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ABSTRACT
Many engineering optimization tasks involve finding more
than one optimum solution. The present study provides a
comprehensive review of the existing work done in the field
of multi-modal function optimization and provides a critical
analysis of the existing methods. Existing niching methods
are analyzed and an improved niching method is proposed.
To achieve this purpose, we first give an introduction to nich-
ing and diversity preservation, followed by discussion of a
number of algorithms. Thereafter, a comparison of clearing,
clustering, deterministic crowding, probabilistic crowding,
restricted tournament selection, sharing, species conserving
genetic algorithms is made. A modified niching-based tech-
nique – modified clearing approach – is introduced and also
compared with existing methods. For comparison, a versa-
tile hump test function is also proposed and used together
with two other functions. The ability of the algorithms in
finding, locating, and maintaining multiple optima is judged
using two performance measures: (i) number of peaks main-
tained, and (ii) computational time. Based on the results,
we conclude that the restricted tournament selection and the
proposed modified clearing approaches are better in terms
of finding and maintaining the multiple optima.

Categories and Subject Descriptors
G.1 [Numerical analysis]: OptimizationUnconstrained op-
timization; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Algorithms
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1. INTRODUCTION TO MULTI-MODAL
OPTIMIZATION

As the name suggests, multi-modal functions have multi-
ple optimum solutions, of which many are local optimal so-
lutions. Multi-modality in a search and optimization prob-
lem, usually causes difficulty to any optimization algorithm
in terms of finding the global optimum solutions. This is
because in these problems there exist many attractors for
which finding a global optimum can become a challenge to
any optimization algorithm. An example of multi-modal
function having 20 maxima with unequal peak heights is
shown in Figure 1. In the case of peaks of equal value
(height), the convergence to every peak is desirable, whereas
with peaks of unequal value, in addition to knowing the best
solutions, one may also be interested in knowing other op-
timal solutions. Therefore, when dealing with multi-modal
functions, some modification is necessary to the standard
GAs to permit stable subpopulations at all peaks in the
search space.
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Figure 1: A multi-modal function.

It is clear from the above discussion that the task in a
multi-modal optimization problem is to find multiple optima
(global and local). If a classical point-by-point approach is
used for this purpose, the method must have to be used
many times, every time hoping to find one of the optima.
However, evolutionary algorithms (EAs) have an niche over
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their classical counterparts in solving multi-modal optimiza-
tion problems. Instead of applying an optimization method
again and again, an EA’s population approach can be ex-
ploited so that it can be applied only one time to find and
maintain multiple optimal solutions.
Multi-modal EAs dates back to the ground-breaking work

of Goldberg and Richardson [6], in which they nicely showed
how a niche-preserving technique can be introduced in a
standard genetic algorithm and multiple optimal solutions
can be obtained. Since that study, many researchers have
suggested methodologies of introducing niche-preserving tech-
niques so that, for each optimum solution, a niche gets
formed in the population in an evolutionary algorithm. In
this paper, we collect seven such main strategies and pro-
vide a brief description of each of them. We also suggest an
extension of an existing clearing strategy. Despite sugges-
tion of such varied methodologies, there does not seem to
exist any study which systematically compared the method-
ologies. Here, we make an attempt and apply all eight ap-
proaches to two existing five-modal problems. In addition,
we have suggested a versatile hump test problem which is
scalable to any number of variables, number and nature of
optimal basins in the search space. Algorithms are com-
pared on hump problems having as many as 25 variables
and 50 optima. Based on the repeated simulation results,
conclusions about the relative performance of the niching
methodologies is discussed.

2. EXISTING NICHING METHODS
Niching methods have been developed to reduce the effect

of genetic drift resulting from the selection operator in the
standard GAs. They maintain diversity in the population
and permit the GAs to find many optima in parallel. A
niche is commonly referred to as an optimum of the domain
and the fitness represents the resources of that niche.
A niching method must be able to form and maintain

multiple, diverse, final solutions, whether these solutions are
of identical fitness or different fitnesses. A niching method
must be able to maintain these solutions for a large enough
iterations. It is well known that a reduction in selection
pressure, selection noise, and operator disruption does not
typically result in a niching GA. What is required is not
just a slow selection process, nor a selection with reduced
noise, nor less disruptive operators, but a new type of algo-
rithm – one that promotes diversity along useful dimensions
of diversity, while allowing other dimensions to converge. A
niching method alters the selection operator to provide se-
lection pressure within, but not across regions of the search
space.
In the following subsections, we present various multi-

modal evolutionary algorithms available in the literature.
The symbols used for various niching methods considered
for comparison in this paper are as follows:

A1 : Clearing
A2 : Clustering
A3 : Deterministic Crowding
A4 : Probabilistic Crowding
A5 : Restricted Tournament Selection
A6 : Sharing
A7 : Species Conserving GA
A8 : Modified Clearing (proposed in this study)

2.1 Clearing
Petrowski [15], [16], [17] suggested the clearing procedure,

which is a niching method inspired by the principle of shar-
ing of limited resources within subpopulations of individuals
characterized by some similarities. Instead of evenly sharing
the available resources among the individuals of a subpopu-
lation, the clearing procedure supplies these resources only
to the best individual of each subpopulation. The clearing
is naturally adapted to elitist strategies.
The clearing procedure is applied after evaluating the fit-

ness of individuals and before applying the selection opera-
tor. The population is sorted from best to worst according
to the fitness values. Thereafter, all solutions having a crit-
ical distance measure (σclear) from the best κ solutions in
the population are cleared, meaning that their fitness values
are set to zero. However, the fitness of the best κ solutions
are kept as they are. After the clearing is over, the solutions
closer to the next best κ solutions are cleared as before and
the fitnesses of these next best κ solutions are not changed.
This procedure is continued till all solutions are considered.
The clearing procedure was shown to efficiently reduce the
genetic drift when used with an appropriate selection oper-
ator.

2.2 Clustering
Yin [19], [20] proposed a niching scheme using a clustering

methodology. A clustering algorithm is used to divide the
population into niches. The fitness is calculated based on the
distance dic between the individual and its niche centroid.
This significantly reduces the time complexity. The final
fitness of an individual is calculated by the relation:

Fi =
fi

nc (1− (dic/2dmax)α)
, (1)

where nc is the number of individuals in the niche containing
the the individual i, dmax is the maximum distance allowed
between an individual and its niche centroid, and α is a con-
stant. The formation of the niches is based on the adaptive
Macqueen’s K-mean algorithm. The algorithm begins with a
fixed number (k) of seed points taken as the best k individu-
als. Using a minimum allowable distance dmin between niche
centroids, a few clusters are formed from the seed points.
The remaining population members are then added to these
existing clusters or are used to form new clusters based on
dmin and dmax. These computations are performed in each
generation. As long as the number of clusters is not O(N),
this algorithm is computationally faster than the sharing
function approach.

2.3 Crowding: Restricted Replacement
Crowding, originally proposed by De Jong [1], is moti-

vated by analogy with competition for limited resources among
similar members of a natural population. Dissimilar popula-
tion members, often of differing species, occupying different
environmental niches, and therefore do not typically com-
pete for resources. Similar individuals on the other hand,
tend to occupy the same environmental niches, and must
compete for the same limited resources. When a niche has
reached its carrying capacity, weaker members of that niche
will be crowded out of the population by stronger members.
Older members of niche will eventually be replaced by fittest
of the younger members. In De Jong’s [1] crowding mecha-
nism newly created individuals in a population replace sim-
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ilar individuals. His method followed the standard genetic
algorithms except that only a fraction of the population re-
produces and dies in each generation and a percentage of
the population, specified by the generation gap (G), is cho-
sen via fitness proportionate selection to undergo crossover
and mutation. A random sample of CF individuals is taken
from the population, where CF is called crowding factor. Of
the CF elements, the one most similar to the element being
inserted gets replaced. Similarity is defined using phenotype
distance (distance in the decision parameter space) match-
ing.

2.3.1 Deterministic Crowding
Mahfoud in [13], [11], [12] analyzed De Jong’s [1] crowding

factor model and attributed its inability to maintain more
than two peaks of a multi-modal landscape due to stochastic
errors in replacement which create genetic drift and fixation.
Subsequent modifications to the algorithm included elimi-
nation of parameter requirements, reduction of replacement
errors and restoration of selection pressure. This leads to
a new crowding algorithm deterministic crowding [13], [11],
[12] that was capable of maintaining multiple peaks.
In the deterministic crowding, the population is randomly

paired into N/2 pairs, where N is population size, of indi-
viduals to undergo crossover to yield two offspring, which
then compete with parents for replacement. The pair of
tournament that force the closest competition is held, close-
ness being computed as shown below on the basis of average
distance between the pairs of parent-child on the basis of
phenotypic similarity. In case of a tie, parents are preferred.
The following procedure is to be performed N/2 times and
the overall procedure is to be repeated g generations:

1. Select two parents, p1 and p2, randomly with no re-
placement

2. Perform a crossover between them, yielding c1 and c2

3. Apply mutation/other operators, yielding c′1 and c
′
2

4. If [d(p1, c
′
1) + d(p2, c

′
2) ≤ d(p1, c

′
2) + d(p2, c

′
1)]

• If f(c′1) ≥ f(p1) replace p1 with c
′
1

• If f(c′2) ≥ f(p2) replace p2 with c
′
2

else

• If f(c′2) ≥ f(p1) replace p1 with c
′
2

• If f(c′1) ≥ f(p2) replace p2 with c
′
1

2.3.2 Probabilistic Crowding
Most of the crowding algorithms encountered until now,

replaced the upfront selection pressure with selection pres-
sure at the replacement stage through some form of localized
tournaments between similar individuals. Since a determin-
istic tournament was used, such methods will always prefer
higher fitness individuals over lower fitness individuals. This
finally leads to a loss of niches, whenever the tournaments
between global and local niches are played.
To prevent this deterministic nature of the algorithm and

thus provide a restorative pressure in such cases, Mengshoel
[14] proposed probabilistic crowding. In this case, a prob-
abilistic acceptance (replacement) rule was proposed that
permitted higher fitness individuals to win over lower fit-
ness individuals in proportion to their fitness. This allows a

restorative pressure and prevents the loss of niches of lower
fitness. Essentially the algorithm is deterministic crowding
with a probabilistic replacement operator.
In the probabilistic crowding, two similar individuals X

and Y compete in a probabilistic tournament where the
probability of X winning the tournament is given by:

p(X) =
f(X)

f(X) + f(Y )
, (2)

where f is the fitness function.

2.4 Restricted Tournament Selection
Harik [8], [9] introduced a modified tournament algorithm

that exhibited niching capabilities. Restricted tournament
selection works, by initially selects two elements at random,
A and B, from the population and perform crossover and
mutation on these two elements resulting in two new ele-
ments, A′ and B′. A′ and B′ are then to be placed into the
population as in a steady state GAs. RTS scheme allows
the GAs to choose which present element each inserted pair
of element will replace. For each of A′ and B′ RTS scans w
(window size analogous to CF in Crowding) more members
of the population and picks the individual that most closely
resemble A′ or B′ from those w elements. Let these ele-
ments be called A′′ and B′′ . A′ then compete with A′′ and
if A′ wins, it is allowed to enter the population. A similar
competition occurs between B′and B′′. This kind of tour-
nament will restrict an entering element of the population
from competing with others that are too different from it.
Harik tested his method on several multi-modal problems

having the number of peaks varying from 5 to 32. The al-
gorithm was able to maintain individuals at all the peaks,
through some of the peaks gradually lost a number of ele-
ments. It was able to maintain all the global optima in the
massively multi-modal problem.

2.5 Sharing
Goldberg and Richardson’s [6] fitness sharing algorithm

was one of the first attempt to deal directly with the location
and preservation of multiple solution in a GAs. The fitness
sharing algorithm took a cue from nature, restricting the
multiple growth of one type of individuals by making each
individual in the population to share its fitness assignment
with nearby elements in the population. Genetic algorithms
with sharing are well known for tackling multi-modal func-
tion optimization problems. Niches have been introduced in
GAs by dividing the population into different subpopulation
according to the similarity of the individuals. When a cer-
tain limiting number of individuals are occupying a niche,
it becomes favorable for other individuals to search for a
new niche available in the search space. Thus, an algorithm
must find an equilibrium between the number of individuals
occupying a niche and the payoff the niche. Such methods
would lead to a state where the number of individuals occu-
pying a niche is proportional to the fitness of the niche. It
is implemented by degrading an individual’s payoff due to
the presence of other individuals in its neighborhood, and
the amount of sharing contributed by each individual into
its neighbor depends on the proximity between the two.

fshared(i) =
foriginal(i)

ni
where ni =

PN
j=1 Sh(dij) (3)
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Here, Sh(dij) represents the sharing function which is a
power function of the form:

Sh(dij) =

(
1−

“
dij

σshare

”α

if d < σshare;

0 otherwise.
(4)

Other sharing functions can also be developed, through
the above mentioned is by far the most prevalent. Here α
denotes the scaling factor and σshare the niche radius. The
fitness-sharing algorithm require both a distance metric over
the population space and parameter σshare. The σshare pa-
rameter defines for each individual, the maximum distance
over which it has to share its fitness with other population
members. Later work on fitness-sharing by Deb and Gold-
berg [5] studied this parameter and involved a direct com-
parison between fitness-sharing and the crowding algorithm
developed by De Jong [1]. Deb and Goldberg [4] showed
that one possible way to set σshare would be to divide the
search space into a number of equal sized hyper-space equal
to the number of sought out optima.

2.6 Species Conserving Genetic Algorithms
Species conserving genetic algorithms (SCGA) by Li et al.

[10] is a recent technique for evolving parallel subpopulations
using species conservation. SCGA is based on the concept
of dividing the population into several species according to
their similarity. Each of these species is built around a domi-
nating individual called the species seed. Species seeds found
in the current generation are saved (conserved) by moving
them into the next generation. The proposers claim that
the technique has been proven to be very effective in finding
multiple solutions of multi-modal optimization problems.
The definition of a species, as well as the operation of the

SCGA, depends on a parameter called the species distance,
which denoted by σs. The species distance specifies the
upper bound on the distance between two individuals for
which they are considered to be similar. In their approach
they proposed that the species distance be used to determine
which individuals are worth preserving from one generation
to the next.
A species is a subset, in which the distance between any

two individuals is less than the species distance. Note that
we do not require that any two individuals satisfying the
condition that the distance between them is less than the
species distance belong to the same species. In SCGA pop-
ulation is partitioned into species by a technique dominating
individual or species seeds.
To determine the individuals that are to be copied into

the next generation, we need to partition the current gen-
eration into a set of dominated species and determine the
dominating individuals in each of these species. In the algo-
rithm, Xs denotes the set of species found in generation t.
The algorithm builds the set Xs by successively considering
each of the individuals in t, in decreasing order of fitness.
When an individual is considered, it is checked upon against
the species seeds found so far. If Xs does not contain any
seed that is closer than half the species distance (σs/2) to
the individual considered, then the individual will be added
to Xs.
Once all the species are been found, the new population is

constructed by applying the usual genetic operators: selec-
tion, crossover, and mutation. Since some species may not
survive following these operations, we copy them into the

new population and thus enable them to survive. However,
the number of species is always less than the population size.

3. PROPOSED MODIFIED CLEARING
APPROACH

We modify the clearing approach discussed above, so as
to make it more effective and reliable.

Best solution Cleared soln.

1.5r

r

  3r

Figure 2: Shifting in individuals in modified clearing
approach. The parameter r is the clearing radius.

Clearing takes the best individual (we choose κ = 1 here)
and makes the fitness of all other individuals zero in the
range of critical distance measure (σclear) except the best
solution. This means that inferior individuals (cleared so-
lutions) do not get a chance to participate in crossover and
mutation operations. This is because they do not get se-
lected due to having zero fitness value under a proportion-
ate selection scheme. Although these solutions occupy pop-
ulation slots, these cleared solutions are of no use in the
original clearing method. In the proposed modified clearing
approach, instead of wasting population slots, we reallocate
these individuals outside the range of their respective best
individual in the hope of finding better interesting areas in
the search space.
After doing the clearing, as described earlier, we search

for the individuals which have a zero fitness value. There-
after, each such solution is checked for its belonging to the
basin of attraction of any solution having a non-zero fitness
with 1.5 times the clearing radius or 1.5×σclear. If any such
solution is found, the zero-fitness solution is shifted to the
region 1.5×σclear to 3×σclear at random, as shown in the Fig-
ure 2 and its fitness is evaluated again. This method has all
strengths of the clearing method. In addition, the realloca-
tion of bad solutions allows the method to explore the search
space for better solutions. It is needless to write that such
an modification comes with an extra computational cost of
reallocating the bad solutions. Such a reallocation strategy
can be repeated till a solution is placed outside the basin
of all solutions having a non-zero fitness, the computational
cost will be more. To simplify matters, we reallocate each
solution only once and redo the clearing strategy.
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4. COMPLEXITY OF VARIOUS NICHING
METHODS

Table 1 shows the computational complexity of one iter-
ation of various methods studied in this paper. The table
shows that the crowding methods have the minimum com-
plexity. For the sharing approach, the complexity is O(N2)
which comes from calculating the niche count value. In the
clearing approach, the complexity is smaller than O(N2),
because a clearing step is applied only after sorting the indi-
viduals according to the their fitness values and not applied
to every population member. The complexity for RTS is
N ×w, where w is window size (the niching parameter used
in RTS), since for every individual the distance is computed
w times. The complexity of species converging approach is
between O(N) and O(N2). In the clustering algorithm, Nc

is number of clusters and C is a constant, which is propor-
tional to the number of iterations needed to find a stable
set of clusters. The modified clearing has a reasonably large
complexity, as the clearing is performed twice in every gen-
eration.

Table 1: Complexity of various methods used in this
study.

Algorithm Complexity
1 Sharing N2

2 Clearing CN
3 Deterministic Crowding O(N)
4 Probabilistic Crowding O(N)
5 RTS N ×w
6 SCGA > O(N) and < O(N2)
7 Clustering C ×Nc ×N
8 Modified Clearing 3×N2

5. TEST FUNCTIONS
Several test problems are considered to test and compare

the niching schemes maintained above. The test functions
are selected as representative of other functions with equal
and unequal peaks and equal and unequal peak separation.
The first two test problems were originally suggested else-
where [4] and the third function is a multi-variable, multi-
peaked function.

P1: A periodic function having peaks of equal size
and interval:

P1(x) = sin
6 (5πx). (5)

This function has five peaks in the interval 0 ≤ x ≤ 1, as
evident from the argument of the sine function and they
are located at x = 0.1, 0.3, 0.5, 0.7 and 0.9. In all these
locations, the objective function values are same and equal
to one.

P2: A periodic function having peaks of unequal
size and interval:

P2(x) = e−2(ln 2)( x−0.01
0.8 )2 sin6 (5π[x0.75 − 0.05]). (6)

This function is having five peaks function in the interval 0
≤ x ≤ 1, with peaks of decreasing magnitude and increasing
period.

P3: Hump Problem with arbitrary number of
peaks:

Hump is a multi-variable function, in which K peaks (all
maxima) are generated at random locations, with different
shapes and size. All variables are initialized within [0, 1].
First, the location x∗

k and radius rk of the basin of attraction
of each maximum is randomly created so that the distance
between the two neighboring maxima (l and m) is at least
equal to (rl + rm). For the k-th maxima, a peak-height
hk and a shape factor αk are also randomly chosen. To
compute the objective value of a solution x, first the nearest
peak (say k-th maximum, residing in the basin of attraction
of k-th peak) is identified and then the Euclidean distance
d(x, k) is identified between the solution x and the center of
the k-th maximum. Then, the following equation is used to
compute the function value:

f(x) =

(
hk

h
1−

“
d(x,k)

rk

”αk
i
, if dik ≤ rk;

0, otherwise.
(7)

With the above setting, multi-modal test problems having
different complexities can be created by choosing hk, rk,
αk and maximum number of peaks K. Figure 1 shows the
resulting hump function for a two-variable, 20-peaked (K =
20) problem having different values of hk, rk and αk.

6. PERFORMANCE MEASURES
With the niching methods and functions chosen, perfor-

mance measure is selected next to allow a suitable compari-
son of different methods. Since the number of optima to be
found is a known quantity in these test problems, we use the
number of obtained peaks Npeaks as a performance metric.
Also, we use the computational time (on a Pentium IV 1.8
GHz) as the second performance measure.

7. SIMULATION RESULTS
The niching methods A1-A8 are employed on the func-

tions P1 and P2 with different parameter settings, which
are shown in Table 2. Real-coded genetic algorithms with
SBX [3] as a recombination operator, and the polynomial
mutation operator [2] are used for all eight methods. Above
parameters are found to perform (experimentally) the best
for each of the algorithm and are held constant for all runs
on functions P1 and P2. To minimize the stochastic error
due to the selection procedure, the stochastic reminder se-
lection method [7] is used.

7.1 Function P1
Function P1 has five peaks in the search space. Different

niching methods (A1-A8) are applied on this function and
solutions after 200 generations are plotted (and evaluated)
on the function itself in Figure 3. Although solutions close to
the true optima were found much earlier (around 100 gener-
ations), we run the algorithms for 200 generations to inves-
tigate if any algorithm had any effect of losing optima with
generations. The convergence of population to all peaks can
be clearly seen for clearing, deterministic crowding, RTS,
and the modified clearing approaches. The distribution of
solutions are the best for the RTS approach, followed by the
clearing and the modified clearing approaches. The perfor-
mance of probabilistic crowding and SCGA are worst and
cannot find one of the five optima.
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Table 2: Parameter settings for problems P1 and P2 used by all eight algorithms A1 to A8.
Algorithms Pop. Gen. X-Over Mu ηm ηc Algorithm Specific parameter

A1 50 200 0.56 0.1 15 20 σclear=0.1, κ=1
A2 50 200 0.7 0.08 5 10 no of cluster=10,dmin=0.04,dmax=0.1
A3 50 200 1.0 1.0 5 10 -
A4 50 200 1.0 1.0 5 10 -
A5 50 200 0.7 0.8 5 15 window size(w)=20
A6 50 200 0.8 0.08 15 20 σshare=0.1,α=1.0
A7 50 200 0.9 0.05 5 10 species distance=0.01 & 0.02
A8 50 200 0.5 0.09 15 20 σclear=0.1, κ=1
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7.2 Problem P2
Function P2 has five peaks and the peaks are unequally

spaced and of unequal heights. Different niching methods
(A1-A8) are applied on this function and solutions after 200
generations are plotted on the function itself. Figure 4 shows
the obtained solutions by algorithms A1 to A8. RTS and the
two clearing approaches perform best here. Although shar-
ing approach finds all five peaks, the distribution of points
around the optima is not crisp as it is in RTS or in the case
of modified clearing. The effect of modified clearing over the
original clearing approach is evident here.
From all above results, we can conclude that although all

algorithms except the probabilistic crowding, species con-
verging, and clustering approaches are able to find and main-
tain all optima in the above two problems, the restricted
tournament selection, clearing, and the modified clearing
approach find the crisply and with reliability. Similar con-
clusion about clearing method was also made in another
study [18].

7.3 Generic Hump Functions
The previous two problems involved only one variable.

Here, we apply all eight multi-modal optimization algorithms
on five to 25-variable hump function having as large as 50 op-
tima. We have chosen a constant radius (rk = 0.29 for five-
variables, 0.60 for ten-variables, 1.45 for 25-variable prob-
lems), a constant height of hk = 1.0, a constant shape pa-
rameter of α = 1.0. An algorithm is said to have found
a particular peak if it is able to find at least one solution
within 0.15 times the radius of the peak from the midpoint
of the peak. In the results presented here, tables show the
success rate (average number of optima found over 50 inde-
pendent runs), standard deviation in the success rate, com-
putational time taken by an algorithm for a given number
of overall evaluations and standard deviation in the compu-
tational time. In the tables, SR stands for success rate, SD
is deviation in the success rate, TT is time taken, and TSD
is the standard deviation in the time taken.
For each problem, ten different parameter settings are

used to develop ten instantiations of the problem. There-
after, each problem is solved with five different initial pop-
ulations, therefore making a total of 50 runs for each algo-
rithm and for each problem. Every hump function is con-
structed once and the same is used for all algorithms.

7.3.1 Five-Variable Hump Problem
First, we discuss the five-variable problem. The popula-

tion size for 20, 30, 40 and 50-peak problem are chosen to
be 800, 900, 1000 and 1100, respectively. The performance
of all algorithms is shown in Table 3. From the table it is
evident that the restricted tournament selection, determinis-
tic crowding, clearing, and the modified clearing approaches
perform better. In terms of computational time, the deter-
ministic crowding is still much ahead of others. Just like the
two-variable hump function, the modified clearing approach
still shows the unique consistency as far as the number of
peaks is concerned, although here the computational time
taken is more than that of others.

7.3.2 Ten-Variable Hump Problem
Next, we consider 10-variable version of the hump func-

tion. Here, all parameters remain the same, except the nich-
ing parameter. For this problem, the population size for 20,

Table 3: Five-variable hump function.
A1 A2 A3 A4 A5 A6 A7 A8

K
SR 11.9 12.2 19.9 0.0 20.0 11.9 7.06 20.0

20 SD 2.12 0.25 0.19 0.0 0.00 2.00 2.74 0.00
TT 10.3 8.30 3.78 -.- 9.88 27.8 49.5 258.2

TSD 0.19 2.45 0.34 -.- 1.33 0.75 36.4 66.3
SR 29.9 16.7 29.9 0.0 30.0 14.6 10.7 30.0

30 SD 0.58 3.47 0.58 0.0 0.00 4.01 3.47 0.00
TT 11.6 23.3 6.08 -.- 14.7 36.1 58.1 314.6

TSD 1.52 15.8 0.31 -.- 4.27 0.50 55.5 104.5
SR 40.0 16.7 39.5 0.0 40.0 16.4 13.4 40.0

40 SD 0.00 3.48 1.10 0.0 0.00 3.65 3.52 0.00
TT 27.8 22.8 8.54 -.- 25.9 46.1 88.3 390.5

TSD 1.29 17.2 0.20 -.- 0.50 1.14 32.7 52.8
SR 50.0 19.2 49.1 0.0 49.7 22.3 16.8 50.0

50 SD 0.00 3.25 1.20 0.0 0.64 3.50 2.34 0.00
TT 19.4 23.7 11.2 -.- 24.5 56.9 98.0 454.0

TSD 0.96 8.83 0.42 -.- 1.33 1.30 75.4 257.0

30, 40 and 50-peak problems are chosen to be 1,200, 1,300,
1,400 and 1,500, respectively. In the deterministic crowd-
ing approach, the population size is fixed to be 400 and the
number of generations taken are 300, 325, 350, and 375, re-
spectively. The performance of all algorithms is shown in
Table 4. The table shows that restricted tournament selec-
tion, deterministic crowding, clearing and modified clearing
methods are better, although the deterministic crowding ap-
proach is not able to maintain enough peaks as compared
to other three successful methods. It is also clear that in
terms of finding the optima reliably, the modified clearing
method is ahead of all others, but with a somewhat larger
computational time.

Table 4: Ten-variable hump function.
A1 A2 A3 A4 A5 A6 A7 A8

K
SR 17.5 2.62 17.8 0.0 19.8 1.30 0.20 20.0

20 SD 2.92 1.84 2.28 0.0 0.51 1.68 0.00 0.0
TT 22.5 16.6 11.8 -.- 28.4 86.4 243.6 1322.9
SD 1.56 5.17 1.18 -.- 2.15 6.63 274.2 2144.3
SR 26.6 2.86 17.9 0.0 29.5 1.24 0.2 30.0

30 SD 0.91 1.92 3.72 0.0 1.13 0.93 0.00 0.0
TT 30.8 29.0 16.4 -.- 54.3 101.7 170.7 1526.8
SD 3.92 16.8 0.28 -.- 23.3 6.04 97.6 1991.2
SR 37.6 2.86 25.4 0.0 38.2 1.06 0.20 40.0

40 SD 2.90 2.04 5.29 0.0 1.08 1.52 0.00 0.0
TT 42.3 36.2 32.6 -.- 75.9 335.1 136.6 1893.7
SD 3.02 31.4 6.35 -.- 5.97 136.5 54.0 2257.1
SR 47.1 3.18 33.1 0.0 47.5 0.0 0.20 50.0

50 SD 2.24 2.55 6.63 0.0 4.45 0.0 0.00 0.0
TT 54.0 44.9 33.6 -.- 83.9 -.- 154.5 2379.6
SD 11.3 15.4 3.25 -.- 22.8 -.- 138.7 2174.0

7.3.3 25-Variable Hump Problem
Finally, we consider the 25-variable hump problem. By no

means, this is an easy task. To investigate the real winner,
we increase the population size to 3,000 and run all GAs till
100 generations. In this problem, the radius of each peak is
chosen to be 1.45 and all peaks are considered to have an
equal height of 1.0, and the shape of the landscape is triangu-
lar. We have performed simulations with all eight methods
and observed that all algorithms except clearing methods
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are not able to be find even a single optimum, whereas the
clearing approach finds about 43 peaks and the modified
clearing approach is able to find all 50 optima. Since most
algorithms did not find a single optimum, we do not present
the results in a tabular format.

8. CONCLUSIONS
In this paper, we have compared seven existing niche-

preserving evolutionary algorithms with a proposed modi-
fied clearing strategy in finding and maintaining multiple
optimal solutions. Three problems are chosen for this pur-
pose, of which one is a scalable test problems providing a
simple way to generate test problems having any number
of optima and any shape of optimal basin. Two metrics –
number of obtained optima and computational time – are
used as a performance measure. Results have shown that
various niching algorithms improve the algorithms’ ability to
maintain stable subpopulations at significant peaks. Among
the investigated niching methods, most methods are able
to do fairly well, and restricted tournament selection ap-
proach, deterministic crowding approach, original clearing
approach and the proposed modified clearing method have
shown to exhibit better niching property compared to other
approaches.
As the number of optima is increased and the dimension

of the search space is increased the deterministic crowding
approach and the restricted tournament selection approach
have not performed well. However, both clearing approaches
show better performance. For the 25-variable problem hav-
ing 50 peaks, the modified clearing approach is the only
procedure (of the eight algorithms studied here) which has
been able to find all global optimal solutions in the hump
problem on all 50 simulation runs.
The success of the modified clearing approach comes with

a computational burden of performing the clearing approach
twice in every generation. However, the method has been
found to provide consistent performance of finding all op-
tima present in a problem. These results are interesting and
should provide enough clues to researchers to develop new
and more efficient algorithms for multi-modal optimization.
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