
1

Multi-Class Protein Fold Recognition Using
Multi-Objective Evolutionary Algorithms

Stanley Y. M. Shi, P. N. Suganthan, Senior Member IEEE and Kalyanmoy Deb, Senior Member IEEE

KanGAL Report Number 2004007

Abstract— Protein fold recognition (PFR) is an important
approach to structure discovery without relying on sequence
similarity. In the pattern recognition terminology, PFR is a
multi-class classification problem to be solved by employing
feature analysis and pattern classification techniques. This paper
reformulates PFR into a multi-objective optimization problem [7]
and proposes a Multi-Objective Feature Analysis and Selection
Algorithm (MOFASA). We use support vector machines as the
classifier. Experimental results on the Structural Classification
of Protein (SCOP) data set indicate that MOFASA is capable
of achieving comparable performances to the results reported in
[10]. In addition, MOFASA identifies relevant features for further
biological analysis.

Index Terms— protein fold recognition, feature selection,
multi-class classification, multi-objective evolutionary algorithm,
NSGA-II, support vector machines.

I. INTRODUCTION

RECENT structural genomic initiatives and improvements
in experimental methodologies have populated the

biological databases at a rapid pace. Current release of the
protein data bank (Jun 2004) [12] contains more than 26,000
determined protein 3D structures. However, this is far beyond
satisfactory in comparison to the more than 280,000 known
protein sequences (May 2004) [6]. As experimental methods
are time consuming and expensive [2], it is important to
develop accurate automatic structure prediction algorithms to
determine the structure of new sequences.

Most of the computational protein structure prediction
approaches are based on sequence similarities [3]. If a new
sequence has a high sequence similarity to a protein with
known structure, the new protein may belongs to a similar
fold and share the common evolutionary ancestor with this
known protein [5]. In this situation, sensitive sequence
comparison methods might be applicable for detecting
the close evolutionary relationships between proteins [13].
However, these methods are not efficient when two proteins
have a closely related structures with no obvious similarities
between sequences. Protein fold recognition can be used to
detect such kinds of relationship [17].

Ding and Dubchak [10] recently proposed taxonometric
approach to determining structural similarity without relying
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on sequence similarity. They applied the machine learning
methods such as neural networks and support vector machines
(SVM) in multi-fold protein recognition. Both one-versus-all
(OVA) and one-versus-one (OVO) classification strategies
have been studied. But the accuracy is relatively low.
Motivated by Ding’s work, Tan ������� [2] devised an ensemble
classifier, eKISS, for � -fold protein classification. eKISS
first generates a group sophisticated rule based classifiers as
base classifiers, then combines all these classifiers into a new
ensemble classifier. Among these classifiers, �	��
 classifiers
are derived from OVA and ����	������
�����
 classifiers are
derived from OVO. The ensemble classifier is reported [2]
to be robust and generates a set of helpful rules for further
biological analysis. Their result is difficult to compare with
the original Ding’s work for only folds with more than eight
samples were used in the experimental analysis in [2].

In this paper, we study the feature selection problem in
the context of multi-class PFR. We generalize the wrapper
method [19] by using both training and testing accuracy
to guide the feature subset selection. We formulate the
feature subset selection problem into a three objective
optimization problem similar to an earlier study [8] and
propose a Multi-Objective Evolutionary Algorithm (MOEA)
to solve it. Since SVM are strong classifiers with good
generalization capability and OVO strategy is known to be
effective for multi-class recognition [10] [14], we embed
the OVO SVM as our classifier. We call our method multi-
objective feature analysis and selection algorithm (MOFASA).

The organization of this paper is as follows. In section
II, we provide the background of feature analysis and
classification problems. In section III, we describe the
multi-objective evolutionary algorithm for optimizations. This
is followed by section IV, the methodology and experimental
results of MOFASA, Finally, in section V, we discuss the
performance of the proposed algorithm for PFR and suggest
some future research directions.

II. FEATURE SELECTION AND CLASSIFICATION

A. Feature Selection

The protein fold recognition is a classical multi-class
classification problem involving feature analysis. Feature
selection or feature extraction operation can be used
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Fig. 1. Extended wrapper method with an additional testing feedback loop.
X: the input features, Y: the selected features.

to perform feature analysis. In biological classification
problems, it is important to be able to explain the reasoning
behind the decisions made. Hence, the feature analysis task
should ideally be performed by feature subset selection as
feature extraction operation does not allow us to easily relate
the decisions made to original observations.

The feature selection problem can be defined as follows:
given a set of candidate features and a collection of data
samples, select a subset that performs the best according
to specified criteria. The selected feature subsets will not
only reduce the computational requirements, but also likely
to achieve a better performance due to the finite sample
size effects [16] [20]. Further, the selected combinations of
features may facilitate biological analysis leading to further
understanding and insight into corresponding biological
functions.

The feature selection can be categorized into embedded,
filter and wrapper approaches [4]. The embedded approach
may provide some useful rules for classification while it may
sacrifice accuracy as it combines feature selection and classifi-
cation into one process. Filter approach is faster but compara-
tively lower in accuracy, since feature subsets selection process
is independent of the classification. The wrapper approach
[19] uses two processes–one searches for a feature subset,
the other evaluates the selected feature subset using the same
classification algorithm. This two-step process is repeated and
directed by the classification performance feedback until an
optimal feature subset is obtained. In other words, the feature
subset is optimized for the classifier. While feature subset
evaluations require higher computing resources, this method is
more likely to yield higher accuracy. The traditional wrapper
method uses only validation results to evaluate a feature subset.
In MOFASA, we extend the wrapper concept by using an
additional feedback loop shown by dashed lines in Figure
1, to integrate testing accuracy too. In the multi-objective
optimization discussed in section 3, this loop will generate
trade off solutions in the Pareto front, from which we can
observe the important features.

B. SVM for Classification

Support Vector Machines, derived from statistical learning
theory, were originally designed for binary classification.
Some favorable characteristics of the SVM are the absence
of local minima and the implicit kernel mapping scheme
from the input feature space to a highly non-linear feature
space. The basic idea can be outlined as follows: First, the
input vectors are implicitly mapped into a higher dimensional
feature space (possible with a higher dimension) using the
kernel trick [24]. Then seek an optimized linear decision
boundary in the feature space which is able to separate two
classes with least error and maximal margin.

SVM has been successfully used in protein analysis [25]
and demonstrated high classification accuracy and good
generalization performance. In Ding and Dubchak’s work
[10], SVM performs better than neural networks. In our
early work [23], we noticed that SVM is more accurate
than weighted k nearest neighbors classifiers. The rule based
decision tree methods in general suffers from the relatively
higher variance and bias. In other words, different tree
solutions may vary greatly and the training errors may be
considerably less than the test errors [15]. Based on these
observations, we choose LibSVM [21] as the classifier. Since
SVM is naturally suited for binary classification scenarios,
extending it for multi-class classification problems is an
on-going research problem. Most of the current work is based
on different classifiers combination strategy. In [14], three
most popular strategies, OVO, OVA and Directed Acyclic
Graph (DAG) SVM were compared and OVO and DAG SVM
were found to perform better. In this paper, we will employ
the OVO strategy.

III. MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHMS(MOEAS)

A multi-objective optimization problem has a number of
objective functions which are to be minimized or maximized
[7]. MOEAs use evolutionary algorithms to optimize these
objectives simultaneously and give out a Pareto-optimal
front (a solution set) for higher level analysis and decision.
Many of the real world problem are multi-objective problem.
MOEAs provide a insight to deal with these problems and
therefore are the most active research directions in current
optimization area.

As mentioned before, we formulate the PIR into three
objectives. To handle the three objectives optimization
problem, we use a fast elitist MOEA � Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [18]1. We briefly describe the
algorithm here: First, an offspring population is created from
the same size parent population, by using genetic operators
(such as single-point crossover and bit-wise mutation operators
[11]). Then the two populations are combined together as

1The IEEE TEC paper describing NSGA-II for multi-objective optimization
is judged as the FAST-BREAKING PAPER IN ENGINEERING by Web of
Science (ESI) in February 2004.
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a double-size mating pool. The duplicated solutions are
removed from the mating pool. A non-dominated sorting
[7] is applied to all the remaining solutions. After that, the
new parent set was created by choosing solutions of different
non-dominated fronts according the ascending order in the
mating pool one by one. There are some different situations
during this procedure. If the non-duplicate solution (here we
can accept them as feasible solutions) is more than the slots
available in the new parent population, a crowding distance
[7] based selection is used to select the solutions that will
make the diversity of the solutions maximum.

It is important to realize that in the classification problem,
there may exist multiple classifiers resulting in an identical
set of objective values. For example, the same size of selected
features and same classification accuracy. We call these multi-
model solutions in same group. To deal with this situation, a
modification on the original NSGA-II was proposed in [8],
which enables NSGA-II to deal with this situation and find
multiple classifiers simultaneously. The key modification is as
follows: When the number of distinct objective solutions in
the last Pareto front ��� is smaller than the number of empty
slots in the new parent population, these ��� distinct objective
solutions will be first selected. The remaining slots will be
filled with certain number of randomly selected multi-model
solutions. The numbers of selected multi-model solutions for
each group are proportionate the number of their appearance
in the last front. Finally, new parent population created when
all empty slots are filled.

NSGA-II has the following important features:

1) It uses an elitist principle so that best solution(s) in the
previous iteration is (are) always included in the current
iteration.

2) It uses an explicit diversity preserving mechanism,
thereby allowing maintaining multiple trade-off solu-
tions in an iteration

3) It emphasizes the on-dominated solutions, thereby
ensuring convergence close to the Pareto-optimal
solutions.

IV. MULTI-OBJECTIVE FEATURE ANALYSIS AND

SELECTION ALGORITHM (MOFASA)

Protein fold recognition is a classification problem. Our
objective is to provide more information, such as the relevant
feature subsets, classification accuracy, and bias characters of
both training and testing data sets. This information may assist
the subsequent biological analysis and further experimental
designs. As discussed before, we extend the wrapper approach
by introducing an testing accuracy feedback loop. This loop
expands the Pareto-optimal front to include trade-off solutions
based on testing data set. Another loop is the traditional ��� fold
cross validation accuracy loop. This loop expands the Pareto-
optimal front based on the training data set. We will compare
these results to analyze the differences between the training
and testing sets. The third loop is the cardinality loop. As the

name suggests, the cardinality loop will guide the NSGA-II to
find more solutions with cardinality as small as possible. Thus,
we formulate the PFR with three objectives, along similar lines
to an earlier study [8]:

1) Maximize the cross validation accuracy on the training
set.

2) Maximize the classification accuracy on the testing set.
3) Minimize the cardinality of feature subsets.

We use an � -bit binary string where � is the cardinality of the
full feature set, to represent a solution. In a particular string,
the features corresponding to the positions marked by � are
selected. For example, in a ��� -bit string, ����������������������
 , first,
third and sixth features are chosen into the feature subset,
and we use these features to induce and test classifiers. We
use the OVO strategy for multi-class classification. The fold
prediction is performed by the majority voting of ��	� �!��
"�#�
SVM classifiers’ decisions where � is the number of folds.
We calculate the ��� -fold cross validation accuracy and test
accuracy. We initialize each population member by randomly
choosing at most $#��% of string positions represented by ��& .
We set the population size to 100 and number of generations
to 200. In the SVM, we use ')(	* order polynomial kernel.

V. EXPERIMENTAL EVALUATION

A. Data set

We use the same data set used in [10]. The training set
was selected from the database built for ���#+ -fold prediction
problem. The database is based on the ,.-0/ - & ������12� sets,
each pair of proteins has no more than 35 percent of the
sequence identity for the aligned subsequences longer than
80 residues. 27 most populated folds in the database with
seven or more proteins are utilized. There are 313 protein
samples in the this training set. ,.-3/ - '�� set is used as an
testing data set. The set contains the SCOP sequences having
less than 40 percent identity with each other and 385 protein
samples of the same 27 folds as in the training set. There
are six groups of continuous features for each protein as
summarized in Table 1. Each group of features is extracted
independently. There are many duplicated (redundant) and
irrelevant features among these 125 features. For example,
the last 6 features in the van der Waar volume group are the
same as the last 6 features in the polarizability group. In the
predicted secondary structure group, the ' (	* and �4��5 ( features
are irrelevant. Most of the values in the '�(	* feature are zero
and all the values of the �4� 5 ( feature are ����� .

B. Analysis of Results

We use the standard 6 -percentage accuracy [22] to handle
both true positives and false positives. 6 can be expressed as
the sum of correctly predicted samples in each fold divided
by total number of samples to be predicted. We calculated
the average of cross validation and test 6 -percent accuracy
( 798:6 ) for each non-dominated solution in the last generation,
and select the top 3 798:6 results as representatives.
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We initially test each feature group separately. The top
three 798;6 results are presented in Table II. As we can
see, MOFASA yields higher 6 -percentage accuracy in all
six feature subsets. The initial feature subset cardinality is
set between 15 to 20(21). Intuitively, it is an approximation
of backward elimination procedure. In Table II, we observe
that different feature groups achieve different fold prediction
accuracy. The amino acids composition feature subset
performs the best, followed by predicted secondary structure,
hydrophobicity, polarity, normalized van der Waals volume
and finally polarizability.

There is useful information in the first non-dominated
solution set, such as which features are useful in the fold
recognition and the bias character of training and testing data
sets. In figure 2, we plotted the frequency of each feature
in the final feature subsets. The first two feature sets ( <
and = ) have more high frequency features than the other
groups. This may be the reason why they perform better in
fold prediction as shown in Table II. We sorted the solutions
according to the cross validation accuracy in Figure 3 and
according to the testing accuracy in Figure 4. The x-axis and
y-axis represent the accuracy rank and the feature groups,
respectively. By comparing the two figures, we find that the
protein secondary structure ( = ) feature group varies notably.
Having more = features in the feature subsets increases the
cross validation accuracy, while eliminating these features
improves the testing accuracy. There are several features of
this nature in the other sets too. These features may cause
classifier bias on particular data sets. Further biological
analysis of these features may reveal better understanding of
their functions.

In multi-class fold recognition, prediction accuracy can be
significantly affected by the number of samples in each fold.
We combined eight folds with at least 13 samples into a new
data set, and then tested the performance of the MOFASA.
The results are presented in Table III. Again, MOFASA yields
higher prediction accuracy.

Independent test can exam the generalization capability.
We test MOFASA on independent set as well. Here the test
set is divided into a new test set with 185 samples and a
independent set with 200 samples. The training set remains
unchanged. In addition to the six independent groups, we
add an additional mixed group, which is composed of all
the above six groups of features. The same procedures are
employed to introduce the classifiers on these seven groups.
Then these classifiers are tested on the independent set. The
best three 7>8:6 solutions are presented in Table IV together
with the original work [10]. From these results we can see
that MOFASA achieves comparable 6 -percent prediction
accuracy to the original study in all seven groups, which
indicates a very good generalization capability.

TABLE I

FEATURE GROUPS

Group Parameter Dim

C amino acids composition 20

S predicted secondary structure 21

H hydrophobicity 21

P polarity 21

V normalized van der Waals volume 21

Z polarizability 21

TABLE II

INDEPENDENT FEATURE GROUP TEST

Gp. Cross Valid.(%) Indep. Test (%) Average (%) Cd.

MOF Orig MOF Orig MOF Orig

C 36.10 32.70 49.87 44.90 42.99 38.80 1

34.50 49.87 42.19 1

35.14 48.83 41.99 2

S 38.66 34.60 45.45 35.60 42.06 35.10 1

40.58 43.12 41.85 2

39.94 43.38 41.66 3

H 25.88 19.80 41.56 36.50 33.72 28.15 1

25.88 41.30 33.59 2

24.28 42.34 33.31 3

P 26.20 18.70 38.70 32.90 32.45 25.80 2

24.92 38.96 31.94 3

24.28 39.22 31.75 4

V 23.64 17.20 37.40 35.00 30.52 26.10 3

24.60 35.84 30.22 4

23.00 37.40 30.20 5

Z 22.04 14.60 37.14 32.90 29.59 23.75 1

22.04 36.62 29.33 1

25.88 32.47 29.17 2?A@�B
: Group;CEDGF

: Multi-Objective Feature Analysis and Selection Algorithm;DIHKJML
: Original Method in [10];NIO�B
Cardinality of feature subsets.

TABLE III

8 FOLDS AND 27 FOLD CLASSIFICATION

Gp. Cross Valid.(%) Indep. Test (%) Average (%) Cd.

MOF Orig MOF Orig MOF Orig

8 90.10 62.79 86.49 53.73 88.29 58.26 29

folds 89.46 87.01 88.23 30

87.86 88.05 87.96 31

27 51.76 61.56 56.66 25

folds 53.67 57.92 55.80 26

52.08 59.22 55.65 26
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TABLE IV

GENERALIZATION TEST

Gp. Cross Valid.(%) Test (%) Indp. Test(%) Cd.

MOF Orig MOF MOF Orig

C 32.27 32.70 56.22 44.50 44.90 12

32.59 51.89 43.00 16

29.71 49.73 43.50 15

S 32.91 34.60 45.95 38.50 35.60 8

33.55 42.16 38.00 7

34.19 40.00 38.50 8

H 21.41 19.80 47.03 36.50 36.50 12

24.92 42.70 36.50 11

22.36 35.68 37.50 9

P 19.81 18.70 39.46 35.50 32.90 10

21.72 37.30 34.00 11

20.13 35.68 35.00 10

V 21.41 17.20 35.68 36.00 35.00 13

19.17 35.68 36.50 11

18.53 36.22 35.50 12

Z 19.81 14.60 28.65 34.00 32.90 10

17.89 37.84 35.00 12

20.45 36.22 31.50 10

CSH 49.84 N/A 65.95 53.50 53.90 64

PVZ 51.76 63.24 50.50 61

51.76 61.08 55.00 50
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Fig. 2. Feature frequency of the solution set

VI. CONCLUSION

In this paper, we formulated the multi-class protein fold
recognition problem as three objective (Cross validation
accuracy on training set, Classification accuracy on testing
set and Cardinality of feature subsets) optimization problem
and solved it by using the multi-objective evolutionary
algorithm (NSGA-II). We also extended the wrapper method
by incorporating an additional testing accuracy feedback loop.
This loop can spread the Pareto-optimal front with respect
to the testing data set so as to provide more information.
The most salient feature of the Multi-Objective Feature

Analysis and Selection Algorithm is providing abundant
��P����RQ)P�SUTV� �)��� Q solutions for further feature analysis and
high level interpretation. We can use MOFASA to analyze
the importance of features by counting their frequency among
the Pareto front solutions. We can compare the bias of
training and testing data sets, and find out which features or
feature groups are the most sensitive to the bias. Further, the
MOFASA yields higher accuracy on both cross validation
and test data sets.

We used the data set in [10] in our study. The training
set has less than W�$)% sequence similarity with the testing
set. Our 6 -percent prediction accuracy for 27 fold protein
recognition is around 53% on cross validation data set and
60% on the test set. In independent test, six out of seven
groups of features achieve high generalization performance.
We examined the bias between training set and testing set by
sorting the non-dominated solutions according to the cross
validation accuracy and testing accuracy. Then we compared
the results and found that features the predicted secondary
structure group may cause the classifier’s bias. This is our
preliminary work in protein fold analysis. In the future, we
will consider a more complicated situation, such as 600 fold
recognition. We will also study an ensemble of different
classifiers to improve the prediction accuracy.
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