA (DPGA) (Osyczka and Kundu, 1995)
- Thermodynamical GA (TDGA) (Kita et al., 1996)
- Strength Pareto EA (SPEA) (Zitzler and Thiele, 1998)
- Non-dominated sorting GA-II (NSGA-II) (Deb et al., 1999)
- Pareto-archived ES (PAES) (Knowles and Corne, 1999)
- Multi-objective Messy GA (MOMGA) (Veldhuizen and Lamont, 1999)
- Other methods: Pareto-converging GA, multi-objective micro-GA, elitist MOGA with coevolutionary sharing

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II)

Non-dominated sorting: $O(MN^2)$

- Calculate (n_i, S_i) for each solution i
- n_i : Number of solutions dominating i
- S_i : Set of solutions dominated by i

NSGA-II Simulation Results

Strength Pareto EA (SPEA)

- Stores non-dominated solutions externally
- Pareto-dominance to assign fitness
 - External members: Assign number of dominated solutions in population (smaller, better)
 - Population members: Assign sum of fitness of external dominating members (smaller, better)
- Tournament selection and recombination applied to combined current and elite populations
- A clustering technique to maintain diversity in updated external population, when size increases a limit

SPEA (cont.)

• Fitness assignment and clustering methods

Function Space

Pareto Archived ES (PAES)

- An (1+1)-ES
- Parent p_t and child c_t are compared with an external archive A_t
- If c_t is dominated by A_t , $p_{t+1} = p_t$
- If c_t dominates a member of A_t , delete it from A_t and include c_t in A_t and $p_{t+1} = c_t$
- If $|A_t| < N$, include c_t and $p_{t+1} = winner(p_t, c_t)$
- If $|A_t| = N$ and c_t does not lie in highest count hypercube H, replace c_t with a random solution from H and $p_{t+1} = winner(p_t, c_t).$

The winner is based on *least* number of solutions in the hypercube

Constrained Handling

• Penalty function approach

$$F_m = f_m + R_m \Omega(\vec{g}).$$

- Explicit procedures to handle infeasible solutions
 - Jimenez's approach
 - Ray-Tang-Seow's approach
- Modified definition of domination
 - Fonseca and Fleming's approach
 - Deb et al.'s approach

Constrain-Domination Principle

A solution i constraineddominates a solution j, if any is true:

- 1. Solution i is feasible and solution j is not.
- 2. Solutions *i* and *j* are both infeasible, but solution *i* has a smaller overall constraint violation.
- 3. Solutions i and j are feasible and solution i dominates solution j.

Applications of MOEAs

- Space-craft trajectory optimization
- Engineering component design
- Microwave absorber design
- Ground-water monitoring
- Extruder screw design
- Airline scheduling
- VLSI circuit design
- Other applications (refer Deb, 2001 and EMO-01 proceedings)

Spacecraft Trajectory Optimization

- Coverstone-Carroll et al. (2000) with JPL Pasadena
- Three objectives for inter-planetary trajectory design
 - Minimize time of flight
 - Maximize payload delivered at destination
 - Maximize heliocentric revolutions around the Sun
- NSGA invoked with SEPTOP software for evaluation

Salient Research Tasks

- Scalability of MOEAs to handle more than two objectives
- Mathematically convergent algorithms with guaranteed spread of solutions
- Test problem design
- Performance metrics and comparative studies
- Controlled elitism
- Developing practical MOEAs Hybridization, parallelization
- Application case studies

Hybrid MOEAs

- Combine EAs with a local search method
 - Better convergence
 - Faster approach
- Two hybrid approaches
 - Local search to update each solution in an EA population (Ishubuchi and Murata, 1998; Jaskiewicz, 1998)
 - First EA and then apply a local search

• Which objective to use in local search?

Proposed Local Search Method

• Weighted sum strategy (or a Tchebycheff metric)

$$F = \sum_{i} w_i * f_i$$

- f_i is scaled
- Weight w_i chosen based on location of i in the obtained front

$$\bar{w}_{j} = \frac{(f_{j}^{\max} - f_{j}(\mathbf{x}))/(f_{j}^{\max} - f_{j}^{\min})}{\sum_{k=1}^{M} (f_{k}^{\max} - f_{k}(\mathbf{x}))/(f_{k}^{\max} - f_{k}^{\min})}$$

• Weights are normalized

$$\sum_{i} w_i = 1$$

Fixed Weight Strategy

- Extreme solutions are assigned extreme weights
- Linear relation between weight and fitness
- Many solution can converge to same solution after local search

Conclusions

- Ideal multi-objective optimization is generic and pragmatic
- Evolutionary algorithms are ideal candidates
- Many efficient algorithms exist, more efficient ones are needed
- With some salient research studies, MOEAs will revolutionize the act of optimization
- EAs have a definite edge in multi-objective optimization and should become more useful in practice in coming years