Reflection of P and $S V$ waves at the free surface of a monoclinic elastic half-space

Sarva Jit Singh* and Sandhya Khurana
Department of Mathematics, Maharshi Dayanand University, Rohtak 124 001, India.
*e-mail: $s_{-} j_{-}$singh@yahoo.com

The propagation of plane waves in an anisotropic elastic medium possessing monoclinic symmetry is discussed. The expressions for the phase velocity of $q P$ and $q S V$ waves propagating in the plane of elastic symmetry are obtained in terms of the direction cosines of the propagation vector. It is shown that, in general, $q P$ waves are not longitudinal and $q S V$ waves are not transverse. Pure longitudinal and pure transverse waves can propagate only in certain specific directions. Closedform expressions for the reflection coefficients of $q P$ and $q S V$ waves incident at the free surface of a homogeneous monoclinic elastic half-space are obtained. These expressions are used for studying numerically the variation of the reflection coefficients with the angle of incidence. The present analysis corrects some fundamental errors appearing in recent papers on the subject.

1. Introduction

In an anisotropic elastic solid medium, three types of body waves with mutually orthogonal particle motion can be propagated. In general, the particle motion is neither purely longitudinal nor purely transverse. Because of this, the three types of body waves in an anisotropic medium are referred to as $q P, q S V$ and $q S H$, rather than as $P, S V$ and $S H$, the symbols used for propagation in an isotropic medium (see, e.g., Keith and Crampin 1977).

A monoclinic medium possesses one plane of elastic symmetry. For wave propagation in the plane of symmetry, $S H$ motion is decoupled from the $P-S V$ motion. While the particle motion of $S H$ waves is purely transverse, it is neither purely longitudinal nor purely transverse in the case of $P-S V$ waves. In a recent paper, Chattopadhyay and Choudhury (1995) discussed the reflection of $q P$ waves at the plane free boundary of a monoclinic half-space. In a subsequent paper, Chattopadhyay et al (1996) studied the reflection of $q S V$ waves. Since, in both of these studies, the authors assume that $q P$ waves are purely longitudinal and $q S V$ waves purely transverse, most
of the results of these two papers, including the expressions for the reflection coefficients, are erroneous (Singh 1999). The aim of the present study is to derive closed-form algebraic expressions for the reflection coefficients when plane waves of $q P$ or $q S V$ type are incident at the plane free boundary of a monoclinic elastic half-space. Numerical results presented indicate that the anisotropy might affect the reflection coefficients significantly.

2. Basic equations

Consider a homogeneous anisotropic elastic medium of monoclinic type. It has one plane of elastic symmetry and its elastic properties are defined by thirteen elastic modulii. Taking the plane of symmetry as the $x_{2} x_{3}$ - plane, the generalized Hooke's law can be expressed in the form

$$
\begin{align*}
& \tau_{11}=c_{11} e_{11}+c_{12} e_{22}+c_{13} e_{33}+2 c_{14} e_{23}, \tag{1a}\\
& \tau_{22}=c_{12} e_{11}+c_{22} e_{22}+c_{23} e_{33}+2 c_{24} e_{23}, \tag{1b}\\
& \tau_{33}=c_{13} e_{11}+c_{23} e_{22}+c_{33} e_{33}+2 c_{34} e_{23}, \tag{1c}
\end{align*}
$$

Keywords. Anisotropic medium; elastic waves; monoclinic half-space; reflection coefficients.

$$
\begin{align*}
\tau_{23} & =c_{14} e_{11}+c_{24} e_{22}+c_{34} e_{33}+2 c_{44} e_{23} \tag{1d}\\
\tau_{13} & =2\left(c_{55} e_{13}+c_{56} e_{12}\right) \tag{1e}\\
\tau_{12} & =2\left(c_{56} e_{13}+c_{66} e_{12}\right) \tag{1f}
\end{align*}
$$

where $\tau_{i j}$ is the stress tensor and $e_{i j}$ the strain tensor. Further,

$$
\begin{equation*}
2 e_{i j}=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}, \tag{2}
\end{equation*}
$$

u_{i} being the displacement vector.
In the case of an orthotropic medium with the planes of symmetry coinciding with the coordinate planes

$$
\begin{equation*}
c_{14}=c_{24}=c_{34}=c_{56}=0 \tag{3a}
\end{equation*}
$$

For a transversely isotropic medium with the axis of symmetry coinciding with the x_{1}-axis

$$
\begin{align*}
& c_{12}=c_{13}, c_{22}=c_{33}, c_{55}=c_{66}, c_{23}=c_{22}-2 c_{44} \\
& c_{14}=c_{24}=c_{34}=c_{56}=0 \tag{3b}
\end{align*}
$$

For an isotropic medium

$$
\begin{align*}
& c_{11}=c_{22}=c_{33}=\lambda+2 \mu, \\
& c_{12}=c_{13}=c_{23}=\lambda, \\
& c_{44}=c_{55}=c_{66}=\mu, \\
& c_{14}=c_{24}=c_{34}=c_{56}=0, \tag{3c}
\end{align*}
$$

λ and μ being the Lamé parameters.
For plane waves propagating in the $x_{2} x_{3}$-plane

$$
\mathrm{u}_{i}=\mathrm{u}_{i}\left(x_{2}, x_{3}, t\right), \partial / \partial x_{1} \equiv 0 .
$$

Equations (1) and (2) now yield

$$
\begin{align*}
& \tau_{11}=c_{12} \frac{\partial u_{2}}{\partial x_{2}}+c_{13} \frac{\partial u_{3}}{\partial x_{3}}+c_{14}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right), \\
& \tau_{22}=c_{22} \frac{\partial u_{2}}{\partial x_{2}}+c_{23} \frac{\partial u_{3}}{\partial x_{3}}+c_{24}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right), \tag{4a}\\
& \tau_{33}=c_{23} \frac{\partial u_{2}}{\partial x_{2}}+c_{33} \frac{\partial u_{3}}{\partial x_{3}}+c_{34}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right), \tag{4c}\\
& \tau_{23}=c_{24} \frac{\partial u_{2}}{\partial x_{2}}+c_{34} \frac{\partial u_{3}}{\partial x_{3}}+c_{44}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right), \tag{4d}\\
& \tau_{13}=c_{55} \frac{\partial u_{1}}{\partial x_{3}}+c_{56} \frac{\partial u_{1}}{\partial x_{2}}, \tag{4e}\\
& \tau_{12}=c_{56} \frac{\partial u_{1}}{\partial x_{3}}+c_{66} \frac{\partial u_{1}}{\partial x_{2}} . \tag{4f}
\end{align*}
$$

The equations of motion without body forces are

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}} \tau_{i j}=\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}(i=1,2,3), \tag{5}
\end{equation*}
$$

using the summation convention. From equations (4) and (5), we obtain the equations of motion in terms of the displacements in the form

$$
\begin{align*}
& c_{66} \frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+2 c_{56} \frac{\partial^{2} u_{1}}{\partial x_{2} \partial x_{3}}+c_{55} \frac{\partial^{2} u_{1}}{\partial x_{3}^{2}}=\rho \frac{\partial^{2} u_{1}}{\partial t^{2}}, \tag{6a}\\
& c_{22} \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}+c_{44} \frac{\partial^{2} u_{2}}{\partial x_{3}^{2}}+c_{24} \frac{\partial^{2} u_{3}}{\partial x_{2}^{2}}+c_{34} \frac{\partial^{2} u_{3}}{\partial x_{3}^{2}} \\
& \quad+2 c_{24} \frac{\partial^{2} u_{2}}{\partial x_{2} \partial x_{3}}+\left(c_{23}+c_{44} \frac{\partial^{2} u_{3}}{\partial x_{2} \partial x_{3}}\right. \\
& \quad=\rho \frac{\partial^{2} u_{2}}{\partial t^{2}}, \tag{6b}\\
& c_{24} \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}+c_{34} \frac{\partial^{2} u_{2}}{\partial x_{3}^{2}}+c_{44} \frac{\partial^{2} u_{3}}{\partial x_{2}^{2}}+c_{33} \frac{\partial^{2} u_{3}}{\partial x_{3}^{2}} \\
& \quad+2 c_{34} \frac{\partial^{2} u_{3}}{\partial x_{2} \partial x_{3}}+\left(c_{23}+c_{44} \frac{\partial^{2} u_{2}}{\partial x_{2} \partial x_{3}}\right. \\
& =\rho \frac{\partial^{2} u_{3}}{\partial t^{2}} . \tag{6c}
\end{align*}
$$

From equations (6a, b, c), it is obvious that the u_{1} motion representing $S H$ waves is decoupled from the (u_{2}, u_{3}) motion representing $q P$ and $q S V$ waves.

Let $\mathbf{p}\left(0, p_{2}, p_{3}\right)$ denote the unit propagation vector, c the phase velocity and k the wave number of plane waves propagating in the $x_{2} x_{3}$-plane. A solution of the equation of motion (6a) representing plane waves is of the form

$$
\begin{equation*}
u_{1}=A \exp \left[i k\left(c t-x_{2} p_{2}-x_{3} p_{3}\right)\right] . \tag{7}
\end{equation*}
$$

From equations (6a) and (7), we find

$$
\begin{equation*}
c_{66} p_{2}^{2}+2 c_{56} p_{2} p_{3}+c_{55} p_{3}^{2}=\rho c^{2} . \tag{8}
\end{equation*}
$$

This equation gives the phase velocity of $S H$ waves propagating in an arbitrary direction in the plane of elastic symmetry of a monoclinic medium.
We seek plane wave solutions of the equations of motion (6b) and (6c) of the form

$$
\begin{equation*}
\binom{u_{2}}{u_{3}}=A\binom{d_{2}}{d_{3}} \exp \left[i k\left(c t-x_{2} p_{2}-x_{3} p_{3}\right)\right] \tag{9}
\end{equation*}
$$

where $\mathbf{d}\left(0, d_{2}, d_{3}\right)$ is the unit displacement vector, also known as the polarization vector. Inserting the
expressions for u_{2} and u_{3} in the equations of motion (6b) and (6c), we obtain

$$
\begin{align*}
& \left(U-\rho c^{2}\right) d_{2}+V d_{3}=0 \tag{10a}\\
& V d_{2}+\left(Z-\rho c^{2}\right) d_{3}=0 \tag{10b}
\end{align*}
$$

where

$$
\begin{align*}
U\left(p_{2}, p_{3}\right) & =c_{22} p_{2}^{2}+c_{44} p_{3}^{2}+2 c_{24} p_{2} p_{3}, \\
V\left(p_{2}, p_{3}\right) & =c_{24} p_{2}^{2}+c_{34} p_{3}^{2}+\left(c_{23}+c_{44}\right) p_{2} p_{3}, \tag{11}\\
Z\left(p_{2}, p_{3}\right) & =c_{44} p_{2}^{2}+c_{33} p_{3}^{2}+2 c_{34} p_{2} p_{3} .
\end{align*}
$$

Equations (10a) and (10b) yield

$$
\begin{equation*}
d_{2} / d_{3}=V /\left(\rho c^{2}-U\right)=\left(\rho c^{2}-Z\right) / V \tag{12}
\end{equation*}
$$

Therefore, ρc^{2} satisfies the quadratic equation

$$
\begin{equation*}
\rho^{2} c^{4}-(U+Z) \rho c^{2}+\left(U Z-V^{2}\right)=0, \tag{13a}
\end{equation*}
$$

with solutions

$$
\begin{equation*}
2 \rho c^{2}\left(p_{2}, p_{3}\right)=(U+Z) \pm\left[(U-Z)^{2}+4 V^{2}\right]^{1 / 2} \tag{13b}
\end{equation*}
$$

The upper sign in equation (13b) is for $q P$ waves and the lower sign is for $q S V$ waves.

Eliminating ρc^{2} from the two equations in (12), we find

$$
\begin{equation*}
\left(d_{2}^{2}-d_{3}^{2}\right) V=d_{2} d_{3}(U-Z) \tag{14a}
\end{equation*}
$$

Inserting the expressions for U, V and Z from equation (11), we obtain

$$
\begin{align*}
& {\left[c_{24}\left(d_{3}^{2}-d_{2}^{2}\right)+\left(c_{22}-c_{44}\right) d_{2} d_{3}\right] p_{2}^{2}+\left[c_{34}\left(d_{3}^{2}-d_{2}^{2}\right)\right.} \\
& \left.\quad+\left(c_{44}-c_{33}\right) d_{2} d_{3}\right] p_{3}^{2}+\left[\left(c_{23}+c_{44}\right)\left(d_{3}^{2}-d_{2}^{2}\right)\right. \\
& \left.\quad+2\left(c_{24}-c_{34}\right) d_{2} d_{3}\right] p_{2} p_{3}=0 . \tag{14b}
\end{align*}
$$

We may write equation (14a) in the form

$$
\begin{equation*}
\frac{d_{2} d_{3}}{d_{3}^{2}-d_{2}^{2}}=V /(Z-U) \tag{14c}
\end{equation*}
$$

Noting that $U=U\left(p_{2}, p_{3}\right)$ etc., equation (14c) can be used to find the direction of the displacement vector \mathbf{d} for a given direction of propagation p. Putting $\tan e=p_{2} / p_{3}, \tan \phi=d_{2} / d_{3}$, we find

$$
\begin{equation*}
\phi=\frac{1}{2} \tan ^{-1}(\Omega), \frac{\pi}{2}+\frac{1}{2} \tan ^{-1}(\Omega), \tag{14d}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=2 \frac{c_{24} \tan ^{2} e+\left(c_{23}+c_{44}\right) \tan e+c_{34}}{\left[\left(c_{44}-c_{22}\right) \tan ^{2} e+2\left(c_{34}-c_{24}\right)\right.} . \tag{14e}
\end{equation*}
$$

For an isotropic medium [see equation (3c)], we find $\Omega=\tan 2 e$ so that $\phi=e, \pi / 2+e$ corresponding to the longitudinal P waves and transverse $S V$ waves. The same is true for a transversely isotropic medium with the axis of symmetry perpendicular to the plane of propagation.

Equation (9) will represent a longitudinal wave if the displacement vector \mathbf{d} is parallel to the propagation vector \mathbf{p}, i.e., if $d_{2}=p_{2}, d_{3}=p_{3}$. In that case, equation (14b) yields

$$
\begin{align*}
c_{24} p_{2}^{4} & +\left(c_{23}-c_{22}+2 c_{44}\right) p_{2}^{3} p_{3}-3\left(c_{24}-c_{34}\right) p_{2}^{2} p_{3}^{2} \\
& -\left(c_{23}-c_{33}+2 c_{44}\right) p_{2} p_{3}^{3}-c_{34} p_{3}^{4}=0 . \tag{15}
\end{align*}
$$

Equation (15) gives the directions of propagation for which P waves are purely longitudinal. From equation (10), the corresponding phase velocity is given by

$$
\begin{align*}
\rho c_{1}^{2} & =U+\left(p_{3} / p_{2}\right) V \\
& =\left(p_{2} / p_{3}\right) V+Z . \tag{16}
\end{align*}
$$

Similarly, equation (9) will represent a transverse wave if the displacement vector \mathbf{d} is perpendicular to the propagation vector \mathbf{p}, i.e., if $\mathbf{d . p}=d_{2} p_{2}+$ $d_{3} p_{3}=0$. In this case also equation (14b) leads to equation (15), as expected. The phase velocity of transverse $q S V$ waves is given by

$$
\begin{align*}
\rho c_{2}^{2} & =U-\left(p_{2} / p_{3}\right) V \\
& =Z-\left(p_{3} / p_{2}\right) V . \tag{17}
\end{align*}
$$

For an orthotropic medium [see equation (3a)], equations (11) and (15) to (17) yield:
(i) $p_{2}=0, c_{1}=\left(c_{33} / \rho\right)^{1 / 2}, c_{2}=\left(c_{44} / \rho\right)^{1 / 2}$;
(ii) $p_{3}=0, c_{1}=\left(c_{22} / \rho\right)^{1 / 2}, c_{2}=\left(c_{44} / \rho\right)^{1 / 2}$;
(iii) $\left(\frac{p_{2}}{p_{3}}\right)^{2}=\frac{c_{23}-c_{33}+2 c_{44}}{c_{23}-c_{22}+2 c_{44}}$.

These are the directions along which $q P$ waves are purely longitudinal and $q S V$ waves purely transverse in an orthotropic medium. Of course, similar

Figure 1. Reflection of $q P$ and $q S V$ waves at the plane free boundary $\left(x_{3}=0\right)$ of a monoclinic half-space $\left(x_{3} \geq 0\right)$.
directions exist for wave propagation in the $x_{1} x_{2}-$ and $x_{1} x_{3}$-planes, which are also planes of elastic symmetry. For a transversely isotropic medium [equation (3b)], equation (15) reveals that $q P$ waves are longitudinal and $q S V$ waves transverse for all directions of propagation. Therefore, for wave propagation in a plane perpendicular to the axis of elastic symmetry of a transversely isotropic medium, $q P$ waves are longitudinal and $q S V$ waves transverse. From equations (16) and (17), the phase velocities of $q P$ and $q S V$ waves are given by

$$
\begin{equation*}
c_{1}=\left(c_{22} / \rho\right)^{1 / 2}, c_{2}=\left(c_{44} / \rho\right)^{1 / 2} \tag{19}
\end{equation*}
$$

3. Reflection of $q P$ and $q S V$ waves

Consider a homogeneous, monoclinic, elastic halfspace occupying the region $x_{3} \geq 0$ (figure 1). The plane of elastic symmetry is taken as the $x_{2} x_{3}$ plane. Plane $q P$ or $q S V$ waves are incident at the traction-free boundary $x_{3}=0$. We consider plane strain problem for which

$$
\begin{equation*}
u_{1}=0, u_{2}\left(x_{2}, x_{3}, t\right), u_{3}=u_{3}\left(x_{2}, x_{3}, t\right) \tag{20}
\end{equation*}
$$

Incident $q P$ or $q S V$ waves will generate reflected $q P$ and $q S V$ waves. The total displacement field is given by

$$
\begin{align*}
& u_{2}=\sum_{j=1}^{4} A_{j} e^{i P_{j}}, \\
& u_{3}=\sum_{j=1}^{4} B_{j} e^{i P_{j}}, \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
& P_{1}=\omega\left[t-\left(x_{2} \sin e_{1}-x_{3} \cos e_{1}\right) / c_{1}\right], \\
& P_{2}=\omega\left[t-\left(x_{2} \sin e_{2}-x_{3} \cos e_{2}\right) / c_{2}\right], \\
& P_{3}=\omega\left[t-\left(x_{2} \sin e_{3}+x_{3} \cos e_{3}\right) / c_{3}\right], \\
& P_{4}=\omega\left[t-\left(x_{2} \sin e_{4}+x_{3} \cos e_{4}\right) / c_{4}\right], \tag{22}
\end{align*}
$$

ω being the angular frequency. We distinguish quantities corresponding to various waves by using the subscript (1) for incident $q P$ waves, (2) for incident $q S V$ waves, (3) for reflected $q P$ waves and (4) for reflected $q S V$ waves. Thus, for example, for the incident $q P$ waves, c_{1} denotes the phase velocity, e_{1} the angle of incidence, $P_{1}\left(x_{2}, x_{3}, t\right)$ the phase factor, A_{1} the amplitude factor of the u_{2} component of the displacement and B_{1} that of the u_{3} component.
Since each of the incident $q P$, incident $q S V$, reflected $q P$ and reflected $q S V$ waves must satisfy the equations of motion, we have, as in equations (12) and (13b),

$$
\begin{equation*}
A_{i}=F_{i} B_{i}(i=1,2,3,4 ; \text { no summation }), \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
F_{i}= & V_{i} /\left(\rho c_{i}^{2}-U_{i}\right)=\left(\rho c_{i}^{2}-Z_{i}\right) / V_{i}, \tag{24}\\
& (i=1,2,3,4) \\
2 \rho c_{i}^{2}= & \left(U_{i}+Z_{i}\right)+\left[\left(U_{i}-Z_{i}\right)^{2}+4 V_{i}^{2}\right]^{1 / 2}, \tag{25}\\
& (i=1,3) \\
2 \rho c_{i}^{2}= & \left(U_{i}+Z_{i}\right)-\left[\left(U_{i}-Z_{i}\right)^{2}+4 V_{i}^{2}\right]^{1 / 2} . \\
& (i=2,4) \tag{26}
\end{align*}
$$

The expressions for U_{i}, V_{i} and Z_{i} are obtained from the expressions for U, V and Z given in equation (11) on substituting suitable values for $\left(p_{2}, p_{3}\right)$. For incident $q P$ waves, $p_{2}=\sin e_{1}, p_{3}=-\cos e_{1}$; for incident $q S V$ waves, $p_{2}=\sin e_{2}, p_{3}=-\cos e_{2}$; for reflected $q P$ waves, $p_{2}=\sin e_{3}, p_{3}=\cos e_{3}$; and, for reflected $q S V$ waves, $p_{2}=\sin e_{4}, p_{3}=\cos e_{4}$ (see figure 1). We thus obtain

$$
\begin{aligned}
U_{1}= & c_{22} \sin ^{2} e_{1}+c_{44} \cos ^{2} e_{1} \\
& -2 c_{24} \sin e_{1} \cos e_{1},
\end{aligned}
$$

$$
\begin{align*}
V_{1}= & c_{24} \sin ^{2} e_{1}+c_{34} \cos ^{2} e_{1} \\
& -\left(c_{23}+c_{44}\right) \sin e_{1} \cos _{1}, \\
Z_{1}= & c_{44} \sin ^{2} e_{1}+c_{33} \cos ^{2} e_{1} \\
& -2 c_{34} \sin e_{1} \cos _{1} ; \tag{27}\\
U_{3}= & c_{22} \sin ^{2} e_{3}+c_{44} \cos ^{2} e_{3}+2 c_{24} \sin e_{3} \cos e_{3}, \\
V_{3}= & c_{24} \sin ^{2} e_{3}+c_{34} \cos ^{2} e_{3} \\
& +\left(c_{23}+c_{44}\right) \sin e_{3} \cos e_{3}, \\
Z_{3}= & c_{44} \sin ^{2} e_{3}+c_{33} \cos ^{2} e_{3} \\
& +2 c_{34} \sin e_{3} \cos e_{3} . \tag{28}
\end{align*}
$$

$\left(U_{2}, V_{2}, Z_{2}\right)$ are obtained from $\left(U_{1}, V_{1}, Z_{1}\right)$ on replacing e_{1} by e_{2} and (U_{4}, V_{4}, Z_{4}) are obtained from (U_{3}, V_{3}, Z_{3}) on replacing e_{3} by e_{4}.

The total displacement field given by equation (21) must satisfy the traction-free boundary conditions, viz.,

$$
\begin{equation*}
\tau_{23}=\tau_{33}=0 \text { at } x_{3}=0 \tag{29}
\end{equation*}
$$

Equations (4c), (4d), (21) and (29) yield
$\left[\left(c_{24} A_{1}+c_{44} B_{1}\right) \frac{\sin e_{1}}{c_{1}}-\left(c_{44} A_{1}+c_{34} B_{1}\right) \frac{\cos e_{1}}{c_{1}}\right]$
$\times e^{i P_{1}\left(x_{2}, 0\right)}$
$+\left[\left(c_{24} A_{2}+c_{44} B_{2}\right) \frac{\sin e_{2}}{c_{2}}-\left(c_{44} A_{2}+c_{34} B_{2}\right) \frac{\cos e_{2}}{c_{2}}\right]$
$\times e^{i P_{2}\left(x_{2}, 0\right)}$
$+\left[\left(c_{24} A_{3}+c_{44} B_{3}\right) \frac{\sin e_{3}}{c_{3}}+\left(c_{44} A_{3}+c_{34} B_{3}\right) \frac{\cos e_{3}}{c_{3}}\right]$
$\times e^{i P_{3}\left(x_{2}, 0\right)}$
$+\left[\left(c_{24} A_{4}+c_{44} B_{4}\right) \frac{\sin e_{4}}{c_{4}}+\left(c_{44} A_{4}+c_{34} B_{4}\right) \frac{\cos e_{4}}{c_{4}}\right]$
$\times e^{i P_{4}\left(x_{2}, 0\right)}=0$,
$\left[\left(c_{23} A_{1}+c_{34} B_{1}\right) \frac{\sin e_{1}}{c_{1}}-\left(c_{34} A_{1}+c_{33} B_{1}\right) \frac{\cos e_{1}}{c_{1}}\right]$
$\times e^{i P_{1}\left(x_{2}, 0\right)}$
$+\left[\left(c_{23} A_{2}+c_{34} B_{2}\right) \frac{\sin e_{2}}{c_{2}}-\left(c_{34} A_{2}+c_{33} B_{2}\right) \frac{\cos e_{2}}{c_{2}}\right]$
$\times e^{i P_{2}\left(x_{2}, 0\right)}$
$+\left[\left(c_{23} A_{3}+c_{34} B_{3}\right) \frac{\sin e_{3}}{c_{3}}+\left(c_{34} A_{3}+c_{33} B_{3}\right) \frac{\cos e_{3}}{c_{3}}\right]$
$\times e^{i P_{3}\left(x_{2}, 0\right)}$

$$
\begin{align*}
& +\left[\left(c_{23} A_{4}+c_{34} B_{4}\right) \frac{\sin e_{4}}{c_{4}}+\left(c_{34} A_{4}+c_{33} B_{4}\right) \frac{\cos e_{4}}{c_{4}}\right] \\
& \times e^{i P_{4}\left(x_{2}, 0\right)}=0 \tag{31}
\end{align*}
$$

Since equations (30) and (31) are to be satisfied for all values of x_{2}, we must have

$$
\begin{equation*}
P_{1}\left(x_{2}, 0\right)=P_{2}\left(x_{2}, 0\right)=P_{3}\left(x_{2}, 0\right)=P_{4}\left(x_{2}, 0\right) . \tag{32}
\end{equation*}
$$

Equations (22) and (32) imply

$$
\begin{equation*}
\frac{\sin e_{1}}{c_{1}\left(e_{1}\right)}=\frac{\sin e_{2}}{c_{2}\left(e_{2}\right)}=\frac{\sin e_{3}}{c_{3}\left(e_{3}\right)}=\frac{\sin e_{4}}{c_{4}\left(e_{4}\right)}=1 / c_{a} \tag{33}
\end{equation*}
$$

where c_{a} is the apparent phase velocity. This is the form of Snell's law for a monoclinic medium.
From equations (25), (27) and (28), we note that even if $e_{1}=e_{3}, c_{1} \neq c_{3}$. Therefore, from equation (33), the angle of reflection of $q P$ waves is not equal to the angle of incidence of $q P$ waves. Similarly, the angle of reflection of $q S V$ waves is not equal to the angle of incidence of $q S V$ waves. Chattopadhyay and Choudhury (1995) and Chattopadhyay et al. (1996) assume that the angle of reflection of $q P(q S V)$ waves is equal to the angle of incidence of $q P(q S V)$ waves. Therefore, the reflection coefficients obtained in these studies are incorrect.
In the case of an orthotropic medium, $c_{14}=$ $c_{24}=c_{34}=c_{56}=0$. Consequently, $c_{1}=c_{3}$ if $e_{1}=e_{3}$. Equation (33) then reveals that the angle of reflection of $q P(q S V)$ waves is equal to the angle of incidence of $q P(q S V)$ waves.
Using the relations (23), (32) and (33) in equations (30) and (31), we obtain

$$
\begin{align*}
a_{1} B_{1}+a_{2} B_{2}+a_{3} B_{3}+a_{4} B_{4} & =0, \tag{34a}\\
b_{1} B_{1}+b_{2} B_{2}+b_{3} B_{3}+b_{4} B_{4} & =0, \tag{34b}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}=c_{24} F_{1}+c_{44}-\left(c_{44} F_{1}+c_{34}\right) \cot e_{1}, \\
& a_{2}=c_{24} F_{2}+c_{44}-\left(c_{44} F_{2}+c_{34}\right) \cot e_{2}, \\
& a_{3}=c_{24} F_{3}+c_{44}+\left(c_{44} F_{3}+c_{34}\right) \cot e_{3}, \\
& a_{4}=c_{24} F_{4}+c_{44}+\left(c_{44} F_{4}+c_{34}\right) \cot e_{4}, \\
& b_{1}=c_{23} F_{1}+c_{34}-\left(c_{34} F_{1}+c_{33}\right) \cot e_{1}, \\
& b_{2}=c_{23} F_{2}+c_{34}-\left(c_{34} F_{2}+c_{33}\right) \cot e_{2}, \\
& b_{3}=c_{23} F_{3}+c_{34}+\left(c_{34} F_{3}+c_{33}\right) \cot e_{3}, \\
& b_{4}=c_{23} F_{4}+c_{34}+\left(c_{34} F_{4}+c_{33}\right) \cot e_{4} . \tag{35}
\end{align*}
$$

3.1 Incident $q P$ waves

In the case of incident $q P$ waves, $A_{2}=B_{2}=0$ and equations (34a, b) become

$$
\begin{align*}
a_{1} B_{1}+a_{3} B_{3}+a_{4} B_{4} & =0, \tag{36a}\\
b_{1} B_{1}+b_{3} B_{3}+b_{4} B_{4} & =0 . \tag{36b}
\end{align*}
$$

On solving, we obtained the amplitude ratios in the form

$$
\begin{align*}
& \frac{B_{3}}{B_{1}}=\left(a_{4} b_{1}-a_{1} b_{4}\right) / \Delta, \tag{37a}\\
& \frac{B_{4}}{B_{1}}=\left(a_{1} b_{3}-a_{3} b_{1}\right) / \Delta \tag{37b}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta=a_{3} b_{4}-a_{4} b_{3} . \tag{38}
\end{equation*}
$$

Using equation (23), we find

$$
\begin{equation*}
\frac{A_{3}}{A_{1}}=\frac{F_{3}}{F_{1}}\left(\frac{B_{3}}{B_{1}}\right), \frac{A_{4}}{A_{1}}=\frac{F_{4}}{F_{1}}\left(\frac{B_{4}}{B_{1}}\right) . \tag{39}
\end{equation*}
$$

3.2 Incident $q S V$ waves

For incident $q S V$ waves, $A_{1}=B_{1}=0$, so that

$$
\begin{align*}
& a_{2} B_{2}+a_{3} B_{3}+a_{4} B_{4}=0, \tag{40a}\\
& b_{2} B_{2}+b_{3} B_{3}+b_{4} B_{4}=0, \tag{40b}\\
& \frac{B_{3}}{B_{2}}=\left(a_{4} b_{2}-a_{2} b_{4}\right) / \Delta, \tag{41a}\\
& \frac{B_{4}}{B_{2}}=\left(a_{2} b_{3}-a_{3} b_{2}\right) / \Delta, \tag{41b}\\
& \frac{A_{3}}{A_{2}}=\frac{F_{3}}{F_{2}}\left(\frac{B_{3}}{B_{2}}\right), \frac{A_{4}}{A_{2}}=\frac{F_{4}}{F_{2}}\left(\frac{B_{4}}{B_{2}}\right) . \tag{41c}
\end{align*}
$$

3.3 Isotropic half-space

Using equation (3c), it can be shown that, for an isotropic half-space,

$$
\begin{align*}
c_{1} & =c_{3}=[(\lambda+2 \mu) / \rho]^{1 / 2}=\alpha, c_{2}=c_{4} \\
& =(\mu / \rho)^{1 / 2}=\beta, e_{1}=e_{3}=e, e_{2}=e_{4}=f, \\
\frac{\sin e}{\alpha} & =\frac{\sin f}{\beta}, \\
F_{1} & =-F_{3}=-\tan e, F_{2}=-F_{4}=\cot f, \\
a_{1} & =a_{3}=2 \mu, a_{2}=a_{4}=-\mu \cos 2 f / \sin ^{2} f, \\
b_{1} & =-b_{3}=-2 \mu(\alpha / \beta)^{2} \cos 2 f / \sin 2 e, \\
b_{2} & =-b_{4}=-2 \mu \cot f . \tag{42}
\end{align*}
$$

Putting these values in equations (37), (39) and (41), we deduce the amplitude ratios for an isotropic half-space in the form
$\frac{A_{3}}{A_{1}}=-\frac{B_{3}}{B_{1}}=\frac{\sin 2 e \sin 2 f-(\alpha / \beta)^{2} \cos ^{2} 2 f}{\sin 2 e \sin 2 f+(\alpha / \beta)^{2} \cos ^{2} 2 f}$,
$\frac{A_{4}}{A_{1}}=\frac{\cot f}{\tan e}\left(\frac{B_{4}}{B_{1}}\right)=\frac{(\alpha / \beta)^{2} \cot e \sin 4 f}{\sin 2 e \sin 2 f+(\alpha / \beta)^{2} \cos ^{2} 2 f}$,
$\frac{A_{3}}{A_{2}}=\frac{\tan e}{\cot f}\left(\frac{B_{3}}{B_{2}}\right)=\frac{4 \sin ^{2} e \cos 2 f}{\sin 2 e \sin 2 f+(\alpha / \beta)^{2} \cos ^{2} 2 f}$,
$\frac{A_{4}}{A_{2}}=-\frac{B_{4}}{B_{2}}=-\frac{A_{3}}{A_{1}}=\frac{B_{3}}{B_{1}}$.
The above expressions for the amplitude ratios for an isotropic half-space coincide with the corresponding results of Ben-Menahem and Singh (1981, pp. 93 and 95).

4. Numerical results and conclusions

The reflection coefficients given by Chattopadhyay and Choudhury (1995) and Chattopadhyay et al. (1996) for the reflection of $q P$ and $q S V$ waves at the plane free boundary of a monoclinic elastic half-space are incorrect because of two erroneous assumptions made by these authors, namely, $q P$ waves are longitudinal ($q S V$ waves are transverse) and the angle of reflection of $q P(q S V)$ waves is equal to the angle of incidence of $q P(q S V)$ waves. In the present study, we have obtained the correct reflection coefficients by solving the problem ab initio.
Equations (37) and (39) give the amplitude ratios when plane $q P$ waves are incident at the plane-free boundary of a monoclinic elastic halfspace. In these equations, A_{3} / A_{1} and A_{4} / A_{1} are the amplitude ratios for the horizontal component of the displacement and B_{3} / B_{1} and B_{4} / B_{1} are the amplitude ratios for the vertical component of the displacement. Similarly, equation (41) gives the amplitude ratios for incident $q S V$ waves. From equations (21) and (23), we note that, for example, the total displacement of the incident $q P$ waves is

$$
\left(A_{1}^{2}+B_{1}^{2}\right)^{1 / 2} e^{i P_{1}}=\left(1+F_{1}^{2}\right)^{1 / 2} B_{1} e^{i P_{1}} .
$$

Therefore, the reflection coefficients can be expressed in the form
$R_{P P}=\left(\frac{1+F_{3}^{2}}{1+F_{1}^{2}}\right)^{1 / 2} \cdot \frac{B_{3}}{B_{1}}, R_{P S}=\left(\frac{1+F_{4}^{2}}{1+F_{1}^{2}}\right)^{1 / 2} \cdot \frac{B_{4}}{B_{1}}$
for incident $q P$ waves, and
$R_{S P}=\left(\frac{1+F_{3}^{2}}{1+F_{2}^{2}}\right)^{1 / 2} \cdot \frac{B_{3}}{B_{2}}, R_{S S}=\left(\frac{1+F_{4}^{2}}{1+F_{2}^{2}}\right)^{1 / 2} \cdot \frac{B_{4}}{B_{2}}$
for incident $q S V$ waves. The reflection coefficients are in terms of the four angles e_{i} and the four velocities $c_{i}\left(e_{i}\right), i=1,2,3,4$. For an incident $q P$ wave, e_{1} and, therefore, $c_{1}\left(e_{1}\right)$ is supposed to be known. One has to compute e_{3} and e_{4} for given e_{1}. The velocities $c_{3}\left(e_{3}\right)$ and $c_{4}\left(e_{4}\right)$ can then be computed from explicit algebraic formulae. We give below the procedure for computing e_{3} and e_{4} for given e_{1} in the case of incident $q P$ waves and for given e_{2} in the case of incident $q S V$ waves.

The Snell's law for a monoclinic medium is given by equation (33) in which the apparent velocity c_{a} can be written as $c_{a}=c / p_{2}$, where $\mathbf{p}\left(0, p_{2}, p_{3}\right)$ is the propagation vector. We define dimensionless apparent velocity \bar{c} through the relation

$$
\begin{equation*}
\bar{c}=c_{a} / \beta=c /\left(p_{2} \beta\right) \tag{45}
\end{equation*}
$$

where $\beta=\left(c_{44} / \rho\right)^{1 / 2}$. Equation (13a) then becomes

$$
\begin{equation*}
\bar{c}^{4}-(\bar{U}+\bar{Z}) \bar{c}^{2}+\left(\overline{U Z}-\bar{V}^{2}\right)=0 \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
\bar{U} & =U /\left(c_{44} p_{2}^{2}\right)=p^{2}+2 \bar{c}_{24} p+\bar{c}_{22} \\
\bar{V} & =V /\left(c_{44} p_{2}^{2}\right)=\bar{c}_{34} p^{2}+\left(1+\bar{c}_{23}\right) p+\bar{c}_{24} \\
\bar{Z} & =Z /\left(c_{44} p_{2}^{2}\right)=\bar{c}_{33} p^{2}+2 \bar{c}_{34} p+1 \\
p & =p_{3} / p_{2}, \bar{c}_{i j}=c_{i j} / c_{44} \tag{47}
\end{align*}
$$

For incident $q P$ waves, $p=-\cot e_{1}$; for incident $q S V$ waves, $p=-\cot e_{2}$; for reflected $q P$ waves, $p=\cot e_{3}$; for reflected $q S V$ waves, $p=\cot e_{4}$. For a given p, equation (46) can be solved for $\overline{c^{2}}$, the two roots corresponding to $q P$ and $q S V$ waves. However, for a given \bar{c}, equation (46) is a bi-quadratic in p, corresponding to incident $q P$, incident $q S V$, reflected $q P$ and reflected $q S V$. The positive roots corresponding to the reflected waves and the negative roots corresponding to the incident waves. On inserting the expressions for \bar{U}, \bar{Z} and \bar{V} from equation (47) into equation (46), the bi-quadratic in p becomes

$$
\begin{equation*}
g_{0} p^{4}+g_{1} p^{3}+g_{2} p^{2}+g_{3} p+g_{4}=0 \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
g_{0} & =\bar{c}_{33}-\bar{c}_{34}^{2} \\
g_{1} & =2\left(\bar{c}_{24} \bar{c}_{33}-\bar{c}_{23} \bar{c}_{34}\right) \\
g_{2} & =1+\bar{c}_{22} \bar{c}_{33}+2 \bar{c}_{24} \bar{c}_{34}-\left(1+\bar{c}_{23}\right)^{2}-\left(1+\bar{c}_{33}\right) \bar{c}^{2} \\
g_{3} & =2\left[\bar{c}_{22} \bar{c}_{34}-\bar{c}_{23} \bar{c}_{24}-\left(\bar{c}_{24}+\bar{c}_{34}\right) \bar{c}^{2}\right] \\
g_{4} & =\bar{c}^{4}-\left(1+\bar{c}_{22}\right) \bar{c}^{2}+\bar{c}_{22}-\bar{c}_{24}^{2} \tag{49}
\end{align*}
$$

If we define $q=1 / p=p_{2} / p_{3}$, the bi-quadratic transforms to

$$
\begin{equation*}
g_{4} q^{4}+g_{3} q^{3}+g_{2} q^{2}+g_{1} q+g_{0}=0 \tag{50}
\end{equation*}
$$

For angles of incidence, for which both reflected $q P$ and reflected $q S V$ waves exist, equation (50) will possess two positive roots, the smaller positive root $\left(\right.$ say $\left.q_{4}\right)$ corresponding to reflected $S V$ and the larger positive root $\left(q_{3}\right)$ corresponding to reflected $q P$. Further,

$$
\begin{equation*}
e_{3}=\tan ^{-1}\left(q_{3}\right), e_{4}=\tan ^{-1}\left(q_{4}\right) \tag{51}
\end{equation*}
$$

For an isotropic medium (see equation (3c))

$$
\begin{align*}
& g_{0}=\gamma, g_{1}=0 \\
& g_{2}=2 \gamma-(1+\gamma) \bar{c}^{2}, g_{3}=0 \\
& g_{4}=\left(\bar{c}^{2}-1\right)\left(\bar{c}^{2}-\gamma\right) \tag{52}
\end{align*}
$$

where

$$
\gamma=(\lambda+2 \mu) / \mu=(\alpha / \beta)^{2}
$$

Equation (48) reduces to

$$
\gamma p^{4}+\left[2 \gamma-(1+\gamma) \bar{c}^{2}\right] p^{2}+\left(\bar{c}^{2}-1\right)\left(\bar{c}^{2}-\gamma\right)=0
$$

i.e.,

$$
\begin{equation*}
\gamma\left(p^{2}-\bar{c}^{2}+1\right)\left(p^{2}-\bar{c}^{2} / \gamma+1\right)=0 \tag{53}
\end{equation*}
$$

In the present case, the Snell's law (23) becomes

$$
\frac{\sin e}{\alpha}=\frac{\sin f}{\beta}=1 / c_{a}
$$

Equation (45) shows that

$$
\begin{equation*}
\bar{c}=c_{a} / \beta=\operatorname{cosec} f=\sqrt{ } \gamma \operatorname{cosec} e \tag{54}
\end{equation*}
$$

Therefore, the roots of equation (53) are given by

$$
\begin{equation*}
p^{2}=\bar{c}^{2}-1=\cot ^{2} f \tag{55}
\end{equation*}
$$

corresponding to $S V$ waves, and

$$
\begin{equation*}
p^{2}=\bar{c}^{2} / \gamma-1=\cot ^{2} e \tag{56}
\end{equation*}
$$

Incident qP, Reflected qp

Figure 2. Variation of the angle of reflection $\left(e_{3}\right)$ of $q P$ waves with the angle of incidence $\left(e_{1}\right)$ of $q P$ waves for three values of the anisotropy parameter C.

Incident qP, Reflected qSV

Figure 3. Variation of the angle of reflection $\left(e_{4}\right)$ of $q S V$ waves with the angle of incidence $\left(e_{1}\right)$ of $q P$ waves.

Incident qSV, Reflected qP

Figure 4. Variation of the angle of reflection $\left(e_{3}\right)$ of $q P$ waves with the angle of incidence $\left(e_{2}\right)$ of $q S V$ waves.

Incident qSV, Reflected qSV

Figure 5. Variation of the angle of reflection $\left(e_{4}\right)$ of $q S V$ waves with the angle of incidence $\left(e_{2}\right)$ of $q S V$ waves.

Reflection coefficient IRPPI

Figure 6. Variation of the reflection coefficient $\left|R_{P P}\right|$ with the angle of incidence $\left(e_{1}\right)$ of $q P$ waves.

Reflection coefficient IRPSI

Figure 7. Variation of the reflection coefficient $\left|R_{P S}\right|$ with the angle of incidence (e_{1}) of $q P$ waves.

Reflection coefficient IRSPI

Figure 8. Variation of the reflection coefficient $\left|R_{S P}\right|$ with the angle of incidence (e_{2}) of $q S V$ waves.

Reflection coefficient IRSSI

Figure 9. Variation of the reflection coefficient $\left|R_{S S}\right|$ with the angle of incidence (e_{2}) of $q S V$ waves.
corresponding to P waves. Thus, we may choose ($q=1 / p$)

$$
\begin{align*}
& q_{1}=-\tan e, q_{2}=-\tan f, \\
& q_{3}=\tan e, q_{4}=\tan f, \tag{57}
\end{align*}
$$

as the four roots of the bi-quadratic equation (50) for an isotropic medium. This choice acts as a guiding factor in computing the angles of reflection of $q P$ and $q S V$ waves in a monoclinic medium. For an orthotropic medium (see equation (3a)), it can be shown that $g_{1}=g_{3}=0$. Therefore, equation (50) reduces to a quadratic equation in q^{2}. Thus, we may choose

$$
q_{1}=-q_{3}, q_{2}=-q_{4}
$$

so that the angle of reflection of $q P(q S V)$ waves is equal to the angle of incidence of $q P(q S V)$ waves. This is not true for a monoclinic material.

As observed earlier, for monoclinic media the angle of reflection of $q P(q S V)$ waves is not equal to the angle of incidence of $q P(q S V)$ waves. For numerical computation of results, we have assumed that

$$
\begin{aligned}
& c_{22} / c_{44}=19.8 / 6.67, c_{33} / c_{44}=24.9 / 6.67, \\
& c_{23} / c_{44}=7.8 / 6.67, c_{24} / c_{44}=c_{34} / c_{44}=C .
\end{aligned}
$$

Figure 2 gives the angle of reflection of $q P$ waves for various values of the angle of incidence of $q P$ waves for three values of C. In figure 2 , for $C>0$, the angle of reflection is greater than the angle of incidence. In contrast, for $C<0$, the angle of reflection is less than the angle of incidence. Figure 3
gives the angle of reflection of $q S V$ waves for various values of the angle of incidence of $q P$ waves. Figures 4 and 5 are for incident $q S V$ waves.
The variation of the reflection coefficient $R_{P P}$ for incident $q P$-reflected $q P$ waves as defined in equation (44a) with the angle of incidence of $q P$ waves is shown in figure 6. The variation of the reflection coefficients $R_{P S}, R_{S P}$ and $R_{S S}$ is shown in figures 7-9. From figures $6-9$ we observe that the anisotropy has a significant effect on the reflection coefficients.

Acknowledgements

The authors are grateful to the Council of Scientific and Industrial Research, New Delhi for financial help through the Emeritus Scientist Scheme awarded to S J S and to the University Grants Commission, New Delhi for Junior Research Fellowship awarded to S K.

References

Ben-Menahem A and Singh S J 1981 Seismic waves and sources (New York: Springer-Verlag)
Chattopadhyay A and Choudhury S 1995 The reflection phenomenon of P-waves in a medium of monoclinic type; Int. J. Engg. Sci. 33 195-207
Chattopadhyay A, Saha S and Chakraborty M 1996 The reflection of SV-waves in a monoclinic medium; Indian J. Pure Appl. Math. 27 1029-1042
Keith C M and Crampin S 1977 Seismic body waves in anisotropic media: reflection and refraction at a plane interface; Geophys. J. R. Astr. Soc. 49 181-208
Singh S J 1999 Comments on 'The reflection phenomenon of P-waves in a medium of monoclinic type' by Chattopadhyay and Choudhury; Int. J. Engg. Sci. 37 407-410

