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CONVERGENCE OF FINITE DIFFERENCE METHOD FOR THE

GENERALIZED SOLUTIONS OF SOBOLEV EQUATIONS

S. K. CHUNG, A. K. PANI AND M. G. PARK

ABSTRACT. In this paper, finite difference method is applied to approximate
the generalized solutions of Sobolev equations. Using the Steklov mollifier
and Bramble-Hilbert Lemma,a priori error estimates in discreteL2 as well as
in discreteH1 norms are derived first for the semidiscrete methods. For the
fully discrete schemes, both backward Euler and Crank-Nicolson methods are
discussed and related error analyses are also presented.

1. Introduction

Let � be a rectangular domain inR2 with boundary∂�, andT be 0<
T < ∞. We consider finite difference approximations for the generalized
solutions of differential equations of the form

ut + Aut + Bu= f, (x, t) ∈ �× (0, T ],(1.1a)

u(x, 0) = u0(x), x ∈ �,(1.1b)

u(x, t) = 0, (x, t) ∈ ∂�× [0, T ],(1.1c)

where f = f (x, t), A andB are of the following forms

A(x)u = −
2∑

l,q=1

∂

∂xl
(alq (x)

∂u

∂xq
),

and

B(x, t)u = −
2∑

l,q=1

∂

∂xl
(blq(x, t)

∂u

∂xq
)+

2∑
l=1

bl (x, t)
∂u

∂xl
+ b(x, t)u.
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We now make the following assumptions.

(1) The coefficients ofA(x) and B(x, t), together with f , are smooth
and bounded as far as the ensuring analysis demands.

(2) The coefficientsalq = aql satisfy
2∑

l,q=1

alqξl ξq ≥
2∑

l=1

ξ2
l , ∀ (ξ1, ξ2) ∈ R2.

(3) There exists a unique generalized solution of the problem (1.1) with
smoothness corresponding to that of the generalized solution.

The problem of this type arises in the study of consolidation of clay, heat
conduction, homogeneous fluid flow in fissured material and shear in second
order fluids. For existence, uniqueness and applications of (1.1), we refer to
Ewing [5] and the extensive literatures contained therein.

Finite element methods for (1.1) have been studied by Ewing [5], Ford
[6], Arnold et al. [1], Lin and Zhang [10] and Nakao[11]. For the analysis
of finite difference schems, Ford and Ting [7]– [8] have obtained an order
O(k + h2) of convergence for the backward Euler method andO(k2 + h2)

for the Crank-Nicolson method under the assumption that the exact solution
u, ut ∈ C4(�) and� ⊂ R. For the problem in several space variables, Ewing
[4] has obtainedL2 error estimates of orderO(k2+h2) for the Crank-Nicolson
method under the assumption thatu, ut ∈ C4(�). In all these articles [4],
[7]-[8], traditional Taylor’s expansion is used for convergence analysis, which
imposes sever smoothness conditions on the solution.

In this paper, using Steklov mollifier and a nonclassical discrete projection
method we derive rates of convergences for the finite difference schemes and
obtain orders of convergence compatible with the smoothness of the solution.
After giving preliminaries in Section 2, we consider the semidiscrete scheme,
its stability and error analysis in Section 3. In Section 4, we introduce a
nonclassical discrete projection and obtainO(h2) convergence in theL2-
norm. In Section 5, we discuss fully discrete schemes which are optimal. We
obtain an orderO(k+h2) of convergence for the backward Euler method and
an oredrO(k2 + h2) for the Crank-Nicolson scheme under the assumption
thatu, ut ∈ H2(�).

2. Preliminaries

Without loss of generality, it is assumed that the domain� is the unit square
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in R2. We select a mesh of widthh = 1
M , where M is a positive integer, and

cover�̄ = � ∪ ∂� with a square grid of mesh pointsxi j = (ih, jh), i, j =
0, 1, ...,M. Let�h = {xi j : xi j ∈ �} and∂�h = {xi j : xi j ∈ ∂�}.

For a functionw defined on�h, the following notations will be used: for
x ∈ ∂�h andl = 1, 2,

w±l = w(x ± hel ), w+l,−q = w(x + hel − heq),

and

∇lw(x) = w(x + hel )−w(x)
h

, ∇̄lw(x) = w(x)− w(x − hel )

h
,

whereel is thel -th unit vector inR2.
The Steklov mollifiers are defined in the following manner:S = S2

1 S2
2

with S2
l = S+l S−l , l = 1, 2, where

S+l φ(x) =
∫ 1

0
φ(x + shel ) ds, S−l φ(x) =

∫ 0

−1
φ(x + shel ) ds.

The operatorsS±l commute and the following relationships hold:

(2.1) S+l
∂φ

∂xl
= ∇lφ, S−l

∂φ

∂xl
= ∇̄lφ.

We now introduce the discreteL2 space, denoted byL2
h(�h), with an inner

product and the norm given by:

〈w, v〉 = h2
∑
x∈�h

w(x)v(x) and ‖w‖0,h = 〈w,w〉
1
2 , for v,w ∈ L2

h(�h).

Further, letH1
h = H1

h (�h) denote the discrete analogue ofH1-Sobolev space
with norm

‖w‖21,h = ‖w‖20,h +
2∑

l=1

‖∇lw‖20,h.

We also introduce a discreteH2-Sobolev space with the following norm

‖w‖22,h = ‖w‖21,h +
2∑

l,q=1

‖∇l ∇̄qw‖20,h,
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and denote it byH2
h = H2

h (�h). Whenever there is no confusion, we write
‖w‖ and‖w‖j , in place of‖w‖0,h and‖w‖ j ,h. Throughout the paper,‖ · ‖L2

and ‖ · ‖H m will denote the norm inL2 and the Sobolev spaceHm(�),
respectively. Further, let| · |Wm,p(�) denote the seminorm inWm,p(�).

For functionsv andw defined on�h, the following identity is an easy
consequence of summation

(2.2) 〈∇lv,w〉 = −
〈
v, ∇̄lw

〉
, l = 1, 2.

Along with the usual Bramble-Hilbert Lemma [2], the following bilinear
version of it will be needed for our convergence analysis. For a proof, we
refer the reader to Ciarlet[3].

LEMMA 2.1. Let P[r ]be the set of all polynomials of degree≤ [r ], where
[r ] denotes the largest integer less thanr > 0. If η is a bounded linear
functional onWα,p(�) ×Wβ,q(�), with α, β ∈ (0,∞) and p, q ∈ [1,∞]
such that

η(U, v) = 0, ∀U ∈ P[α] (�) , ∀v ∈ Wβ,q (�) ,

η(u, V) = 0, ∀u ∈ Wα,p(�), ∀V ∈ P[β](�),

then there exists a positive constant C such that

|η(u, v)| ≤ C|u|Wα,p(�)|v|Wβ,q(�), ∀u ∈ Wα,p(�), ∀V ∈ P[β](�).

In the proofs below, the inequality

(2.3) ab≤ εa2+ 1

4ε
b2, a, b ∈ R, ε ≥ 0.

will be used frequently andC will denote a generic positive constant whose
dependence can be easily established from the proofs.

3. Semidiscrete schemes

Let Ah andBh be defined for(x, t) ∈ �h × [0, T ] as

AhV = −1

2

2∑
l,q=1

[∇l
(
alq(x)∇̄qV

)+ ∇̄l
(
alq (x)∇qV

)]
,
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and

BhV =− 1

2

2∑
l,q=1

[∇l
(
blq (x, t)∇̄qV

)+ ∇̄l
(
blq(x, t)∇qV

)]
+ 1

2

2∑
l=1

bl (x, t)
[∇l V + ∇̄l V

]+ S(b(x, t))V.

Now, the semidiscrete approximationuh of (1.1) is determined as a solution
of

uh,t + Ahuh,t + Bhuh = S f, (x, t) ∈ �h × [0, T ],(3.1a)

uh(x, 0) = u0(x), x ∈ �h,(3.1b)

uh(x, t) = 0, (x, t) ∈ ∂�h × (0, T ].(3.1c)

Let H1
0,h = {v ∈ H1

h : v = 0 on∂�h}. From the assumptions onA(x) and
B(x, t), the following lemma can be easily verified using summation by parts.

LEMMA 3.1. Forv,w ∈ H1
0,h, there exist constantsC such that

(1) the discrete Poincaré inequality :‖v‖2 ≤ C
∑2

l=1 ‖∇lv‖2,
(2) 〈Ahv, v〉 ≥ C‖v‖21,
(3) 〈Bhv,w〉 ≤ C‖v‖1‖w‖1.

For subsequent error estimates, we derive stability results for the modified
semidiscrete version of (3.1); namely,

(3.2) uh,t + Ahuh,t + Bhuh = S f +
2∑

l=1

∇̄l F,

where F is a function defined on� × [0, T ] which vanishes on∂�h and
F(0) = 0.

The stability result for (3.2) is stated in the following theorem.

THEOREM3.1. Let uh be a solution of(3.2). Then there exists a constant
C such that

‖uh(t)‖1 ≤ C{‖uh(0)‖1+ (
∫ t

0
‖S f(s)‖2ds)1/2+ (

∫ t

0
‖F(s)‖2ds)1/2}.
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Proof. Forming the inner product between (3.2) anduh, we obtain
d

dt
‖uh‖21 ≤ C{‖uh‖21+ ‖S f‖‖uh‖ + ‖F‖‖uh‖1}.

Integrating with respect tot , we find that

‖uh(t)‖21 ≤C{‖uh(0)‖21+
∫ t

0
‖uh(s)‖21ds

+
∫ t

0
‖S f(s)‖2ds+

∫ t

0
‖F(s)‖2ds}.

An application of Gronwall’s Lemma now completes the proof. �

Using the above stability result, we shall derive the following error esti-
mate.

THEOREM3.2. Letu anduh be the solution of(1.1) and(3.1), respectively.
Let u, ut ∈ Hα(�), 1 ≤ α ≤ 3, and for t ∈ (0, T ]. Then there exists a
constantC such that for the errore(t) = u(t)− uh(t) the following estimate

‖e(t)‖1 ≤ C(u, T)hα−1

holds.

Proof. From (1.1) and (3.1), we obtain

et + Ahet + Bhe= (ut − Sut )+ (Ahut − S Aut )+ (Bhu− SBu)

= I1(t)+ I2(t)+ I3(t).

Following Jovanovíc et al.[9], I3(t) is rewritten as

I3(t) =
2∑

l,q=1

∇̄l ξlq (t)+
2∑

l=1

ξl (t)+ ξ(t),

whereξlq = ξ (1)lq + ξ (2)lq + ξ (3)lq + ξ (4)lq with

ξ
(1)
lq = S+l S2

3−l (blq
∂u

∂xq
)− (S+l S2

3−l blq )(S
+
l S2

3−l

∂u

∂xq
),

ξ
(2)
lq = [S+l S2

3−l blq − 1

2
(blq + b+l

lq )](S
+
l S2

3−l

∂u

∂xq
),

ξ
(3)
lq =

1

2
(blq + b+l

lq )[S
+
l S2

3−l

∂u

∂xq
− 1

2
(∇q u+ ∇̄q u+l )],

ξ
(4)
lq = −

1

4
(blq − b+l

lq )(∇q u− ∇̄q u+l ),
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and
ξ = (Sb)u− S(bu).

Further, we decomposeξl asξl (t) = ξ (1)l (t)+ ξ (2)l (t)+ ξ (3)l (t) with

ξ
(1)
l = bl (t)[

1

2
(∇l u+ ∇̄l u)− S

∂u

∂xl
],

ξ
(2)
l = bl (t) S

∂u

∂xl
− S(bl (t))S

∂u

∂xl
,

ξ
(3)
l = S(bl (t))S

∂u

∂xl
− S(bl (t)

∂u

∂xl
),

Similarly, we also rewriteI2 as

I2(t) =
2∑

l,q=1

∇̄lηlq (t),

whereηlq = η(1)lq + η(2)lq + η(4)lq + η(4)lq . Hereηlq are the same asξlq except that
blq are replaced byalq .

Altogether, we have

(3.3) et + Ahet + Bhe= I1(t)+
2∑

l=1

ξl + ξ +
2∑

l,q=1

∇̄l (ηlq + ξlq ).

SettingF(t) = ∑2
l,q=1(ηlq (t) + ξlq (t)) and the first term on the right hand

side of the above equation asS f, we apply Theorem 3.1 to obtain

‖e(t)‖1 ≤ C[‖e(0)‖1+ (
∫ t

0
‖I1(s)‖2ds)1/2

+ (
∫ t

0
‖ξ(s)‖2ds)1/2+

2∑
l=1

(

∫ t

0
‖ξl (s)‖2ds)1/2

+
2∑

l,q=1

{(
∫ t

0
‖ηlq(s)‖2ds)1/2+ (

∫ t

0
‖ξlq (s)‖2 ds)1/2}].
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SinceI1(t) is a bounded linear functional onHβ(D) with its kernel con-
tained inP1(D), whereD = {(s1, s2) ∈ R2 : −1 ≤ sl ≤ 1, l = 1, 2}. The
Bramble-Hilbert Lemma, therefore, yields

(3.4) ‖I1(t)‖ ≤ Chβ |ut |H β(�), 1 ≤ β ≤ 2.

To estimateξ , we first note that

ξ = (Sb)(ut − Sut )+ (Sb)(Sut )− S(but ).

Again a use of Lemma 2.1 yields, for 1≤ β ≤ 2,

(3.5)
∫ t

0
‖ξ(s)‖ ds≤ C

(‖b‖L∞(Wβ−1,∞)
)

hβ
∫ t

0
‖ut(s)‖βds.

As in Jovanovíc et al. [9], we obtain an estimate forξlq of the form

(3.6)
2∑

l,q=1

(

∫ t

0
‖ξlq (s)‖2 ds)1/2 ≤ Chα−1(

∫ t

0
‖ut(s)‖2αds)1/2,

whereC depends on maxl,q ‖blq‖L∞(Wα−1,∞) and 1≤ α ≤ 3.
Following the estimates ofξlq , the estimation ofηlq can be easily obtained

with similar bounds. Further, the estimates ofξ
(i )
l are similar to those ofξ (i )lq

for i = 1, 2, 3. This completes the rest of the proof. �

REMARK. Since‖e‖ ≤ ‖e‖1, we obtain from the previous Theorem

‖e(t)‖ ≤ C(u, T)hα−1, 1≤ α ≤ 3.

In order to achieve an orderO(h2) of convergence, it is to be noted that
we needu, ut ∈ L2(H3(�)). In contrast to papers [4], in which Taylor’s
expansion is used to derive the convergence, the above result is a substantial
improvement. However, using a discrete auxiliary projection, we shall, in the
next section, prove a similar result whenu ∈ L∞(H2) andut ∈ L2(H2).
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4. Error estimates with reduced regularity

In this section, we shall derive the error estimate whose order of conver-
gence is compatible with the spatial regularity on the generalized solutionu
.

Let us definẽu as the solution of the following auxiliary discrete problem

Ahũt + Bhũ = S( f − ut ),(4.1a)

ũ(0) = u0(x).(4.1b)

Since Ah is positive definite, there exists a unique solutionũ of (4.1). Let
ρ = u− ũ. We can therefore rewrite (4.1) as

(4.2) Ahρt + Bhρ = (Ahut − S Aut )+ (Bhu− SBu) = I2 + I3.

LEMMA 4.1. Let u, ut ∈ Hα(�), with 1 ≤ α ≤ 2 and t ∈ [0, T ]. Then
there exists a constantC such that

‖ρ(t)‖1, ‖ρt(t)‖1 ≤ C(u, T)hα−1.

Proof. For the estimation of‖ρ‖1, it follows from the discrete inner prod-
uct of (4.2) withρ that

d

dt
‖ρ‖21 ≤ C{‖ρ‖21+ |〈I2 + I3, ρ〉|}.

On integrating with respect to time and then following (3.5)–(3.6), we obtain
using Gronwall’s Lemma

‖ρ(t)‖1 ≤ C(u, T)hα−1, 1≤ α ≤ 2.

Similarly, forming an inner product between (4.2) andρt , we have

‖ρt (t)‖1 ≤ Chα−1, 1 ≤ α ≤ 2. �

For error estimate inL2-norm, below we shall discuss the discrete Aubin-
Nitsche duality argument, see, Paniet al. [12]-[13].
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LEMMA 4.2. Suppose thatu, ut ∈ Hα(�), for 1 ≤ α ≤ 2 and for t ∈
[0, T ]. Then there is a constantC such that

‖ρ(t)‖, ‖ρt (t)‖ ≤ Chα.

Proof. Let8 be a solution of the following second order problem

Ah8 = ρt , x ∈ �h,(4.3)

8 = 0, x ∈ ∂�h.

Because of the coercivity ofAh, 8 is the unique solution of (4.3) and it
satisfies a discrete regularity

(4.4) ‖8‖2 ≤ C‖ρt‖.
Forming an inner product between (4.3) andρt , we obtain

〈ρt , ρt 〉 = 〈Ahρt , 8〉 = 〈I2 + I3 − Bhρ,8〉.
The estimates for‖ρt (t)‖ given below can be proved easily using the Steklov
mollifier and the Bramble-Hilbert Lemma 2.1. For a complete proof, we refer
Paniet al. [12]–[13].

‖ρt (t)‖2 ≤ C(hα + ‖ρ(t)‖)‖8‖2,
and hence, using discrete regularity, we obtain

(4.5) ‖ρt(t)‖ ≤ C(hα + ‖ρ(t)‖).
Note that

‖ρ(t)‖2 ≤ C{‖ρ(0)‖2+
∫ t

0
‖ρt (s)‖2ds}

≤ C{‖ρ(0)‖2+ h2α +
∫ t

0
‖ρ(s)‖2ds}.

It now follows from Gronwall’s Lemma that

(4.6) ‖ρ(t)‖ ≤ C{‖ρ(0)‖ + hα} ≤ Chα.

Finally, we obtain theL2-error estimate for‖ρt‖ from (4.5)–(4.6). �

Let θ(t) = uh(t)− ũ(t), then the errore(t) = u(t)−uh(t) = ρ(t)− θ(t).
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THEOREM 4.1. Let u anduh be the solutions of(1.1) and(3.1), respec-
tively. Further, letu ∈ L∞(Hα(�)) andut ∈ L2(Hα(�)), 1 ≤ α ≤ 2. Then
there exists a constantC such that

‖e(t)‖ ≤ C(u, T)hα.

Proof. Since the estimate forρ(t) is given in Lemmas 4.1 and 4.2, it is
enough to estimateθ(t) . From (1.1), (3.1) and (4.1), it follows that

(4.7) θt + Ahθt + Bhθ = Sut − ũt = −I1(t)+ ρt .

It follows from (3.4) and Lemmas 4.1–4.2 that

‖θ(t)‖1 ≤ C{‖θ(0)‖1+ hα‖ut‖L2(H α)}, 1≤ α ≤ 2.

Because of the choice ofuh(0), we haveθ(0) = 0. For L2-error estimate,
form the inner product between (4.7) andθ and obtain

〈θt , θ〉 + 〈Ahθt , θ〉 = 〈−I1 + ρt , θ〉 − 〈Bhθ, θ〉.

SinceAh is coercive, we obtain

d

dt
‖θ(t)‖2 ≤ C{‖I1‖‖θ‖ + ‖ρt‖‖θ‖ + ‖θ‖21}.

It follows from the integration with respect tot and Gronwall’s Lemma that

‖θ(t)‖2 ≤ C(T)
∫ t

0
(‖I1(s)‖2+ ‖ρt(s)‖2)ds.

Hence, we obtain the required result from Lemma 4.2. �

5. Fully discrete schemes

In this section, we shall consider the stability and error analysis for the
fully difference schemes which are based on the Euler and Crank-Nicolson
methods. Letk = T

N denote the size of the time discretization for a given
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positive integerN andtn = nk, for n = 0, 1, 2, ..., N. For any functionφ,
denoteφn = φ(tn) and

∂̄tφ
n = φn − φn−1

k
.

The backward Euler method. The backward Euler scheme is now defined
by

∂̄tU
n + Ah

(
∂̄tU

n
)+ BhUn = S fn, x ∈ �h,(5.1a)

Un = 0, x ∈ ∂�h,(5.1b)

U0 = u0(x), x ∈ �h.(5.1c)

Below, we shall prove a stability result in discreteH1- norm not for (5.1 a)
but for a modified equation

(5.2) ∂̄tU
n + Ah

(
∂̄tU

n
)+ BhUn = S fn +

2∑
l=1

∇̄l F
n.

THEOREM 5.1. Let Un be a solution of(5.1). Then there are positive
constantsC andk0 such that for0< k ≤ k0

‖U J‖1 ≤ C{‖U0‖1+ (k
J∑

n=1

‖S fn‖2) 1
2 } + (k

n∑
m=1

‖Fn‖2) 1
2 },

J = 1, 2, · · · , N.

Proof. Form a discreteL2-inner product between (5.2) andUn and then
use Lemma 3.1 with summation by parts for the last term to have

∂̄t‖Un‖2+ ∂̄t‖∇Un‖2 ≤ C{‖S fn‖2+ ‖Fn‖2+ ‖Un‖21}.
Summing fromn = 1 to J, we obtain

(1− Ck)‖U J‖21 ≤ C{‖U0‖21+ k
J∑

n=1

(‖S fn‖2+ ‖Fn‖2)+ k
J−1∑
n=1

‖U1‖21}.

Choosek0 in such a way that(1− Ck) > 0 for 0< k ≤ k0. An application
discrete Gronwall’s Lemma now completes the proof. �
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LEMMA 5.1. Let u, ut , utt ∈ L2(�) for t ∈ [0, T ]. Then there exists a
constantC such that

‖ũtt (t)‖1 ≤ C, t ∈ [0, T ].

Proof. Forming an inner product between (4.1) andũ, we obtain

d

dt
‖ũ‖1 ≤ C{‖S( f − ut )‖‖ũ‖ + ‖ũ‖1}

≤ C{‖S( f − ut )‖2+ ‖ũ‖21}.

Integrating with respect tot and applying Gronwall’s inequality, we have

‖ũ‖21 ≤ C{‖ũ(0)‖21+
∫ t

0
‖S( f − ut)‖2ds}.

For the estimate of̃ut , we obtain

(5.3) ‖ũt‖21 ≤ C{‖S( f − ut)‖2+ ‖ũ‖21}

by taking innner product with̃ut and using (2.3).
Differentiate (4.1) with respect tot and take an inner product with̃utt , then

as in (5.3) we obtain

‖ũtt‖21 ≤ C{‖S( ft − utt )‖2+ ‖ũ‖21+ ‖ũt‖21}.

This completes the proof. �

It is here that we exploit the full potential of the Steklov mollification and
the discrete projection. Let2n = Un − ũn andEn = un −Un = ρn −2n .

THEOREM 5.2. Let un andUn be the solution of(1.1) and(5.1), respec-
tively. Further, letu, ut ∈ L∞(Hα(�)) andutt ∈ L∞(L2(�)) for 1 ≤ α ≤ 2.
Then there are positiveconstantsC andk0 such that the errorEJ = u(tJ)−U J

‖EJ‖ ≤ C(u, T)(hα + k), J = 1, 2, · · · , N

holds for0< k ≤ k0.
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Proof. Since the estimate forρ J can be found out from Lemma 4.1, it is
sufficient to obtain an estimate for2J. From (4.1) and (5.1), it follows that

∂̄t2
n + Ah

(
∂̄t2

n
)+ Bh2

n

(5.4)

= (∂̄tu
n − ∂̄t ũ

n)+ (un
t − ∂̄tu

n)+ (Sun
t − un

t )+ Ah(ũ
n
t − ∂̄t ũ

n)

= ∂̄tρ(tn)+ (ũn
t − ∂̄t ũ

n)− I n
1 + Ah(ũ

n
t − ∂̄t ũ

n).

Apply Theorem 5.1 to (5.4) to obtain

‖2J‖21 ≤ C{‖20‖1+ k
J∑

n=1

(‖∂̄tρ(tn)‖2+ ‖ũn
t − ∂̄t ũ

n‖2

+ ‖I n
1 ‖2+ ‖ũn

t − ∂̄t ũ
J‖21)}.

Note that

k
J∑

n=1

‖∂̄tρ(tn)‖ ≤
J∑

n=1

∫ tn

tn−1

‖ρt‖ ds≤ Chα‖ut‖L1(H α), 1 ≤ α ≤ 2.

Further, using Lemma 5.1, we have

k
J∑

n=1

‖I n
1 ‖ ≤ Chα‖ut‖L∞(H α),

and

k
J∑

n=1

‖ũn
t − ∂̄t ũ

n‖1 ≤ Ck
J∑

n=1

‖kũtt‖1 ≤ Ck‖ũtt‖L∞(H 1).

This completes the rest of the proof. �

The Crank-Nicolson scheme

For a second order accurate in time, we consider the Crank-Nicolson
scheme for (1.1). LetUn− 1

2 = (Un +Un−1)/2 and f n− 1
2 = f (tn− 1

2
). Define

the fully discrete scheme as
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∂̄tU
n + Ah∂̄tU

n + Bh(tn− 1
2
)Un− 1

2 = S fn− 1
2 , x ∈ �h,(5.5a)

U0 = u0(x), x ∈ �h,(5.5b)

Un = 0, x ∈ ∂�h.(5.5c)

Below, we shall prove a stability result in discreteH1- norm not for (5.5a)
but for a modified equation

∂̄tU
n + Ah

(
∂̄tU

n
)+ BhUn− 1

2

(5.6)

= S fn− 1
2 +

2∑
l=1

∇̄l F
n− 1

2 , (x, tn) ∈ �h × (0, T ],

THEOREM 5.3. Let Un be a solution of(5.5). Then there are positive
constantsC andk0 such that for0< k ≤ k0

‖U J‖1 ≤ C{‖U0‖1+ (k
J∑

n=1

‖S fn− 1
2‖2) 1

2 + (k
J∑

n=1

‖Fn− 1
2‖2) 1

2 }.

Proof. Forming the inner product between (5.6) andUn− 1
2 , it follows that

∂̄t‖Un‖2+ ∂̄t‖Un‖21 ≤ C{‖Sfn− 1
2‖2+ ‖Fn− 1

2‖2+ ‖Un− 1
2‖21}.

Summing fromn = 1 to J, we obtain

(1− Ck)‖U J‖21 ≤C{‖U0‖21+ k
J∑

n=1

(‖S fn− 1
2‖2+ ‖Fn− 1

2‖2)

+ k
J−1∑
m=0

‖Un‖21}.

Choosingk0 appropriately so that(1− Ck) > 0 for 0< k ≤ k0, we obtain
the desired result using discrete Gronwall’s Lemma. �

Below, we shall present an error analysis using discrete projection. Letun

andUn be the solutions of (1.1) and (5.5), respectively. LetEn = un −Un.
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THEOREM 5.4. Let u, ut ∈ L∞(Hα(�)) andutt ∈ L∞(L2(�)) for 1 ≤
α ≤ 2. Then there are positive constantsC and k0 such that the error
EJ = u(tJ)−U J

‖EJ‖ ≤ C{hα + k2}, J = 1, 2, · · · , N.

Proof. SinceEJ = ρ J − 2J and we know the estimate forρ J , we have
only to estimate for2J = U J − ũJ due to the triangle inequality. From (4.1)
and (5.5), it follows that

∂̄t2
n + Ah∂̄t2

m + Bh(tm− 1
2
)2m− 1

2 = (∂̄t u
n − ∂̄t ũ

n)

(5.6)

+ (um− 1
2

t − ∂̄tu
n)+ (Su

m− 1
2

t − u
m− 1

2
t )+ Ah(ũ

m− 1
2

t − ∂̄t ũ
m)

= ∂̄tρ(tm)+ (um− 1
2

t − ∂̄t u
n)− I n

1 + Ah(ũ
m− 1

2
t − ∂̄t ũ

m).

It follows that as in Theorem 5.3

‖2J‖21 ≤C{‖20‖21+ k
J∑

m=1

[‖∂̄tρ(tm)‖2

+ ‖um− 1
2

t − ∂̄tu
n‖2+ ‖I n

1 ‖2+ ‖ũ
m− 1

2
t − ∂̄t ũ

m‖21}.

It completes the rest of proof. �
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