
Unveiling Optimal Operating Conditions for an

Epoxy Polymerization Process Using

Multi-objective Evolutionary Computation

Kalyanmoy Deb1, Kishalay Mitra2, Rinku Dewri3, and Saptarshi Majumdar4

1 Mechanical Engineering Department, Indian Institute of Technology Kanpur,
Kanpur-208016, deb@iitk.ac.in, http://www.iitk.ac.in/kangal/deb.htm

2 Manufacturing Practice, Tata Consultancy Services, 54B Hadapsar Industrial
Estate, Pune-411013, India, kmitra@pune.tcs.co.in

3 Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur-721302, rinku@webteam.iitkgp.ernet.in

4 Tata Research Development and Design Center, 54B Hadapsar Industrial Estate,
Pune-411013, India, smajumdar@pune.tcs.co.in

Abstract. The optimization of the epoxy polymerization process in-
volves a number of con�icting objectives and more than twenty deci-
sion parameters. In this paper, the problem is treated truly as a multi-
objective optimization problem and near-Pareto-optimal solutions cor-
responding to two and three objectives are found using the elitist non-
dominated sorting GA or NSGA-II. Objectives, such as the number av-
erage molecular weight, polydispersity index and reaction time, are con-
sidered. The �rst two objectives are related to productivity of the poly-
merization process. The decision variables are discrete addition quan-
tities of various reactants e.g. the amount of addition for bisphenol-A
(a monomer), sodium hydroxide and epichlorohydrin at di�erent time
steps, whereas the satisfaction of all species balance equations is treated
as constraints. This study brings out a salient aspect of using an evo-
lutionary approach to multi-objective problem solving. Important and
useful patters of addition of reactants are unveiled for di�erent optimal
trade-o� solutions. The systematic approach of multi-stage optimization
adopted here for �nding optimal operating conditions for epoxy poly-
merization process should further such studies on other chemical process
and real-world optimization problems.

Keywords: Multi-objective optimization, genetic algorithms, real-world
optimization, Pareto-optimal solutions, chemical engineering process op-
timization.

1 Introduction

Real-world optimization problems often demand to cater the need of solving
more than one objective simultaneously. Multi-objective optimization problems
lead to a set of optimal solutions, known as Pareto-optimal solutions, as op-
posed to the single solution provided by any single-objective optimization task.
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Although only one solution must be chosen at the end of the optimization task
and this often must be performed with the guidance of a decision maker, it is a
better practice to �rst �nd a set of Pareto-optimal solutions to have an idea of
the extent of trade-o�s possible among the underlying objectives before focusing
on a particular solution [7]. Although the �eld of research and application on
multi-objective optimization is not new, the use of evolutionary multi-objective
optimization (EMO) techniques in various engineering and business applications
is a recent phenomenon. Polymerization processes, being quite complex in na-
ture, o�er themselves as an extremely challenging candidate for multi-objective
optimization studies. In modeling the polymerization system, several molecu-
lar parameters, such as the number or weight average molecular weights (Mn

or Mw, respectively), the polydispersity index (PDI), concentration of di�erent
functional groups etc., can all be predicted quite accurately using various exper-
imentally measured indices such as strength and sti�ness of the �nal product.
Moreover, the desired objectives in a polymerization process often exhibit con-
�icting relationships and therefore become an ideal problem for multi-objective
optimization studies. In this paper, multi-objective optimization of a semibatch
epoxy polymerization system which is often used to manufacture high-strength
composites, reinforced plastics, adhesives, protective coatings in appliances, etc.
is thoroughly investigated.

A recent review [2] reveals that several studies are carried out on multi-
objective optimization of polymerization reactors. A number of studies [20, 10,
11, 3, 5] considered multi-objective optimization of copolymerization reactors.
Wajge and Gupta [21] studied multi-objective optimization of the nylon-6 batch
reactor and obtained di�erent optimal temperature histories corresponding to
di�erent solutions on the Pareto-optimal set using the same technique. Sareen
and Gupta [18] extended that work and studied the nylon-6 semibatch reactor
and obtained di�erent optimal pressure histories and optimal jacket �uid temper-
ature corresponding to di�erent solutions on the Pareto-optimal set. A number
of studies using an EMO approach are carried out on the multi-objective opti-
mization of nylon-6 and polymethyl methacrylate (PMMA) reactors [4, 16, 12,
13]. These studies are mainly based on adapted versions of the non-dominated
sorting genetic algorithm (NSGA) developed by Srinivas and Deb [19].

In the Ta�y process [14], the most popular industrial process for preparing
epoxy polymers, bisphenol-A (monomer) and epichlorohydrin, in excess, are re-
acted in presence of sodium hydroxide (NaOH). Although it is well established
that alkali plays a key role in the epoxy polymerization process, the role of
addition of other reactants (bisphenol-A and epichlorohydrin) is not well estab-
lished. Experimental and theoretical studies are very few in open literature for
the epoxy polymerization process. Raha and Gupta (1998) used species balance
and equation of moments approach to study the process. They gave special im-
portance to build the entire modeling framework as well as the e�ect of kinetic
parameters and reactant's e�ect over the performance of the reaction process.
However, based on some earlier studies [17] which showed the importance of all
three reactants, we launch the present detail study for a better understanding



of the true nature of interactions among three con�icting objectives associated
in an epoxy polymerization process.

2 Problem Formulation

The complete kinetic scheme for the above mentioned polymerization system
can be found elsewhere [1]. Raha, Majumdar and Gupta [17] have validated the
model with available experimental data. Using the species balance approach,
ODEs corresponding to the initial value problem (IVP) are derived for vari-
ous species and their moments. The �state� of the reaction scheme can be well
described by a set of 48 state variables (x = (x1, x2, . . . , x48)T ), including all
species balance and moment balance equations:

dxi

dt
= fi(x,U), i = 1, 2, . . . , 48, (1)

where x and U are vectors of the state and manipulated variables (such as
the amount of intermediate additions for di�erent reactants at di�erent times).
Manipulated variable vector consists of three discrete histories, namely, discrete
history for NaOH addition (described here with U1(tj)), discrete history for
epichlorohydrin addition (U2(tj)) and discrete history for bisphenol-A addition
(U3(tj)) (where tj is the j-th time of addition of reactants). Given three discrete
pro�les (U at time zero and at other time steps) and the initial conditions of all
state variables (x at time zero), the reaction scheme model can be solved by using
an explicit integrator (RK-type method) to solve all 48 di�erential equations.
This simulation procedure can then be combined with NSGA-II [9] optimization
code for performing a multi-objective optimization.

2.1 De�ning the Optimization Problems

Three di�erent multi-objective problems are studied here. The �rst problem
(Problem 1) is related to the quality of polymer induced, whereas the second
problem (Problem 2) addresses the productivity issue also:

Problem 1 :


Maximize Mn

Minimize PDI

subject to satisfying mass and moment balance equations,

umin
i ≤ ui ≤ umax

i i = 1, . . . , 21.

(2)

One computer simulation runs from zero (initial condition, t = 0) to t = tsim

(7 hr used here). Each of the three pro�les (U1(t), U2(t), U3(t)) are, therefore,
discretized into seven equally spaced points. Each of these variables is forced to
lie between a lower bound (umin

i ) and a upper (umax
i ) bound. No restriction on



the Mn and PDI values are used as constraints, as the satisfaction of variable
bounds will ensure limiting values on Mn and PDI.

The objective for Problem 2 is a vector of two objective functions: maxi-
mization of Mn and minimization of the overall reaction time, tsim, subject to
satisfying mass and moment balance equations. Here, the reaction time tsim is
a decision variable, thereby making the total number of variables to 22.

The objective for Problem 3 is a vector of three objective functions: maxi-
mization of Mn, minimization of tsim, and minimization of PDI, subject to mass
and moment balance equations.

3 NSGA-II for the Epoxy Polymerization Problem

Each solution is represented as a real-valued vector of 21 (or 22 for problems 2
and 3) values indicating the addition of NaOH, EP, and AA0. For the real-valued
NSGA-II, we use the simulated binary crossover (SBX) and the polynomial mu-
tation operators [8]. When a pre-speci�ed maximum iteration count (N = Nmax)
is reached, NSGA-II is terminated and the non-dominated solutions of the �nal
population are declared as the obtained Pareto-optimal solutions. In problems
1 and 2, Nmax = 200 and a population size of Npop = 250 are used. Since Prob-
lem 3 deals with a three-dimensional Pareto-optimal front, we have chosen a
larger population size and run NSGA-II for more iterations: Npop = 1000 and
Nmax = 500. The crossover and mutation probabilities are pc = 0.9 and pm = 0.1
are used for the real-coded NSGA-II. NSGA-II can handle mixed type of opti-
mization problems. Thus, we have used the objectives as they are mentioned in
the previous section.

Based on some earlier studies, following variable bounds are set here to allow
the optimizer (NSGA-II) a substantial search space to look for the optimized
solutions: (i) the addition of NaOH varies between 0.2 and 1.0 kmol/m3 at t = 0
hr and between zero and 1.0 kmol/m3 for t > 0 hr., (ii) the addition of EP varies
between 0.2 and 2.0 kmol/m3 at t = 0 hr and between zero and 2.0 kmol/m3 for
t > 0 hr., and (iii) the addition of AA0 varies between 0.2 and 1.0 kmol/m3 at
t = 0 hr and between zero and 1.0 kmol/m3 for t > 0 hr.

4 Discussion on Problem 1

A simulation result corresponding to the initial condition of Batzer and Zahir [1]
(with Mn = 633.2 kg/kg-mole and PDI=1.61) is considered as the benchmark
performance data with which our optimized solutions will be compared. The
solutions termed as �Initial� in Figure 1 denote the objective vectors with which
NSGA-II search process is started. The �gure indicates that the random solutions
(with the chosen variable bounds) are far from being close to the optimized front
(marked as `NSGA-II'), particularly producing solutions with large Mn values.
The �gure clearly shows that a wide range of distribution in both Mn and in PDI
values are obtained. The trade-o� obtained between the two objectives is also
clear from the �gure. The following observations can be made from the obtained



Fig. 1. Obtained NSGA-II solutions for the Mn and PDI optimization are compared
with single-objective optimization (SOOP) solutions. Initial solutions of NSGA-II and
the benchmark solution are also shown.

results: (i) The resulting Mn-PDI trade-o� is non-convex, a phenomenon which
is rare in real-world multi-objective optimization problems, (ii) Investigating the
solutions of Figure 1 further, it can be inferred that compared to the benchmark
solution (marked as `Benchmark' in the �gure) there exist better solutions which
can produce larger Mn (ranging from 645 to 966 kg/kg-mole) and less PDI
(ranging from 1.52 to 1.61, respectively) value, leading to polymers with better
properties as compared to the benchmark solution.

In order to verify whether the obtained NSGA-II solutions are actually close
to the true Pareto-optimal front of this problem, we use a single-objective prefer-
ence based method next. Since, the above observation indicates that the Pareto-
optimal front is non-convex, the commonly-used weighted-sum approach [15]
may not be the right approach for this problem, as the the weighted-sum ap-
proach is known to be inadequate in �nding the Pareto-optimal solutions in
the non-convex region [6]. Thus, we use the ε-constraint method [15] here. In
this case, we convert the second objective (Minimization of PDI) into an addi-
tional constraint as PDI ≤ PDIε and maximize only the �rst objective. Other
constraints and variable bounds, as given in Problem 1, are kept the same. To
obtain di�erent Pareto-optimal solutions, we simply choose a di�erent value for
PDIε and optimize the resulting single-objective optimization problem using a
single-objective GA. The constraints are handled using a penalty parameter less
procedure [6]. The GA parameters, such as the population size, operator pa-
rameters, etc., are kept the same as those used in the above NSGA-II study.
Figure 1 marks these solutions as `SOOP' solutions obtained by 10 independent
GA runs, each performed with a di�erent PDIε value. Since these solutions are
found to lie on or near the Pareto-optimal front obtained by the NSGA-II, it
can be stated that the non-dominated front found by NSGA-II is probably the
true Pareto-optimal front.



4.1 Searching for Salient Properties of Pareto-Optimal Solutions

Each of the solutions on the Pareto-optimal front carries information about 21
decision variables. The Fritz-John necessary condition for Pareto-optimality con-
ditions [6, 15] are presented below.

De�nition 1: (Fritz-John necessary condition). A necessary condition for x∗

to be Pareto-optimal is that there exist vectors γ ≥ 0 and v ≥ 0 (where γ∈ RM ,
v ∈ RJ and γ,v 6= 0) such that the following conditions are true:

1)
∑M

m=1 γm∇fm(x∗)−
∑J

j=1 vj∇gj(x∗) = 0, and
2) vjgj(x∗) = 0 for all j = 1, 2, . . . , J ,

where the underlying multi-objective optimization problem (with M objectives
fm to be minimized) is assumed to have J inequality constraints: gj(x) ≥ 0 for
j = 1, . . . , J . The above conditions, although cannot be applied to our problem
directly due to the inability to compute the gradients of the objective functions
and constraints, suggest certain common properties which all Pareto-solutions
must satisfy. This leads us to believe that the obtained solutions, if close to the
Pareto-optimal solutions, will share some common properties among them and,
of course, will have some di�erences in order to have trade-o�s among them.
If such properties exist, they would be worth searching for in a real-world ap-
plication problem, as the sheer knowledge of them will provide important and
useful information about the optimal trade-o� among objectives [7]. An inves-
tigation is performed next to identify whether the obtained Mn-PDI solutions
bear any similarity in terms of associated decision variables. Interesting trends
are discovered and shown in Figure 2.

Fig. 2. Time-variant additions of NaOH (left), EP (center), and AA0 (right) show
common patterns for real-coded NSGA-II solutions on Problem 1.

Though the decision variables are discrete additions at various time steps,
they are joined with straight lines to show trends. A casual look at the plots will
reveal some interesting patterns followed in all obtained solutions. Although the
additions at every hours could have been anywhere on the vertical axis at each
time step, all obtained solutions seem to follow some patterns. These patterns
reveal important insights about the optimal working characteristics of the epoxy



polymerization problem, some of which we have deciphered and are discussed in
the following:

1) The general trend captured in NaOH addition is to start from the lower
bound, reduce or increase the addition to the �rst hour, increase close to the
upper bound in the next hour, then continue with the same amount for some
more time and �nally reduce close to the lower bound. A high amount of NaOH
addition is required in the �rst phase of reaction process for a better initiation
of polymerization and the amount of NaOH can be kept low in the later part
of the process as mainly the growth of chain length occurs at that part of time
and NaOH is produced as a by-product. The reason for NaOH to come down
at the lower bound after addition at the zero-th hour for solutions is due to the
fact that the initiation steps require NaOH as a reactant and also produce as a
by-product. In case of Mn value less than 7.0× 103 kg/kg-mole, NaOH is found
to be added to the system in a controlled fashion. For Mn value greater than
7.0× 103 kg/kg-mole, NaOH, instead of decreasing at time step of the �rst hour
after the �rst addition, goes up and rest of the trend remains same as it is stated
earlier. In these cases, NaOH takes part not only in the initiation but also in
the growth of chain length by helping to form certain species of polymer (BEn)
which contributes signi�cantly towards the high value of Mn.

2) The trend found for epichlorohydrin is straightforward. It must be started
at di�erent levels depending on the required Mn value, but must be quickly
increased close to the upper limit and must be continued at that amount till the
end. The reason for small required value of epichlorohydrin initially is due to it
having a less contribution in polymer chain initiation. However, epichlorohydrin
should be supplied maximally in the later stages due to its major contribution
in chain growth mechanisms.

3) Bisphenol-A must be started in large amount and then must be reduced
with time. This is because bisphenol-A takes part actively in polymerization
initiation step and its requirement is reduced at the later part. The quantity of
addition is observed to prolong for longer time steps for higher values of Mn.
This happens because a large Mn value is achieved by adding more amount
of bisphenol-A in the system. It has been seen that the added bisphenol-A is
consumed completely (i.e. not added more than the amount required) in most
of the cases.

It is clear from these observations that di�erent polymers (with di�erent Mn

and PDI values) must be produced optimally with a di�erent addition pattern
of reactants. Although some of these observations can be explained from the
chemistry of the process, Figure 2 shows the optimal operating conditions.

To better understand the characteristics of solutions at di�erent parts of the
optimized front, we divide the entire front into three groups. As the solutions
on optimized front spans Mn from 0.4 × 103 kg/kg-mole to almost 9.5 × 103

kg/kg-mole, each region roughly spans 3.0 × 103 kg/kg-mole in Mn axis: 0.0 −
3.0× 103 kg/kg-mole Mn (Group 1), 3.0− 6.0× 103 kg/kg-mole Mn (Group 2)
and 6.0 − 9.0 × 103 kg/kg-mole Mn (Group 3). The representative solution in



each group are shown in Table 1 and the regions for each group is also marked
in Figure 1.

Table 1. Three representative solutions picked from the optimized front obtained by
real-coded NSGA-II in each of the three problems are shown.

Source PDI Mn Reaction
(kg/kg) (kg/kg-mole) time (hr)

Benchmark 1.61 633.2 7.00

Problem 1

Group 1 1.59 926.5 7.00
Group 2 1.87 3186.1 7.00
Group 3 1.97 9507.8 7.00

Problem 2

Group 1 1.70 946.6 2.57
Group 2 1.90 3219.5 4.00
Group 3 1.99 9507.6 6.60

Problem 3

Group 1 1.61 943.71 3.80
Group 2 1.88 3218.02 5.17
Group 3 1.97 9508.45 6.98

Fig. 3. Time-variant additions of NaOH (left), EP (middle), and AA0 (right) are shown
for three representative solutions from each group on the optimized front obtained using
the real-coded NSGA-II for Problem 1.

The trend in addition of reactants for each group is shown in Figure 3.
Each group has a distinct pattern of adding the three constituents. The infor-

mation depicted in these �gures conveys that there lies a relationship between
the solutions in the optimized front and the system under consideration. The
relationship can be regarded as the `blue-print' of the system. Given a set of ob-
jectives, certain properties emerge from the system, not arbitrarily, but following
some basic properties of the system. This relationship between the property of
the system and the solutions of the optimized front would be of tremendous
importance to practitioners.



5 Discussion on Problems 2 and 3

For brevity, we do not show the obtained front for Problem 2 separately. Instead,
we show the front along with the results of Problem 3 obtained using three
objectives in Figure 4. It is interesting that the limiting fronts (from problems
1 and 2) lie on the two edges of the three-dimensional front. We deduce the
following conclusions from the three-dimensional front:

Fig. 4. NSGA-II solutions obtained
from the three-objective optimization are
shown. The fronts obtained in the previous
two problems are found to lie on two edges
of the obtained three-dimensional front.

Fig. 5. Several optimizations of Prob-
lem 1 with tsim values help �nd the third
boundary of true three-dimensional non-
dominated front.

1) The three-dimensional non-dominated front is a non-convex front.
2) For low values of Mn, polymers can be prepared in much less than 7 hours.

Since the reaction time is also minimized in Problem 3, there exists almost no
solution requiring as large as 7 hr to produce a polymer having a low Mn.

3) For high values of Mn, more reaction time is needed. As in the polymer-
ization process, the repeat units get added with the monomer to form a longer
chain-length, a polymer having a high value of Mn requires more time to form
than a polymer having a low value of Mn. But for a desired Mn and PDI com-
bination, one can �nd a solution requiring smaller than 7 hours to do the job,
but occurrence of such a quick operation gets reduced with the requirement of
higher and higher Mn values.

4) Finally, for the maximum Mn requirement, there exists only one solution
(with Mn = 10, 402.12 kg/kg-mole), requiring 7 hours (the maximum allowed)
of reaction time, but also producing the largest PDI value (1.985). Such is the
trade-o� often observed in a multi-objective problem and Figure 4 shows many
such trade-o� solutions producing di�erent Mn and PDI and requiring di�erent
amount of reaction time.



5) Another interesting aspect is that for any �xed reaction time, the Mn-time
optimization (Problem 2) solutions produced the maximum Mn value and there
exists no other solution producing a better (smaller) PDI value and an identical
Mn value. But, the three-dimensional optimized front provides more information
about the trade-o� than both two-objective optimized fronts, discussed earlier.

On the three-dimensional optimized front, there seems to be a larger concen-
tration of solutions towards the Mn-time front (in other words, there are more
solutions requiring a smaller processing time). To understand this trend better,
we repeat Problem 1 for di�erent reaction times. We force the reaction time
to end at tsim = 1 hr, 2 hr and so on, and collect all the obtained optimized
solutions. Thereafter, we perform a non-domination check considering all three
objectives (maximization of Mn, minimization of PDI, and minimization of tsim)
and the resulting solutions are plotted in Figure 5. An interesting aspect is re-
vealed. For identical PDI values, there exists a smaller reaction time solution
outperforming a larger time solution. This feature of the problem produces a
third boundary on this three-dimensional non-dominated front, thereby showing
the complete bounded trade-o� surface of interactions. The �gure also shows the
projection of the three-dimensional trade-o� surface on the three two-objective
planes. It is clear that although there are some rooms for trade-o�s among Mn-
time and PDI-time combinations, in terms of Mn-PDI combinations, there is
almost a straightforward trade-o�. This fact also indicates that the considera-
tion of minimization of the reaction time is important in this problem to reveal
interesting time-saving trade-o� solutions. To understand the three-objective in-
teractions further, we consider the PDI-time and Mn-time projections (as shown
shaded in Figure 5) and plot them again in Figure 6 in the left and right plots,
respectively.

Fig. 6. PDI and reaction time interaction (left) and Mn and reaction time interac-

tion (right) reveal interesting properties about the optimal operating conditions of the

polymerization problem. In the left �gure, Mn is shown in kg/kg-mole.

On the PDI-time plot, we show contours of �xed Mn values. For each contour
line, the trade-o� between PDI and reaction time is clear. However, what is more



interesting is that the trade-o� becomes marginal away from time from the Mn-
time optimized front (the upper boundary). To achieve a small advantage in
the PDI value, a large reaction time is necessary. Since the slope of the three-
objective optimized front is quite small at these regions, the NSGA-II has found
very few solutions away from the Mn-time boundary. It can then be concluded
that for �xed Mn requirement, it is better to consider the trade-o� solutions
close to the Mn-time optimized boundary. Another aspect is the rate at which
the `region of optimality' reduces for an increasing Mn value. For example, if a
polymer with Mn greater than 5, 000 kg/kg-mole is desired, there does not exist
too many options in terms of reaction time. The right plot in Figure 6 shows
contour line for �xed values of PDI on the three-objective optimized front. Once
again a similar conclusion (about choosing solutions close to the Mn-time optimal
boundary) can be made for smaller PDI values, for large PDI values (such as
PDI=1.95) the trade-o� between Mn and reaction time is quite substantial.
These two plots can be used to determine a suitable operating condition for a
particular application of the epoxy polymerization process.

6 Conclusions and Extensions

A well-validated model consisting of a large number of moment-based ordinary
di�erential equations has been utilized for the multi-objective optimization of
epoxy polymerization process using an evolutionary algorithm (NSGA-II). The
aim of the study has been to extract the discrete addition patterns of the re-
actants for optimizing various objectives simultaneously (e.g. Problem 1: Maxi-
mization of Mn with minimization of PDI, Problem 2: Maximization of Mn with
minimization of reaction time and Problem 3: Maximization of Mn, minimization
of PDI, and minimization of reaction time). All three problems considered here
have displayed a non-convex non-dominated front. NSGA-II has been able to
�nd solutions on or near the true non-dominated front of the problems. This has
been validated by solving the multi-objective problems using a single-objective
preference based optimization method (ε-constraint method). The advantage of
using the NSGA-II is that it has found multiple (as many as 250) optimized
solutions in a single simulation run.

Importantly, the multi-objective optimization of the epoxy polymerization
process has led to the discovery of certain operating principles (addition time-
pattern of three reactants (NaOH, Epichlorohydrin, and Bisphenol-A)) for all
high-performance solutions. The trade-o� between the objectives have been
clearly characterized by showing and contrasting a representative additive pat-
tern of all three reactants. Such information brings out the `blue-print' of the
optimal operating conditions of a chemical process and are often important in
real application in an industry.
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