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Abstract. The task in a motion planning problem for a mobile robot is
to find an obstacle-free path between a starting and a destination point,
which will require the minimum possible time of travel. Although there
exists many studies involving classical methods and using fuzzy logic con-
trollers (FLCs), they are either computationally extensive or they do not
attempt to find optimal controllers. The proposed genetic-fuzzy approach
optimizes the travel time of a robot off-line by simultanously finding an
optimal fuzzy rule base and optimal membership function distributions
describing various values of condition and action variables of fuzzy rules.
A mobile robot can then use this optimal FLLC on-line to navigate in
the presence of moving obstacles. The results of this study on a number
of problems show that the proposed genetic-fuzzy approach can produce
efficient rules and membership functions of an FLC for controlling the
motion of a robot among moving obstacles.

1 Introduction

Building autonomous robots, which can plan its own motion during navigation
through two-dimensional or three-dimensional terrains, has been one of the ma-
jor areas of research in robotics [11,6,8]. Latombe [11] provides an extensive
survey of different classical approaches of motion planning, particularly in the
presence of stationary obstacles. Both graphical as well as analytical methods
have been developed by several investigators to solve the mobile robot navi-
gation problems among moving obstacles, known as dynamic motion planning
problems. These methods include path velocity decomposition [6, 8], accessibility
graph technique [7], incremental planning [12], probabilistic approach [17], poten-
tial field approach [15, 16, 1], and others. Moreover, different learning techniques
have also been used by researchers to improve the performance of conventional
controllers [4,5].

Each of these methods has its own inherent limitations and is capable of
solving only a particular type of problems. Canny and Reif [3] studied the com-
putational complexity of some of these methods and showed that motion plan-
ning for a point robot in a two-dimensional plane with a bounded velocity 1s an
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NP-hard problem, even when the moving obstacles are convex polygons moving
at a constant linear velocity without rotation. Potential field method [15, 16, 1],
in which a robot moves under the action of combined attractive and repulsive
potentials created artificially, is the most widely used technique for solving dy-
namic motion planning problems. Since at every time step a new potential field
must be created to find an obstacle-free direction, the method is local in nature
and often has the chance of converging to a sub-optimal solution. Moreover, it
is intuitive that many computation of such local travel directions using artificial
potential field method may be computationally expensive.

To reduce the computational complexity, some heuristics have also been de-
veloped by several researchers. Fuzzy logic controllers (FLCs) have been used
by several investigators in the recent past [2,18,14] to solve the dynamic mo-
tion planning problem. However, in all such studies, no effort is spent to find
optimal FLCs (instead an FLC is designed based on a particular user-defined
membership function and rules). With the availability of a versatile yet efficient
optimization method (GA), optimal FLCs for dynamic motion planning prob-
lems can be developed, like they have been used in other applications of FLCs,
such as the cart-pole balancing [10], cart centering [19], and others [9, 13].

In the present study, we concentrate on dynamic motion planning (DMP)
problem, where the objective is to find an obstacle-free path between a starting
point and a destination point, requiring the minimum possible time of travel.
Since the DMP problem is unrealistic to solve on-line for every new scenario
a robot faces, we convert the problem into a similar yet an approximate off-
line optimization problem. The optimiation problem involves finding an optimal
fuzzy rule base that the robot should use for navigation, when left in a number
of author-defined scenarios of moving obstacles. Once the optimal rule base is
obtained off-line, the robot can then use it on-line to navigate in other scenarios
of moving obstacles.

In the remainder of this paper, we describe the genetic-fuzzy approach by
drawing a simile of the motion planning problem with a natural learning process.
The proposed approach incorporates some practical considerations, which, along
with the use of a fuzzy logic controller, makes the overall approach easier to
be used in practice. The efficacy of the proposed approach is demonstrated by
solving a number of motion planning problems.

2 Proposed Genetic-Fuzzy Approach

We describe the genetic-fuzzy approach by drawing a connection between the
motion planning problem with a natural learning process. The purpose of the
DMP problem of a robot is to find an obstacle-free path which takes a robot
from a point A to a point B with minimum time. There are essentially two parts
of the problem:

1. Learn to find any obstacle-free path from point A to B, and
2. Learn to choose that obstacle-free path which takes the robot in a minimum
possible time.



Both these problems are somewhat similar to the learning phases a child would
go through while solving a similar obstacle-avoidance problem. If a child is kept
in a similar (albeit hypothetical) situation (that is, a child has to go from one
corner of a room to another by avoiding a few moving objects), the child learns
to avoid an incoming obstacle by taking detour from its path. It i1s interesting
that while taking the detour, it never calculates the precise angle of deviation
form its path. This process of avoiding an object can be thought as if the child
is using a rule of the following sort:

If an object is very near and is approaching, then turn right to the original path.

Because of the imprecise definition of the deviation in this problem, it seems nat-
ural to use a fuzzy logic technique in our study, instead of an exact representation
of the deviation angle.

The second task of finding an optimal obstacle-free path arises from a simile
of solving the same problem by an experienced versus an inexperienced child. An
inexperienced child may take avoidance of each obstacle too seriously and deviate
by alarge angle each time it faces an obstacle. This way, this child may lead away
from the target and take a long winding distance to reach the target. Whereas,
an experienced child may deviate barely from each obstacle, thereby taking the
quickest route to the target point. If we think about how the experienced child
has learned this trick, the answer is through experience of solving many such
similar problems in the past. Previous efforts helped the child find a set of good
rules to do the task efficiently. This i1s precisely the task of an optimizer which
needs to discover an optimal set of rules needed to avoid obstacles and to reach
the target point in a minimum possible time. This is where the GA comes as a
natural choice.

Thus, the use of fuzzy logic technique helps in quickly determining imprecise
vet obstacle-free paths and the use of a GA helps in learning an optimal set of
rules that a robot should use while navigating in presence of moving obstacles.
This process is illustrated in Figure 1.
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A GA is used to create the knowledge base (fuzzy rule base) of a robot off-
line. For on-line application, the robot uses its optimal fuzzy rule base to find an



obstacle-free path for a given input of parameters depicting the state of moving
obstacles and the state of the robot.

2.1 Representation of a Solution

A solution to the DMP problem is represented by a set of rules which a robot
will use to navigate from point A to point B (Figure 2). Each rule has three
conditions: distance, angle, and relative velocity. The distance is the distance of
the nearest obstacle forward from the robot. Four fuzzy values of distance is
chosen: very near (VN), near (N), far (F), and very far (VF). The angle is the
relative angle between the path joining the robot and the target point and the
path to the nearest obstacle forward. The corresponding fuzzy values are left (L),
ahead left (AL), ahead (A), ahead right (AR), and right (R). The relative velocity
1s the relative velocity vector of the nearest obstacle forward with respect to
the robot. In our approach, we do not use this variable explicitly, instead follow
a practical incremental procedure. Since, a robot can sense the position and
velocity of each obstacle at any instant of time, the critical obstacle ahead of the
robot can always be identified. In such a case (Figure 2), although an obstacle Oy
is nearer compared to another obstacle Os, the relative velocity vy of O; directs
away from robot’s path towards the target point B and the relative velocity v,
of Oy directs towards the robot (Position P). Thus, the obstacle O is assumed
to be the critical obstacle forward.

The action variable is deviation of the robot from its path towards the target
(Figure 2). This variable is considered to have five fuzzy values: L, AL, A, AR, and
R. Triangular membership functions are considered for each membership function
(Figure 3). Using this rule base, a typical rule will look like the following:

If distance is VN and angle is A, then deviation i1s AL.

With four choices for distance and five choices for angle, there could be a total
of 4 x 5 or 20 valid rules possible. For each combination of condition variables,
a suitable action value (author-defined) is associated, as shown in Table 1.
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Fig.3. Author-defined membership
functions

The task of GAs is to find which rules (out of 20) should be present in the
optimal rule base. We represent the presence of a rule by a 1 and the absence by



a 0. Thus, a complete solution will have a 20-bit length string of 1 and 0. The
value of i-th position along the string marks the presence or absence of the i-th
rule in the rule base.

2.2 Evaluating a Solution

A rule base (represented by a 20-bit binary string) is evaluated by simulating a
robot’s performance on a number of scenarios (say S) and by keeping track of
the travel time 7" in each scenario. Since a robot may not reach the destination
using an arbitrary rule base, the robot is allowed a maximum travel time. In this
case, a penalty proportional to a time needed to cover the Euclidean distance
from the final position to the target point 1s added to the allowed maximum
travel time. An average of travel times in all S scenarios is used as the fitness of
the solution.

The robot’s complete path is a collection of a number of small straight line
paths traveled for a constant time AT in each step. To make the matter as
practical as possible, we have assumed that the robot starts from zero velocity
and accelerates during the first quarter of the time AT and then maintains a
constant velocity for the next one-half of AT and decelerates to zero velocity
during the remaining quarter of the total time AT. For constant acceleration
and deceleration rates (say a), the total distance covered during the small time
step AT is 3aAT2/16. At the end of the constant velocity travel, the robot
senses the position and velocity of each obstacle and decides whether to continue
moving in the same direction or to deviate from its path. This is achieved by
first determining the predicted position of each obstacle, as follows:

Ppredicted = Ppresent + (Ppresent - Pprevious)~ (1)

The predicted position is the linearly extrapolated position of an obstacle from its
current position Ppresent along the path formed by joining the previous Pprevious
and present position. Thereafter, the nearest obstacle forward is determined
based on Ppredictea values of all obstacles and fuzzy logic technique is applied to
find the obstacle-free direction using the rule base dictated by the corresponding
20-bit string. If the robot has to change its path, its velocity is reduced to zero at
the end of the time step; otherwise the robot does not decelerate and continues
in the same direction with the same velocity a AT /4. It is interesting to note
that when the latter case happens (the robot does not change its course) in
two consecutive time steps, there is a saving of AT/4 second in travel time
per such occasion. Overall time of travel (T') is then calculated by summing
all intermediate time steps needed for the robot to reach its destination. This

approach of robot navigation can be easily incorporated in a real-world scenario’.

! In all the simulations here, we have chosen AT = 4 sec and a = 1 m/s?. These values
make the velocity of the robot in the middle portion of each time step equal to 1
m /sec.



3 Results

We consider four different approaches:

Approach 1: Author-defined fuzzy-logic controller. A fixed set of 20 rules
(Table 1) and author-defined membership functions (Figure 3) are used. No
optimization method is used to find optimal rule base or to find the optimal
membership function distributions.

Approach 2: Optimizing membership functions alone. Only the member-
ship function distributions of condition and action variables are optimized.
All 20 rules (Table 1) are used. The bases b, and by (refer Figure 3) are
coded in 10 bit substrings each. The parameters b; and b are decoded in
the ranges (1.0, 4.0) cm and (25.0, 60.0) degrees, respectively. Symmetry is
maintained in constructing other membership function distributions. In all
simulations here, the membership function distribution for deviation is kept
the same as that in angle.

Approach 3: Optimizing rule base alone. Only the rule base is optimized
in this approach. Author-defined membership functions (Figure 3) are used.

Approach 4: Optimizing membership functions and rule base simul-
taneously. Membership functions and the rule base are optimized. Here,
a GA string is a 40-bit string with first 20 bits denoting the presence or
absence of 20 possible rules, next 10 bits are used to represent the base b,
and the final 10 bits are used to represent the base bs.

In all runs of the proposed approach, we use binary tournament selection
(with replacement), the single-point crossover operator with a probability p. of
0.9 and the bit-wise mutation operator with a probability p,, of 0.02. A maximum
number of generations equal to 100 is used. In every case, a population size of
60 is used. In all cases, S = 10 different author-defined scenarios are used to
evaluate a solution.

We now apply all four approaches to eight-obstacle problems (in a grid of
25 x 20 m?). The optimized travel distance and time for all approaches are
presented in Table 2. The first three rows in the table show the performance of

Table 2. Travel distance D (in meter) and time T (in sec) obtained by four approaches

Approach 1 | Approach 2 | Approach 3 | Approach 4
Scenario| D T D T D T D T

1 27.203(28.901(26.077|27.769|26.154|27.872(26.154|27.872
26.957(28.943|25.966|27.622|26.026|26.546(26.026|26.546
29.848(36.798|28.623|35.164|26.660|34.547(27.139|35.000
33.465(43.365|26.396(27.907|26.243(27.512(26.243|27.512
32.836(41.781|27.129(33.000|26.543(32.390|27.041{33.000
33.464(43.363|28.001(31.335|27.164(31.000|27.164|31.000

| U || W0

all approaches on three scenarios that were used during the optimization process



and the last three rows show their performance on new test (unseen) scenarios.
The table shows that in all cases, Approaches 2, 3 and 4 have performed better
than Approach 1 (no optimization).

Paths obtained using all four approaches for scenario 4 (unseen) are shown
in Figure 4. Tt is clear that the paths obtained by Approaches 3 and 4 (travel
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Fig.4. Optimized paths found by all four approaches for the eight-obstacle problem
are shown. The dashed circles mark the critical positions of obstacles found by the

FLC.

time 27.512 sec) are shorter and quicker than that obtained by Approaches 1
(travel time 43.365 sec) and 2 (travel time 27.907 sec).

The optimized rule bases obtained using Approaches 3 and 4 are shown in Ta-
bles 3 and 4. The optimized membership functions obtained using Approaches 2
and 4 are shown in Figures 5 and 6, respectively. Here, Approach 4 (simultaneous
optimization of rules and membership functions) has elongated the membership
function distributions so that classification of relative angle is uniform in the
range of (=90, 90) degrees. In Approach 3, since membership functions are spec-
ified, the GA-optimized solution needed many rules specifying an appropriate
action for each value of distance. In Approach 4, membership functions are not



Table 3. Optimized rule base (nine
rules) obtained using Approach 3.
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Fig. 5. The optimized membership func-
tion obtained using Approach 2.

Table 4. Optimized rule base (five rules)
obtained using Approach 4.
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Fig. 6. The optimized membership func-
tion obtained using Approach 4.

fixed and the GA finds a solution which elongates the range of each distance
value so that only about one rule is enough to classify each distance value.

It is also interesting to note that since all 20 rules are used in Approach 2 and
since moving ahead (towards the target) is always optimal, GAs have adjusted
the membership function for distance in way so as to have most cases appear as
VF. Recall from Table 1 that for all rules with VF distance, action variable is
always ahead.

Both Tables 3 and 4 show that there are more rules for L and AL angles
than for R and AR angles. This is merely because only 10 scenarios are consid-
ered during the optimization process and it could have been that in most cases
the critical obstacles come in the left of the robot, thereby causing more rules
specifying L or AL to appear in the optimized rule base. By considering more
scenarios during the optimization process, such bias can be avoided and equal
number of rules specifying left and right considerations can be obtained.

From Table 2, it can be observed that Approach 3 (optimization of rule base
only) has resulted in a much quicker path than Approach 2 (optimization of
membership function only). This is because finding a good set of rules is more
important for the robot than finding a good set of membership functions. Thus,
it may be argued that the optimization of rule base 1s a rough-tuning process
and the optimization of the membership function distributions is a fine-tuning
process. In most scenarios, the optimized solutions are already obtained during



the optimization of rule-base only and optimization of membership function has
a marginal effect to improve the solution any further.

Although the performance of Approaches 3 and 4 are more-or-less similar,
we would like to highlight that Approach 4 is more flexible and a more practical
approach. Since the membership functions used in Approach 3 are well-chosen
by the authors, the performance of Approach 3 i1s good. However, for more
complicated problems, we recommend using Approach 4, since it optimizes both
the rule base and membership functions needed in a problem.

4 Conclusions

In this study, learning capability of a genetic-fuzzy approach has been demon-
strated by finding optimal /near-optimal FLCs for solving motion planning prob-
lem of a mobile robot. In the genetic-fuzzy approach, obstacle-free paths have
been found locally by using fuzzy logic technique, where optimal membership
functions for condition and action variables and an optimal rule base have been
found using genetic algorithms. Based on this basic approach, three different
approaches have been developed and compared with an author-defined (non-
optimized) fuzzy-logic controller (FLC).

The genetic-fuzzy approach developed here is also practical to be used in a
real-world situation. One of the major advantages of the proposed method is
that the optimization is performed off-line and an optimal rule base is obtained
before-hand. Robots can then use this optimal rule base to navigate in presence
of unseen scenarios in an optimal or a near-optimal manner. This paper shows
how such a rule base can be achieved.

This study can be extended in a number of ways. Since the optimized travel
time depends on the chosen incremental time step AT, this parameter can also
be kept as an action variable. This way, a robot can make a longer leap in a
particular obstacle-free direction or make shorter leap if there are a crowd of
obstacles in the course of path. In this connection, controlling speed of the robot
to allow passing of moving obsctacles may also be considered.

In this study, we have used an author-defined set of 20 rules (Table 1), all of
which may not have the optimal combination of condition and action variables.
G As can be used to eliminate this bias by using a different representation scheme,
as follows:

201500130...4

The above string has 20 positions (representing each combination of action and
condition variables) and each position can take one of six values: 0 for absence
of the rule, 1 for first option of action variables (say, L), 2 for the second option,
and so on. This way every solution represented by a 20-position vector represents
a valid rule base. Nevertheless, the results of this study show that the proposed
GA-fuzzy approach is efficient and a natural choice to the robot navigation
problem, which should get more attention in applications of robotics in the
coming years.
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