
Learning to Avoid Moving Obstacles Optimallyfor Mobile Robots Using a Genetic-FuzzyApproachKalyanmoy Deb, Dilip Kumar Pratihar, and Amitabha GhoshKanpur Genetic Algorithms Laboratory (KanGAL)Department of Mechanical EngineeringIndian Institute of Technology, KanpurKanpur, Pin 208 016, IndiaE-mail: fdeb, dkpra, amitabhag@iitk.ernet.inAbstract. The task in a motion planning problem for a mobile robot isto �nd an obstacle-free path between a starting and a destination point,which will require the minimum possible time of travel. Although thereexists many studies involving classical methods and using fuzzy logic con-trollers (FLCs), they are either computationally extensive or they do notattempt to �nd optimal controllers. The proposed genetic-fuzzy approachoptimizes the travel time of a robot o�-line by simultanously �nding anoptimal fuzzy rule base and optimal membership function distributionsdescribing various values of condition and action variables of fuzzy rules.A mobile robot can then use this optimal FLC on-line to navigate inthe presence of moving obstacles. The results of this study on a numberof problems show that the proposed genetic-fuzzy approach can producee�cient rules and membership functions of an FLC for controlling themotion of a robot among moving obstacles.1 IntroductionBuilding autonomous robots, which can plan its own motion during navigationthrough two-dimensional or three-dimensional terrains, has been one of the ma-jor areas of research in robotics [11,6, 8]. Latombe [11] provides an extensivesurvey of di�erent classical approaches of motion planning, particularly in thepresence of stationary obstacles. Both graphical as well as analytical methodshave been developed by several investigators to solve the mobile robot navi-gation problems among moving obstacles, known as dynamic motion planningproblems. These methods include path velocity decomposition [6, 8], accessibilitygraph technique [7], incremental planning [12], probabilistic approach [17], poten-tial �eld approach [15, 16, 1], and others. Moreover, di�erent learning techniqueshave also been used by researchers to improve the performance of conventionalcontrollers [4, 5].Each of these methods has its own inherent limitations and is capable ofsolving only a particular type of problems. Canny and Reif [3] studied the com-putational complexity of some of these methods and showed that motion plan-ning for a point robot in a two-dimensional plane with a bounded velocity is an
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NP-hard problem, even when the moving obstacles are convex polygons movingat a constant linear velocity without rotation. Potential �eld method [15, 16, 1],in which a robot moves under the action of combined attractive and repulsivepotentials created arti�cially, is the most widely used technique for solving dy-namic motion planning problems. Since at every time step a new potential �eldmust be created to �nd an obstacle-free direction, the method is local in natureand often has the chance of converging to a sub-optimal solution. Moreover, itis intuitive that many computation of such local travel directions using arti�cialpotential �eld method may be computationally expensive.To reduce the computational complexity, some heuristics have also been de-veloped by several researchers. Fuzzy logic controllers (FLCs) have been usedby several investigators in the recent past [2, 18, 14] to solve the dynamic mo-tion planning problem. However, in all such studies, no e�ort is spent to �ndoptimal FLCs (instead an FLC is designed based on a particular user-de�nedmembership function and rules). With the availability of a versatile yet e�cientoptimization method (GA), optimal FLCs for dynamic motion planning prob-lems can be developed, like they have been used in other applications of FLCs,such as the cart-pole balancing [10], cart centering [19], and others [9, 13].In the present study, we concentrate on dynamic motion planning (DMP)problem, where the objective is to �nd an obstacle-free path between a startingpoint and a destination point, requiring the minimum possible time of travel.Since the DMP problem is unrealistic to solve on-line for every new scenarioa robot faces, we convert the problem into a similar yet an approximate o�-line optimization problem. The optimiation problem involves �nding an optimalfuzzy rule base that the robot should use for navigation, when left in a numberof author-de�ned scenarios of moving obstacles. Once the optimal rule base isobtained o�-line, the robot can then use it on-line to navigate in other scenariosof moving obstacles.In the remainder of this paper, we describe the genetic-fuzzy approach bydrawing a simile of the motion planning problem with a natural learning process.The proposed approach incorporates some practical considerations, which, alongwith the use of a fuzzy logic controller, makes the overall approach easier tobe used in practice. The e�cacy of the proposed approach is demonstrated bysolving a number of motion planning problems.2 Proposed Genetic-Fuzzy ApproachWe describe the genetic-fuzzy approach by drawing a connection between themotion planning problem with a natural learning process. The purpose of theDMP problem of a robot is to �nd an obstacle-free path which takes a robotfrom a point A to a point B with minimum time. There are essentially two partsof the problem:1. Learn to �nd any obstacle-free path from point A to B, and2. Learn to choose that obstacle-free path which takes the robot in a minimumpossible time.



Both these problems are somewhat similar to the learning phases a child wouldgo through while solving a similar obstacle-avoidance problem. If a child is keptin a similar (albeit hypothetical) situation (that is, a child has to go from onecorner of a room to another by avoiding a few moving objects), the child learnsto avoid an incoming obstacle by taking detour from its path. It is interestingthat while taking the detour, it never calculates the precise angle of deviationform its path. This process of avoiding an object can be thought as if the childis using a rule of the following sort:If an object is very near and is approaching, then turn right to the original path.Because of the imprecise de�nition of the deviation in this problem, it seems nat-ural to use a fuzzy logic technique in our study, instead of an exact representationof the deviation angle.The second task of �nding an optimal obstacle-free path arises from a simileof solving the same problem by an experienced versus an inexperienced child. Aninexperienced child may take avoidance of each obstacle too seriously and deviateby a large angle each time it faces an obstacle. This way, this child may lead awayfrom the target and take a long winding distance to reach the target. Whereas,an experienced child may deviate barely from each obstacle, thereby taking thequickest route to the target point. If we think about how the experienced childhas learned this trick, the answer is through experience of solving many suchsimilar problems in the past. Previous e�orts helped the child �nd a set of goodrules to do the task e�ciently. This is precisely the task of an optimizer whichneeds to discover an optimal set of rules needed to avoid obstacles and to reachthe target point in a minimum possible time. This is where the GA comes as anatural choice.Thus, the use of fuzzy logic technique helps in quickly determining impreciseyet obstacle-free paths and the use of a GA helps in learning an optimal set ofrules that a robot should use while navigating in presence of moving obstacles.This process is illustrated in Figure 1.
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obstacle-free path for a given input of parameters depicting the state of movingobstacles and the state of the robot.2.1 Representation of a SolutionA solution to the DMP problem is represented by a set of rules which a robotwill use to navigate from point A to point B (Figure 2). Each rule has threeconditions: distance, angle, and relative velocity. The distance is the distance ofthe nearest obstacle forward from the robot. Four fuzzy values of distance ischosen: very near (VN), near (N), far (F), and very far (VF). The angle is therelative angle between the path joining the robot and the target point and thepath to the nearest obstacle forward. The corresponding fuzzy values are left (L),ahead left (AL), ahead (A), ahead right (AR), and right (R). The relative velocityis the relative velocity vector of the nearest obstacle forward with respect tothe robot. In our approach, we do not use this variable explicitly, instead followa practical incremental procedure. Since, a robot can sense the position andvelocity of each obstacle at any instant of time, the critical obstacle ahead of therobot can always be identi�ed. In such a case (Figure 2), although an obstacle O1is nearer compared to another obstacle O2, the relative velocity v1 of O1 directsaway from robot's path towards the target point B and the relative velocity v2of O2 directs towards the robot (Position P). Thus, the obstacle O2 is assumedto be the critical obstacle forward.The action variable is deviation of the robot from its path towards the target(Figure 2). This variable is considered to have �ve fuzzy values: L, AL, A, AR, andR. Triangularmembership functions are considered for each membership function(Figure 3). Using this rule base, a typical rule will look like the following:If distance is VN and angle is A, then deviation is AL.With four choices for distance and �ve choices for angle, there could be a totalof 4� 5 or 20 valid rules possible. For each combination of condition variables,a suitable action value (author-de�ned) is associated, as shown in Table 1.Table 1. All possible rules are showndistance angleL AL A AR RVN A AR AL AL AN A A AL A AF A A AR A AVF A A A A A 1.0
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a 0. Thus, a complete solution will have a 20-bit length string of 1 and 0. Thevalue of i-th position along the string marks the presence or absence of the i-thrule in the rule base.2.2 Evaluating a SolutionA rule base (represented by a 20-bit binary string) is evaluated by simulating arobot's performance on a number of scenarios (say S) and by keeping track ofthe travel time T in each scenario. Since a robot may not reach the destinationusing an arbitrary rule base, the robot is allowed a maximum travel time. In thiscase, a penalty proportional to a time needed to cover the Euclidean distancefrom the �nal position to the target point is added to the allowed maximumtravel time. An average of travel times in all S scenarios is used as the �tness ofthe solution.The robot's complete path is a collection of a number of small straight linepaths traveled for a constant time �T in each step. To make the matter aspractical as possible, we have assumed that the robot starts from zero velocityand accelerates during the �rst quarter of the time �T and then maintains aconstant velocity for the next one-half of �T and decelerates to zero velocityduring the remaining quarter of the total time �T . For constant accelerationand deceleration rates (say a), the total distance covered during the small timestep �T is 3a�T 2=16. At the end of the constant velocity travel, the robotsenses the position and velocity of each obstacle and decides whether to continuemoving in the same direction or to deviate from its path. This is achieved by�rst determining the predicted position of each obstacle, as follows:Ppredicted = Ppresent + (Ppresent � Pprevious): (1)The predicted position is the linearly extrapolated position of an obstacle from itscurrent position Ppresent along the path formed by joining the previous Ppreviousand present position. Thereafter, the nearest obstacle forward is determinedbased on Ppredicted values of all obstacles and fuzzy logic technique is applied to�nd the obstacle-free direction using the rule base dictated by the corresponding20-bit string. If the robot has to change its path, its velocity is reduced to zero atthe end of the time step; otherwise the robot does not decelerate and continuesin the same direction with the same velocity a�T=4. It is interesting to notethat when the latter case happens (the robot does not change its course) intwo consecutive time steps, there is a saving of �T=4 second in travel timeper such occasion. Overall time of travel (T ) is then calculated by summingall intermediate time steps needed for the robot to reach its destination. Thisapproach of robot navigation can be easily incorporated in a real-world scenario1.1 In all the simulations here, we have chosen �T = 4 sec and a = 1 m/s2. These valuesmake the velocity of the robot in the middle portion of each time step equal to 1m/sec.



3 ResultsWe consider four di�erent approaches:Approach 1: Author-de�ned fuzzy-logic controller. A �xed set of 20 rules(Table 1) and author-de�ned membership functions (Figure 3) are used. Nooptimization method is used to �nd optimal rule base or to �nd the optimalmembership function distributions.Approach 2: Optimizing membership functions alone. Only the member-ship function distributions of condition and action variables are optimized.All 20 rules (Table 1) are used. The bases b1 and b2 (refer Figure 3) arecoded in 10 bit substrings each. The parameters b1 and b2 are decoded inthe ranges (1.0, 4.0) cm and (25.0, 60.0) degrees, respectively. Symmetry ismaintained in constructing other membership function distributions. In allsimulations here, the membership function distribution for deviation is keptthe same as that in angle.Approach 3: Optimizing rule base alone. Only the rule base is optimizedin this approach. Author-de�ned membership functions (Figure 3) are used.Approach 4: Optimizing membership functions and rule base simul-taneously. Membership functions and the rule base are optimized. Here,a GA string is a 40-bit string with �rst 20 bits denoting the presence orabsence of 20 possible rules, next 10 bits are used to represent the base b1and the �nal 10 bits are used to represent the base b2.In all runs of the proposed approach, we use binary tournament selection(with replacement), the single-point crossover operator with a probability pc of0.9 and the bit-wise mutation operator with a probability pm of 0.02. A maximumnumber of generations equal to 100 is used. In every case, a population size of60 is used. In all cases, S = 10 di�erent author-de�ned scenarios are used toevaluate a solution.We now apply all four approaches to eight-obstacle problems (in a grid of25 � 20 m2). The optimized travel distance and time for all approaches arepresented in Table 2. The �rst three rows in the table show the performance ofTable 2. Travel distance D (in meter) and time T (in sec) obtained by four approachesApproach 1 Approach 2 Approach 3 Approach 4Scenario D T D T D T D T1 27.203 28.901 26.077 27.769 26.154 27.872 26.154 27.8722 26.957 28.943 25.966 27.622 26.026 26.546 26.026 26.5463 29.848 36.798 28.623 35.164 26.660 34.547 27.139 35.0004 33.465 43.365 26.396 27.907 26.243 27.512 26.243 27.5125 32.836 41.781 27.129 33.000 26.543 32.390 27.041 33.0006 33.464 43.363 28.001 31.335 27.164 31.000 27.164 31.000all approaches on three scenarios that were used during the optimization process



and the last three rows show their performance on new test (unseen) scenarios.The table shows that in all cases, Approaches 2, 3 and 4 have performed betterthan Approach 1 (no optimization).Paths obtained using all four approaches for scenario 4 (unseen) are shownin Figure 4. It is clear that the paths obtained by Approaches 3 and 4 (travel
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Table 3. Optimized rule base (ninerules) obtained using Approach 3.distance angleL AL A AR RVNN A AF A AVF A A A A A Table 4. Optimized rule base (�ve rules)obtained using Approach 4.distance angleL AL A AR RVN ARN A AF AVF A
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0.0Fig. 6. The optimized membership func-tion obtained using Approach 4.�xed and the GA �nds a solution which elongates the range of each distancevalue so that only about one rule is enough to classify each distance value.It is also interesting to note that since all 20 rules are used in Approach 2 andsince moving ahead (towards the target) is always optimal, GAs have adjustedthe membership function for distance in way so as to have most cases appear asVF. Recall from Table 1 that for all rules with VF distance, action variable isalways ahead.Both Tables 3 and 4 show that there are more rules for L and AL anglesthan for R and AR angles. This is merely because only 10 scenarios are consid-ered during the optimization process and it could have been that in most casesthe critical obstacles come in the left of the robot, thereby causing more rulesspecifying L or AL to appear in the optimized rule base. By considering morescenarios during the optimization process, such bias can be avoided and equalnumber of rules specifying left and right considerations can be obtained.From Table 2, it can be observed that Approach 3 (optimization of rule baseonly) has resulted in a much quicker path than Approach 2 (optimization ofmembership function only). This is because �nding a good set of rules is moreimportant for the robot than �nding a good set of membership functions. Thus,it may be argued that the optimization of rule base is a rough-tuning processand the optimization of the membership function distributions is a �ne-tuningprocess. In most scenarios, the optimized solutions are already obtained during



the optimization of rule-base only and optimization of membership function hasa marginal e�ect to improve the solution any further.Although the performance of Approaches 3 and 4 are more-or-less similar,we would like to highlight that Approach 4 is more 
exible and a more practicalapproach. Since the membership functions used in Approach 3 are well-chosenby the authors, the performance of Approach 3 is good. However, for morecomplicated problems, we recommend using Approach 4, since it optimizes boththe rule base and membership functions needed in a problem.4 ConclusionsIn this study, learning capability of a genetic-fuzzy approach has been demon-strated by �nding optimal/near-optimal FLCs for solving motion planning prob-lem of a mobile robot. In the genetic-fuzzy approach, obstacle-free paths havebeen found locally by using fuzzy logic technique, where optimal membershipfunctions for condition and action variables and an optimal rule base have beenfound using genetic algorithms. Based on this basic approach, three di�erentapproaches have been developed and compared with an author-de�ned (non-optimized) fuzzy-logic controller (FLC).The genetic-fuzzy approach developed here is also practical to be used in areal-world situation. One of the major advantages of the proposed method isthat the optimization is performed o�-line and an optimal rule base is obtainedbefore-hand. Robots can then use this optimal rule base to navigate in presenceof unseen scenarios in an optimal or a near-optimal manner. This paper showshow such a rule base can be achieved.This study can be extended in a number of ways. Since the optimized traveltime depends on the chosen incremental time step �T , this parameter can alsobe kept as an action variable. This way, a robot can make a longer leap in aparticular obstacle-free direction or make shorter leap if there are a crowd ofobstacles in the course of path. In this connection, controlling speed of the robotto allow passing of moving obsctacles may also be considered.In this study, we have used an author-de�ned set of 20 rules (Table 1), all ofwhich may not have the optimal combination of condition and action variables.GAs can be used to eliminate this bias by using a di�erent representation scheme,as follows: 201500130 : : :4The above string has 20 positions (representing each combination of action andcondition variables) and each position can take one of six values: 0 for absenceof the rule, 1 for �rst option of action variables (say, L), 2 for the second option,and so on. This way every solution represented by a 20-position vector representsa valid rule base. Nevertheless, the results of this study show that the proposedGA-fuzzy approach is e�cient and a natural choice to the robot navigationproblem, which should get more attention in applications of robotics in thecoming years.
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