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We study an atomic Bose-Fermi mixture with unpolarized fermions in an optical lattice. We
obtain the Mott ground states of such a system in the limit of deep optical lattice and discuss the
effect of quantum fluctuations on these states. We also study the superfluid-insulator transitions of
bosons and metal-insulator transition of fermions in such a mixture within a slave-rotor mean-field
approximation, and obtain the corresponding phase diagram. We discuss experimental implications
of our results.
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I. INTRODUCTION

Recent experiments on ultracold trapped atomic gases
have opened a new window onto the phases of quan-
tum matter1. A gas of bosonic atoms in an optical or
magnetic trap has been reversibly tuned between super-
fluid (SF) and insulating ground states by varying the
strength of a periodic potential produced by standing
optical waves1,2. This transition has been explained on
the basis of the Bose-Hubbard model with on-site re-
pulsive interactions and hopping between nearest neigh-
boring sites of the lattice.3,4,5,6,7. Further, theoreti-
cal studies of bosonic atoms with spin and/or pseu-
dospin have also been undertaken8,9,10,11. These studies
have revealed a variety of interesting Mott phases and
superfluid-insulating transitions in these systems. On the
fermionic side, the experimental studies have mainly con-
centrated on the observation of paired superfluid states12

and the BCS-BEC crossover in such systems near a Fes-
hbach resonance13.

More recently, it has been possible to generate mix-
tures of fermionic and bosonic atoms in a trap14,15. Ini-
tially, the main focus of such experimental studies were
to generate quantum degenerate Fermi gases, through
sympathetic cooling with bosons. However, a host of
theoretical studies followed soon, which established such
Bose-Fermi mixtures to be interesting physical systems
in their own right16,17,18,19,20, exhibiting exciting Mott
phases in the presence of an optical lattice. In all of
these works, the spin of the fermions in the mixture is
taken to be frozen out due to the presence of the mag-
netic trap. However, more recent works reported in Refs.
21 and 22, considered a Bose-Fermi mixture in an optical
trap, where the spins of the fermions can be dynamical
degrees of freedom23. It has been shown in Ref. 21 that
the interaction between the bosons and the fermions in
such a mixture can enhance the s-wave pairing instability
of the fermions.

In this work, we consider a Bose-Fermi mixture in an
optical trap and in the presence of an optical lattice
and study the Mott phases and the metal/superfluid-
insulator transition for the fermions/bosons of such a
mixture using a slave-rotor mean-field theory24. The mo-
tivation for such a study is two-fold. First, it has been
shown in Ref. 18 that the Mott phases of Bose-Fermi mix-
tures in a magnetic trap are interesting in their own right.
In the present study, we chart out the Mott phases of the
Bose-Fermi mixture in an optical trap, where the Fermion
spins are dynamical degrees of freedom, in the deep lat-
tice limit for a wide range of parameters. As expected,
we find that the corresponding Mott phases obtained are
much richer than their counterparts studied in Ref. 18.
Second, the metal/superfluid-insulator transition of the
fermions/bosons in such an interacting Bose-Fermi mix-
ture has not been studied before. Here we develop a self-
consistent slave-rotor mean-field theory to study such a
transition for the Mott phases which do not have density-
wave order with broken translational symmetry and use
it to obtain at least a qualitative understanding of the
effect of interaction between the fermions and the bosons
on the metal/superfluid-insulator transition.

In what follows, we shall assume that the atoms are
confined using an optical trap so that Fermions spins are
not frozen out. We shall, however, ignore the effect of
the harmonic trap potential which is a standard approxi-
mation used extensively in the literature25. The starting
point of our study is the Bose-Fermi Hubbard Hamilto-
nian that has been developed earlier, with similar ap-
proximation regarding the trap potential, from underly-
ing microscopic dynamics of the atoms in the presence of
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an optical lattice17

H = HF + HB + HFB (1)

HF = −tF
∑

〈ij〉σ

(

c†iσcjσ + h.c
)

−µF

∑

iσ

nF
iσ + UFF

∑

i

nF
i↑n

F
i↓ (2)

HB = −tB
∑

〈ij〉σ

(

b†ibj + h.c
)

−µB

∑

i

nB
i +

UBB

2

∑

i

nB
i

(

nB
i − 1

)

(3)

HFB = UFB

∑

iσ

nF
iσn

B
i (4)

Here ciσ is the fermionic destruction operator with spin
σ =↑, ↓ at site i, bi represents bosonic destruction op-
erator at site i, nF (B) denotes Fermion(Boson) number
operators, tF (B) and µF (B) are nearest neighbor hopping
matrix elements and chemical potentials for the fermions
(bosons), UBB and UFF are the on-site Hubbard re-
pulsion for bosons and fermions respectively, and UFB

denotes the relative interaction strength between the
bosons and the fermions. In what follows, we shall take
the bosons and the fermions to have fixed chemical poten-
tials µB(F ) and same on-site repulsion UBB = UFF = U
and consider λ = UFB/U and η = tF /tB as parameters
which can be freely varied. The justification of this choice
is briefly outlined in Sec. II. Further, we shall only deal
with case of a square bipartite lattice in this work since
this is simplest to realize experimentally.

The organization of the rest of the paper is as fol-
lows. In the next section, we identify the Mott phases
of Eq. 1. Next, in Sec. III, we introduce the slave rotor
formalism and use it within a mean-field approximation
to study the metal/superfluid-insulator transition of the
Bose-Fermi Hubbard model (Eq. 1). This is followed by a
discussion of possible experiments in Sec. IV. A compar-
ison of the Mott-Hubbard phase diagram obtained using
the projection operator technique with those obtained
from mean-field theories3,5,6 and standard strong cou-
pling expansions26 is given in Appendix A.

II. MOTT PHASES

In this section, we chart out the Mott phases of the
Bose-Fermi system. To do this, we first obtain the phases
of the system in the Mott limit (tB = tF = 0) and
then obtain fluctuation corrections over these states to
O(t2B(F )/U

2).

Before obtaining the Mott phases for the Bose-Fermi
mixture, let us look briefly into the parameters of the
Hubbard model (Eq. 1). These can be determined from
the microscopic quantities such as the potential depths
VF (B) due to the laser seen by the atoms and their recoil

energies ER
F (B) = ~

2k2
L/2mF (B) where kL is the wave-

vector of the laser and mF (B) are the masses of the
fermions(bosons). The potential depth seen by the atoms
depend on the detuning of the laser from their natural
wavelengths λF (B) of the fermions(bosons). In fact, it
can be shown that, the ratio of the lattice potentials seen
by the fermions and bosons are21

VF

VB
=

λ4
F ΓF ∆λB

λ4
BΓB∆λF

(5)

where ∆λF (B) = λL−λF (B) denote the detunings for the
fermions(bosons) and ΓF (B) are the corresponding natu-
ral linewidths. Since the ratio of the natural linewidths is
generally close to unity14,21, we see that one can tune the
ratio of the lattice depths seen by bosons and fermions
by varying the detunings.

In terms of these quantities, we have17

tB(F ) =
(

2/
√
π
)

(

ER
B(F )V

3
B(F )

)1/4

e
−2

s

VB(F )

ER
B(F )

UBB(FF ) =
√

8/π
(

ER
B(F )V

3
B(F )

)1/4

kLaBB(FF )

UFB =

(

ER
F V

3
BV

3
F

)1/4
(1 +mF /mB)kLaBF

√

π/16
(√

VB +
√

VFEB/EF

)3/2

(6)

where aFF , aBB, and aFB are the s-wave scattering
lengths for interaction between two fermions, two bosons
and a Fermion and a Boson respectively. These scatter-
ing lengths also can be varied either by choosing different
species of fermions or bosons or by tuning them using
Feshbach resonance. Further, as we have discussed be-
fore, by choosing the laser detuning we can also make the
fermions and bosons see either similar or very different
lattice potentials. Therefore, instead of calculating these
parameters from the microscopics, we shall aim to por-
tray a general picture of the Mott phase diagram. Since
the experimental possibilities are limitless, for the sake of
brevity, we choose UBB = UFF = U and vary the ratios
λ = UBF /U and η = tF /tB. It is clear from the above
discussions that such a situation can be always achieved
in experiments. We shall consider some such specific ex-
amples in Sec. IV.

Next, we consider the Bose-Fermi Hubbard Hamilto-
nian in the Mott limit. In this limit, the on-site states
can be represented as

∣

∣nB
0 , n

F
0

〉

and the energy is given
by

E
[

nB
0 , n

F
0

]

= EF [nF
0 ] + EB [nB

0 ] + EFB [nB
0 , n

F
0 ]

EF [nF
0 ] = −

(

µ′
F − 1

2

)

nF
0 +

1

2

(

nF
0 − 1

)2

EB [nB
0 ] = −µ′

Bn
B
0 +

1

2
nB

0

(

nB
0 − 1

)

EFB [nB
0 , n

F
0 ] = λnF

0 n
B
0 (7)
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where we have scaled all energies by U and µ′
F (B) =

µF (B)/U . It can be seen from Eqs. 7, that two states
∣

∣nB
0 , n

F
0 − 1

〉

and
∣

∣nB
0 − 1, nF

0

〉

are degenerate when

(λ− 1)(nF
0 − nB

0 ) = µF − µB (8)

whereas three states
∣

∣nB
0 , n

F
0

〉

, |nB
0 , n

F
0 − 1 > and |nB

0 −
1, nF

0 > are degenerate when

µ′
F =

(

nF
0 + nB

0 λ− 1
)

µ′
B =

(

nF
0 λ+ nB

0 − 1
)

. (9)

The conditions of these degeneracies, of course, depend
on our choice of parameters of the model. It is also to be
noted that in Eqs. 8 and 9, nF

0 and nB
0 in the ground state

are themselves functions of µ′
F , µ′

B and λ, and have to be
determined by minimizing Eq. 7 subject to the constraint
of nF

0 and nB
0 being integers.

The ground state phase in the Mott limit (tb = tF = 0)
diagram can be obtained by numerically minimizing the
ground state energy (Eq. 7) for integers 0 ≤ nF

0 ≤ 2
and nB

0 . For the sake of brevity, we carry out the nu-
merical computation for µ′

B = µ′
F = µ and present the

phase diagram as a function of µ and λ. The phase di-
agram for λ > 0 is shown in Fig. 1. We find, as ex-
pected from the results of Ref. 21, for λ > 1, the fermions
and the bosons repel each other out from a given site so
that a site is occupied by either a Boson or a Fermion,
but not both. Such states were dubbed as ”compos-
ite” states of bosons/fermions with a correlation hole of
fermions/bosons in Ref. 21. However, in the present sce-
nario, the spins of the fermions are dynamical degrees of
freedom which leads to richer variety of possible phases,
as we discuss below.

As expected from discussions leading to Eq. 8,
a large portion of phase diagram has degenerate
ground states corresponding to

∣

∣nB
0 = 0, nF

0 = 1
〉

and
∣

∣nB
0 = 1, nF

0 = 0
〉

. Note that in terms of the origi-
nal fermions, the degeneracy is actually threefold corre-
sponding to states |0, ↑〉, |0, ↓〉 and |1, 0〉. This degeneracy
is lifted by quantum fluctuations due to the presence of
small but finite tF and tB. This can lead to three differ-
ent ground states as sketched in Fig. 2: A) an antiferro-
magnetic state of fermions with no bosons, B) A state of
one boson per site and no fermions, and C) A state with
fermions and bosons being the nearest neighbors with an
antiferromagnetic order for the fermions. The energies
of these states can be estimated using a straightforward
O(t2B(F )/U

2) perturbation theory and are given by

EA = −Nzt
2
F

U
= −Nzt

2
B

U
η2

EB = −2Nzt2B
U

EC = −Nzt
2
B

2λU
(1 + η2) (10)

where N is the total number of sites in the system and
z is the coordination number of each site. Comparing

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

(1,0) or (0,1)

(1,1)

(3,0)

(2,0) or (0,2)

(1,2) or (2,1)
(2,2)

FIG. 1: (Color online) Ground state phase diagram in the
atomic limit for µ = µ′

B = µ′

F and λ > 0. The phases are
marked by values of (nB

0 , nF

0 ) in the ground state. For large
λ, the system tries to avoid putting bosons and fermions at
the same site. The threefold degeneracy between (1, 0) and
(0, 1) as well as (2, 1) and (1, 2) occur for a large portion of
the phase diagram. In addition, there are doubly degenerate
regions such as (2, 0) and (0, 2). These degeneracies are lifted
by virtual hopping process for small but finite tB and tF

the energies of the states from Eq. 10, we find that
state A is favored over B and C when η2 > 2 and
λ > (1 + η−2)/2. Similarly the state B is favored for
η2 < 2 and λ > (1 + η2)/4 and state C for small λ when
(1 + η2)/(2λ) > Max

[

2, η2
]

. The corresponding phase
diagram is shown in Fig. 2.

With only a nearest-hopping term in the Hamiltonian,
the antiferromagnetic ordering in the ground state C is
in fact frustrated. Indeed, 4th-order (in t) virtual hop-
ping leads to an antiferromagnetic coupling both between
next-nearest-neighbor sites and next-next-nearest sites
(Fig. 3). In practice, however, this frustration is sup-
pressed by O(t′2/U) corrections that arise from the next-
nearest neighbor hopping t′ (not included in the Hamilto-
nian (2)), leading to an antiferromagnetic order at wave-

vector (π/a, 0) (or (π/
√

2a, π/
√

2a) in a reference frame
tilted by 45o), in two dimensions as shown in Fig. 2.
This should be contrasted with the usual (π/a, π/a) or-
dering realized either for state A or for the (1,1) state
shown in Fig. 1. Additional hopping amplitudes (e.g.
the next-next-nearest-neighbor hopping t′′) are expected
to be smaller and will not affect the antiferromagnetic
ordering of the ground state C. A similar consideration
applies for the degenerate states (2, 1) and (1, 2) where
quantum fluctuations will similarly lift the degeneracies.
Notice that the possibilities of having a ferromagnetic
state of fermions where all sites are uniformly occupied
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0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

B A

C

FIG. 2: (Color online) Possible ground states A, B and C
that results from lifting the classical degeneracy of the ground
states (nB

0 , nF

0 ) = (1, 0) and (0, 1) due to quantum fluctua-
tions. Notice that the antiferromagnetic ordering of state C
is different from state A and is a consequence of very weak
next nearest neighbor hopping. Similar states will result when
the degeneracy of the states (2, 1) and (1, 2) is lifted.

FIG. 3: Virtual hopping (dashed lines) leading to frustra-
tion of the antiferromagnetic ground state C. This frustration
is lifted and an antiferromagnetic ground state stabilized by
virtual hopping generated by the kinetic coupling t′ between
next-nearest neighbor sites (located at opposite corners of the
square lattice unit cell).

by ↑ or ↓ fermions never occur since such a state neces-
sarily suppresses Fermion hopping due to Pauli principle
and is thus higher in energy compared to the state A.

Finally, we point out that lifting of degeneracy by
quantum fluctuations also occurs for the twofold degen-
erate states labeled as (2, 0) or (0, 2). Note that the state
(2, 0) corresponding to two fermions per site requires that
all second order virtual hopping processes are suppressed,
unless higher bands are involved. Hence such a state
is energetically unfavorable and is never realized. The
two other states are D) a homogeneous state with two
bosons per site and E) a state with alternate arrange-
ments of two bosons and two fermions per site. The
energies of these states are given by ED = −6Nzt2B/U
and EE = −Nzt2B(1 + η2)/(2λ − 1)U . The latter state

1 2 3
-4

-3

-2

-1

0

(11,2)
(10,2)

(9,2)

(8,2)

(7,2)

(6,2)

(5,2)

(4,2)

(1,1) (2,2)

(3,2)

FIG. 4: (Color online) Ground state phase diagram in the
Mott limit for λ < 0. The number of fermions per site is
nF

0 = 2 while the number of bosons per site is shown in each
phase for large negative λ.

(E) is thus favored over state (D) for η2 > 6(2λ− 1)− 1.

In contrast for λ < 0 (i.e. UBF < 0), there are no
degeneracies. The (1, 1) state persists at small negative
λ. For |λ| > 1, the system always has two fermions per
site with n0 bosons, where n0 is the integer which mini-
mizes E[n0] = −µn0 + n0(n0 − 1)/2− 2|λ|n0. The phase
diagram is shown in Fig. 4 as a function of µ and λ. The
phase diagram corresponds to Mott phase of bosons cou-
pled with non dynamical fixed number of fermions. Note
that analogous composite states with n0 bosons and one
Fermion were found and dubbed as ”composite Fermion”
states in Ref. 21. Here we have almost identical states
at large negative λ with the difference that there are two
fermions per site (instead of one per site as in Ref. 21)
owing to the fact that Fermion spins are not frozen in
the present study.

III. SLAVE ROTOR MEAN FIELD THEORY

In this section, we construct a slave-rotor mean-field
theory for the coupled Bose-Fermi problem and use it
to study the metal/superfluid-insulator transition in this
system. We develop the formalism for the mean-field
theory in Sec. III A, and discuss the results obtained in
Sec. III B
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A. Formalism

We begin by implementing the slave rotor formalism24

in the present context. This key observation behind this
formalism is that the fermionic Hubbard Hamiltonian
(Eq. 2) can be mapped onto a Hamiltonian of free auxil-
iary Fermions coupled self-consistently to a quantum ro-
tor. The chief advantage of this representation is that the
quartic interaction term of the original fermionic Hub-
bard model can now be represented by a quadratic term
in the rotor variables and can thus be treated exactly in
the Mott limit. This feature makes this technique suit-
able for studying Hubbard models in the strong-coupling
regime. Further, as shown in Ref. 24, the metal-insulator
transition of the original Fermions can be looked upon as
the order-disorder transition of the rotors which facili-
tates the study of metal-insulator transition.

To begin with, we note the identity

1

2

[

∑

σ

(

nF
iσ − 1

2

)

]2

= nF
i↑n

F
i↓ −

1

2

∑

σ

nF
iσ +

1

2

(11)

so that, up to a constant term, one can write Eq. 2 as

HF = −tF
∑

〈ij〉σ

(

c†iσcjσ + h.c
)

−
(

µF − U

2

)

∑

iσ

nF
iσ +

U

2

∑

i

[

∑

σ

(

nF
iσ − 1

2

)

]2

(12)

Next, following Ref. 24, we introduce the slave rotor rep-
resentation for the fermions. The key observation here
is that the spectrum of HF in the Mott limit depends
only on the total Fermion number

∑

σ niσ which can be
represented by eigenvalues of angular momenta of a O(2)
rotor. Thus we write the physical fermion annihilation
operator as

ciσ = fiσ exp (−iθi) (13)

where fiσ denotes the annihilation operator for the
pseudo-fermion and θi denotes the rotor variable at site
i. The corresponding angular momentum of the rotor is
denoted by Li = −i∂θi

. In this representation, a physical
fermion state can be written as a product of the pseudo-
fermion state and a rotor state as

|c1, c2...cQ〉i = |f1, f2, ...fQ〉i |l = Q− 1〉θi
. (14)

Here l denotes the eigenvalues of the rotor angular mo-
mentum L and |c1, c2...cQ〉 is the antisymmetric combi-
nation of Fermionic states for Q = l + 1 fermions at site
i. Note that whereas for ordinary rotors l can take all
possible integer values, here it is constrained to range
between −1 and 1 by the operator identity

Li =
∑

σ

(

f †
iσfiσ − 1

2

)

(15)

With the following constraint, one can write Eqs. 12 and
4 in terms of the rotor variables as

HF = −tF
∑

〈ij〉σ

(

f †
iσfjσ exp [i (θi − θj)] + h.c

)

−
(

µF − U

2

)

∑

iσ

f †
iσfiσ +

U

2

∑

i

L2
i (16)

HFB = λU
∑

iσ

f †
iσfiσn

B
i (17)

with Li related to
∑

σ f
†
iσfiσ by Eq. 15. In the Mott

limit(tF = tB = 0), we can implement the constraint
(Eq. 15) exactly and this procedure leads to Eq. 7 with
nF

0 = Q = l + 1 in a straightforward manner. Note also
that the quartic interaction term U

∑

i ni↑ni↓ in Eq. 2
has now been replaced by a quadratic term U

∑

i L
2
i /2 in

Eq. 16. This has been done at the expense of generating
a non-linear coupling between the auxiliary Fermions and
the rotors, as is evident from the first term of Eq. 16.

When tF , tB 6= 0, the above mentioned constraint con-
dition can not be implemented exactly and we need to re-
sort to mean-field approximation. The slave-rotor mean-
field theory for the present system can be developed by
a straightforward generalization of the formalism devel-
oped in Ref. 24. To begin with, we write the system
Hamiltonian H as

H = Hr +Hf +Hb (18)

Hr = −
∑

<ij>

τeff
ij cos (θi − θj) +

∑

i

U

2
L2

i + hLi(19)

Hf = −
∑

<ij>,σ

(

teffij f
†
iσfjσ + h.c.

)

+
∑

iσ

(−µF + U/2 + h+ λUn̄B)f †
iσfiσ (20)

Hb = −tb
∑

<ij>

(b†i bj + h.c) +
U

2

∑

i

nB
i (nB

i − 1)

− (µb − λUn̄F )
∑

i

nB
i (21)

where we have implemented the constraint Eq. 15 us-
ing an auxiliary field hi which has been replaced by
it’s saddle point value h at the mean-field level. Here
we also treat the coupling between the bosons and
the fermions within mean-field approximation by re-

placing the Fermion/bosons density operators n
B/F
i by

their averages n̄B/F . This amounts to replacing the

term
∑

i λUn
F
i n

B
i by

∑

i λUn
F
i n̄B in Eq. 20, and by

∑

i λUn
B
i n̄F in Eq. 21. Within this mean-field approx-

imation, the coupling term acts as a density-dependent
shift in the chemical potentials for the bosons and the
fermions. The effective hopping matrix elements teffij and
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τeff
ij in Eqs. 19 and 20 are given by

teffij = tij 〈cos(θi − θj)〉Hr

τeff
ij = tij

〈

∑

σ

f †
iσfjσ

〉

Hf

(22)

with the assumption that averages such as 〈exp(θi − θj)〉
and

〈

∑

σ f
†
iσfjσ

〉

are real on each bond24.

The next step is to approximate the rotor model by an
effective single site model

H ′
r =

∑

i

(

K cos(θi) +
U

2
L2

i + hLi

)

(23)

K = −2
∑

j

τeff
ij 〈cos(θj)〉Hr

(24)

Note that this approximation makes sense only when the
Mott ground state does not have density wave order of
any kind either for bosons or fermions. Using the fact
that under this approximation the H ′

r becomes a single
site Hamiltonian, we define

Z = 〈cos(θ)〉2Hr
(25)

and use Hf to compute all average involving the
Fermionic fields. This yields

K = 4 〈cos(θ)〉Hr

∫

dǫ ǫ nF (Zǫ− µF + h+ λUn̄B)

= 4 〈cos(θ)〉Hr
ǭ (26)

〈L〉 = 2

[
∫

dǫD(ǫ)θ (Zǫ− µF + U/2 + h+ λUn̄B)

]

− 1

= 2n̄F − 1 (27)

where the density of states D(ǫ) is defined as D(ǫ) =
∫

d3kδ(ǫ − ǫk)/(2π)3, and ǫk = −2t
∑

i=x,y,z cos (ki) is

the kinetic energy of the fermions (all momenta are mea-
sured in units of lattice spacing), and ǭ and n̄F are the
average fermionic kinetic energy and density respectively.
Comparing the expression of n̄F with that for the free
fermions n̄F =

∫ µ0

−∞
dǫD(ǫ), where µ0 is the chemical po-

tential for the free fermions at T = 0, one has the relation

Zµ0 = µF − U/2 − h− λUn̄B (28)

〈L〉 = 2n̄F − 1 (29)

Notice that since Z vanishes at the transition at µF =
µc

F , one gets µc
F −U/2 = h+ λUn̄B . Thus Z acts as the

order parameter for the metal-insulator transition of the
fermions.

Eqs. 25, 26, 27, 28 and 29 have to be self-consistently
solved to obtain the ground state of the system. However,
to do this, one needs to obtain the ground state of the
bosonic Hamiltonian (Eq. 21) and compute the average
value of the boson density n̄B. Since at the mean-field
level, the average Fermionic density n̄F enters the boson

Hamiltonian as a shift in the chemical potential, one can
use the projection operator technique developed in Ref.
11 for obtaining n̄B. It was shown in the context of
two-species Bosons that the projection operator method
compares well with quantum Monte Carlo results11.

The projection operators for the boson Hamiltonian
(Eq. 21) can be constructed following the procedure of
Ref. 11. It is given by

Pl =
(∣

∣nB
0

〉

i

〈

nB
0

∣

∣

i

)

⊗
(

∣

∣nB
0

〉

j

〈

nB
0

∣

∣

j

)

(30)

where nB
0 is the Boson occupation per site for the Mott

ground state and l denotes the link connecting two neigh-
boring sites i and j.

The hopping term for the bosons can be rewritten in
terms of sum over links as

T =
∑

l

Tl = −tb
∑

l

(

b†i bj + h.c.
)

(31)

where i and j are near neighbor sites connecting the link
l. In this notation, one can now divide the hopping terms
into two parts

Tl = T 1
l + T 0

l = (PlTl + TlPl) + P⊥
l TlP

⊥
l (32)

where P⊥
l = 1 − Pl. It is then easy to see that the term

T 1 =
∑

l T
1
l acting on the ground state takes one out of

the ground state manifold. The idea is therefore to seek
a canonical transformation operator S which eliminates
T1 to O(tB/U) from the low energy effective Hamilto-
nian: [iS,H0] = −T 1, where H0 denotes all the on-site
terms in Eq. 4. The effective low energy Hamiltonian can
be obtained by the usual Schrieffer-Wolff transformation
method

H∗ = exp(iS)H exp(−iS) (33)

= H0 + T 0 + [iS, T ] +
1

2
[iS, [iS,H0]] + ... (34)

Note that this is equivalent to a systematic tB/U expan-
sion and all the omitted terms denoted by ellipsis are at
least O(t3B/U

3).
The next task is to find out the canonical transforma-

tion operator S in terms of the projection operators Pl.
Following Ref. 11, we guess the form of the S to be

S = iα
∑

l

[Pl, Tl] (35)

where the coefficient α is to be determined by the con-
dition [iS,H0] = −T 1. To do this we use the operator
identities

[PlTl, H0] = UPlTl, [TlPl, H0] = −UTlPl (36)

and evaluate [iS,H0] to be

[iS,H0] = −α

U

∑

l

(PlTl + TlPl) = −T 1 α

U
(37)
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Thus we find that setting α = U we obtain the expression
for S = i

∑

l [Pl, Tl] /U , which eliminates T1 to O(tB/U)
from the low energy effective Hamiltonian.

The effective Hamiltonian can be now rewritten by
substituting the condition [iS,H0] = −T 1 in the last term
of Eq. 34 as

H∗ = H0 + T 0 −
∑

l,l′

[

[Pl, Tl] , T
0
l′ + T 1

l′/2
]

(38)

With some algebra we now reach the final form of the
low energy effective boson Hamiltonian which takes into
account all t2B/U

2 fluctuations

H∗ = H0 + T 0 − 1

U

[

∑

l

(

PlT
2
l Pl − TlPlTl

)

+
∑

l,l′

{

PlTlTl′ − TlPlTl′

−1

2

(

PlTlTl′Pl′ − TlPlPl′Tl′

)

}]

(39)

where l and l′ are nearest neighbor links. One can now
use a on-site variational wavefunction in the same way as
in Ref. 11

Ψv =
∏

i

(

a
∣

∣nB
0

〉

i
+ b

∣

∣nB
0 + 1

〉

i
+ c

∣

∣nB
0 − 1

〉

i

)

(40)

to minimize the ground state energy EG = 〈Ψv|H∗ |Ψv〉
and obtain the corresponding boson density n̄B and su-
perfluid order parameter ∆

n̄B = |aG|2 nB
0 + |bG|2

(

nB
0 + 1

)

+ |cG|2
(

nB
0 − 1

)

(41)

∆ =
√

nB
0 + 1 a∗GbG +

√

nB
0 c

∗
GaG (42)

where aG, bG and cG are values of the coefficients a,
b and c in the variational ground state. A compari-
son of the phase diagram obtained by minimizing Ev =
〈Ψv|H∗ |Ψv〉 for λ = 0 with analogous phase diagrams
obtained from mean-field theory3,5,6 and defect phase cal-
culations to O(t2B/U

2)26 is presented in App. A.
Eqs. 41 and 42, combined with Eqs. 25, 26, 27, 28

and 29 can now be solved self consistently to obtain
a mean-field description of the coupled Fermi-Bose sys-
tem near the metal/superfluid-insulator transition points
which are signaled by the onset of a non-zero Z or
∆. This method, therefore, allows for a self-consistent
treatment for the coupled Bose-Fermi problem near
the metal/superfluid-insulator transition point, provided
that the insulating ground state preserves translational
symmetry.

B. Results

In this section, we discuss the results of application of
the formalism developed in the last section to the prob-
lem at hand. Here we shall concentrate on the (1, 1)

0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

0.3

0.4

tF/U

FIG. 5: (Color online) Plot of the order parameter ∆ and Z
for µ/U = 0.7 and η = 5. Non-zero values of ∆ /Z signals
superfluid/metal-insulator transition for the Boson/fermions.
The symbols are as follows: black squares and green solid line
(∆ and Z respectively for λ = 0), red circles and cyan dotted
line (∆ and Z respectively for λ = 0.3), and blue triangles
and magenta dashed line (∆ and Z respectively for λ = 0.5).

0.00 0.05 0.10 0.15 0.20
0.8

1.0

1.2

tF/U

FIG. 6: (Color online) Plot of the average densities n̄B and
n̄F for the bosons and Fermions for µ/U = 0.7 and η = 5. The
deviation of the densities from their quantized values in the
Mott state signals the onset of metal-insulator transition for
fermions and superfluid-insulator transition for the bosons.
The symbols are as follows: black square and red circle (n̄B

and n̄F respectively for λ = 0), green uptriangle and blue
downtriangle (n̄B and n̄F respectively for λ = 0.3), magenta
dotted line and cyan solid line (n̄B and n̄F respectively for
λ = 0.5).
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FIG. 7: (Color online) Plot of ∆ and Z for µ/U = 0.4,
η = 4 and λ = 0 and λ = 0.3. All symbols have the same
meaning as Fig. 5. The plot serves as an illustration that re-
pulsive interaction between bosons and fermions can enhance
metal/superfluid transitions.

Mott state for the following reasons. First, since we
would be interested in studying metal-insulator transi-
tions for fermions together with the superfluid-insulator
transition of bosons, we would like to concentrate on
Mott states which has one Fermion per site. Second,
in the formalism developed in Sec. III A, we treat the
Bose-Fermi interaction term within mean-field approxi-
mation, we would like to restrict ourselves to the param-
eter regime |λ| = |UFB/U | < 1, where the mean-field
results are expected to be more accurate.

To demonstrate the effect of interspecies interaction,
we first concentrate on a fixed value of µF = µB =
0.7U and η = tF /tB = 5, and study the onset of
metal/superfluid-insulator transition as a function of
tF /U for a few representative values of λ. A plot
of Z and ∆ for this case, is shown in Fig. 5 while
the fermionic and bosonic densities are plotted in Fig.
6. The results of these plots can be understood as
following. Consider fixing η and gradually increas-
ing tF so that the fermions/bosons moves towards a
metal/superfluid-insulator transition point. As long as
the bosons/fermions are in the Mott state, their densi-
ties are pinned to nB

0 = 1 or nF
0 = 1, and hence the

fermions/bosons see a fixed chemical potential µeff
F (B) =

µ− λUnB
0 (nF

0 ). For our chosen value of η, the metal in-
sulator transition occurs before the superfluid-insulator
transition of the bosons at tcF (λ) = tcF

(

µeff
F

)

. Notice that
tcF (λ) is a non-monotonic function of λ for a given µ and
η. Hence the metal-insulator transition for the fermions
can either be enhanced (λ = 0.5) or hindered (λ = 0.1)
due to the Bose-Fermi interaction. Once the fermions
have delocalized, the density of fermions changes with tF

for a fixed chemical potential µ as seen in Fig. 6. Hence
the effective chemical potential seen by the bosons now
becomes a function of both tB = tF /η and λ. Thus by
increasing tB , we actually traverse a curve with a finite
slope in the µ−tB plane in contrast to the non-interacting
(λ = 0) case. Consequently, the superfluid-insulator
transition of the bosons occur at tcB(λ) which can be quite
different from tcB(λ = 0). We note this effect may lead
to both enhancement [tcB(λ) > tcB(λ = 0)] or hindrance
[tcB(λ) < tcB(λ = 0)] of the superfluid-insulator transition
of the bosons depending on the chosen values of η and µ,
as can be seen by comparing Figs. 5 and 7. For the choice
of µ/U = 0.7 and η = 5, we find that tcB(λ) > tcB(λ = 0),
whereas the reverse case is realized for µ/U = 0.4 and
η = 4. In the latter case, both the metal-insulator tran-
sition for the fermions and the superfluid-insulator tran-
sition for the bosons are enhanced for λ > 0. Hence
we conclude that a repulsive Bose-Fermi interaction can
either enhance or hinder the onset of metal/superfluid-
insulator transition of a coupled Bose-Fermi mixture held
at a fixed chemical potential. Notice that this effect is
absent if the boson and the fermion densities are held
constant individually, since in that case, there is no in-
fluence of the fermionic metal-insulator transition on the
bosonic superfluid-insulator transition within the mean-
field theory. This is of course an artifact of the present
mean-field approximation. Clearly, the dynamics of the
fermions/bosons should play an important role in the
transition. For example, near the metal-insulator of the
fermions, there will be density fluctuations which give the
bosons a chance to hop to a neighboring site even if they
would remain localized in the absence of such fluctua-
tions. A treatment of this effect requires analysis of the
slave-rotor model beyond the present mean-field approx-
imation and is outside the scope of the present study.

Finally, we present a plot of the critical hopping
strength tcB in Fig. 8 as a function of η and λ for a
fixed representative µ/U = 0.7. We note that at small η,
the superfluid-insulator transition takes place when the
fermions are still in the Mott state with their density
pinned at n0

F = 1. Consequently, the transition for the
boson, within the simple mean-field theory, is the same as
that occurring for µeff = µ− λU ; tcB becomes maximum
when µeff/U ≈ 0.4 or λ ≈ 0.3. However when η is large,
the fermions have already undergone the metal-insulator
transition when the boson are at their transition point
and hence have 〈nF 〉 6= 1. Consequently the bosons see
a different µeff = µ− λU〈nF 〉 and hence the value of tcB
changes. This is reflected in bending of the phase bound-
ary in the right half of Fig. 8. Analogous plots for tcF will
have qualitatively same features.

Before closing this section we would like to make a few
qualitative comments. First, the analysis of the phase
diagram for negative λ with |λ| ≤ 1 can be carried out
in a similar manner and one obtains qualitatively simi-
lar results in this case. Second, at large and negative λ,
the Mott states correspond to two fermions and n0(λ)
bosons localized per site. In this case, with decreasing
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FIG. 8: (Color online) Plot of tc

B/U as a function of η and λ
for µ/U = 0.7. For small η, the fermions remain in the Mott
state when the superfluid-insulator transition of the bosons
takes place whereas for large η they have already undergone
a metal-insulator transition.

lattice potential, the bosons would undergo a superfluid-
insulator transition with the fermions still in the Mott
phase. Therefore the superfluid-insulator transition of
the bosons can be described, within mean-field theory,
by a Hubbard model of bosons with effective chemical
potential µeff = µ − 2λU . As we decrease the lattice
depth, the fermions would eventually delocalize when the
hopping coefficient tF becomes comparable to the energy
gap between the single particle levels (En ≃ 5ER) in
the potential wells. However, this is a large energy scale
(En ≫ U, λU) for deep lattices and so for any reasonable
value of η, one expects the superfluid-insulator transition
of bosons to occur while the fermions are still the Mott
state. Third, we would like to note that the slave-rotor
mean-field theory worked out here can not be applied for
states with broken translational symmetries in terms of
boson and fermion numbers ( such as the state C shown
in Fig. 2) since we have used a single-site approximation
for the slave-rotor mean-field theory. Also the present
slave-rotor treatment is expected to be more inaccurate
for states with λ ≫ 1 since the fermion-boson interac-
tion is treated at a mean-field level within our scheme.
Nevertheless we note that qualitatively we would expect
a Mott-superfluid/metal transition from these phases as
λ is reduced keeping the density of bosons and fermions
constant. Finally, the present theory can not address the
question of possible superconducting instability of the
fermions in the metallic state. This issue is discussed in
Ref. 21. A generalization of our mean-field description
of the superfluid/metal-insulator transitions to address
such issues and inclusion of the effect of quantum fluctu-
ations beyond the mean-field treatment used here remain
open problems to be addressed in future works.

IV. EXPERIMENTS

A large part of the Mott phases and the superfluid-
insulator transition of the Bose-Fermi mixtures discussed
here can be experimentally accessed using standard ex-
periments on specific Bose-Fermi mixtures. Before going
into details of specific systems, let us first outline some
typical experiments that can be performed on these sys-
tems. One such experiment that is routinely carried out
in atomic systems is measurement of momentum distri-
bution of atoms in the trap1. This is typically done in a
time of flight measurement by letting the atoms fly out
by dropping both the lattice and the trap and then mea-
suring the position distribution of the expanding atom
cloud. Such a position distribution measurement yields
information about momentum distribution of the atoms
within the trap. These experiments obtain qualitatively
different signatures for atoms in the Mott and the super-
fluid states for bosons1,2, but can not distinguish between
the Bose and the Fermi atoms. To achieve this distinc-
tion, one needs to pass the expanding atom cloud through
a Stern-Gerlach apparatus. Since the fermions and the
bosons have different spins (or total angular momenta),
they will get separated during this process and can thus
be distinguished. Such Stern-Gerlach experiments have
been carried out with bosonic atoms in Refs. 27 and 28
and their generalization to present systems should be
straightforward. Finally, the antiferromagnetic order of
fermions in the Mott phases (either the (1,1) phase in
Fig. 1 or the phases A and C shown in Fig. 2) can be de-
termined by measuring spatial noise correlations of the
expanding cloud in a time of flight measurement29,30.

Let us now consider some specific Bose-Fermi mixtures
that have been realized experimentally. One such system
is 6Li and 7Li mixtures with aFF = aBB = 5a0 and
aBF > 031,32, where a0 is the Bohr radius. The value of
aBF has not been unambiguously measured in this sys-
tem, but is expected to be positive indicating a repulsive
interaction31. For this mixture, mF ≃ mB and depend-
ing on the value of aBF and by varying the frequencies
of the laser providing the optical lattice (as discussed
in Sec. II), we may realize different points on the phase
diagram shown in Fig. 1. Of particular interest is the
case where aBF > aFF

21. In this case, for one atom per
site, we expect to obtain the one of the Mott phases A,
B or C shown in Fig. 2 depending on the specific value
of λ ∼ aBF /aFF and η = tB/tF which can be varied by
slightly changing the ratio VF /VB (Eq. 6)33. In this case,
one can scan a large part of the phase diagram shown in
Fig. 2. The possible antiferromagnetic orders of fermions
in phases A or C (Fig. 2) can be determined by measuring
the spatial noise correlation measurements29. The states
B and C can also be distinguished by passing the ex-
panding clouds through a Stern Gerlach apparatus27,28.
Other possible Mott phases, as shown in Fig. 1, are also
possible if there are more than one atom per site. These
phases can be detected analogously.

On the other hand, if aBF < aFF , one may access
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the (1, 1) phase (Fig. 1) with one fermion and one bo-
son per site. Here in the Mott state, we would find two
separate clouds for bosons and fermions in the Stern-
Gerlach measurement with an antiferromagnetic state for
the fermions which can be deduced in the spatial noise
correlation measurement. Further, one can now access
the superfluid/metal-insulator transition in this system
by reducing the depth of the laser producing the opti-
cal lattice. The superfluid-insulator transition can be
directly accessed by measuring the measurement momen-
tum distribution of the bosons. This provides us a direct
measurement of tcB. One can now also change η as dis-
cussed in the last paragraph and access tcB(η) for a given
λ. This would provide access to a line of constant λ in
the phase diagram of Fig. 8.

Another Fermi-Bose mixture which has been realized
so far 40K-87Rb mixture34. Here one expects aFF ≃
aBB

21 and negative aFB indicating an attractive inter-
action between bosons and fermions. The magnitude of
aFB is also measured in Ref. 34 and is found to be around
3.6aFF , although with a large (about 40%) uncertainty.
In this system, we expect to find Mott phases where two
fermionic atoms sits on the same site with n0(λ) bosonic
atoms. Such states can also be detected in experiments
by passing the expanding clouds through a Stern Gerlach
apparatus as discussed earlier. The superfluid-insulator
transition of the bosons can also be accessed by lowering
the lattice depth.

In conclusion, we have studied a Bose-Fermi mixture
in an optical lattice trapped by an optical trap. We
have sketched a generic phase diagram for the possi-
ble Mott states of these systems and also studied the
superfluid/metal-insulator transition using a slave-rotor
mean-field theory. We have also discussed definite ex-
periments that can be performed on specific experimen-
tally realized systems that can probe at least part of the
above-mentioned phase diagrams.

PM’s visit to the Cavendish Lab is supported by the
EPSRC (UK) and by a Visiting Scholars Grant from
Trinity College.

APPENDIX A: COMPARISON OF PHASE

DIAGRAMS

In this section, we compare the phase diagram for a
single species Mott-Hubbard system obtained using the
projection operator with those obtained using mean-field
theories3,5,6 and strong-coupling expansions26. To do
this, we consider the case of zero coupling between the
bosons and fermions (λ = 0). Our starting point is the
Bose-Hubbard Hamiltonian of Eq. 21 with λ = 0. By
tracing the same set of steps, as in Sec. III A, we then
obtain the effective Hamiltonian H∗ (Eq. 38). The next
step is to obtain the variational energy using the wave-
function Ψv (Eq. 40). For the purpose of variational en-
ergy computations, it is sufficient to consider Ψv with
real coefficients a,b and c (Eq. 40). This amounts to set-

ting the phase of the superfluid order parameter ∆ (Eq.
42) to zero and does not affect the variational energy. A
straightforward calculation then yields

Ev = 〈Ψv|H∗ |Ψv〉 = E0 + E1 + E2 (A1)

E0 = δEpb
2 + δEhc

2 (A2)

E1 = −ztBa2
[

(n0 + 1)b2 + n0c
2
]

(A3)

E2 = −zt
2
Bn0 (n0 + 1)

U

(

a4 − 2b2c2
)

−z(z − 1)t2Bn0(n0 + 1)

U

(

a4(b2 + c2) − 4a2b2c2
)

+
2z(z − 1)t2B

√
n0 + 1

U

[

2bc
(

b2(n0 + 1) + c2n0

)

−(2n0 + 1)b2c2
]

a2 (A4)

where δEp = (−µ+ Un0) and δEh = (µ− U(n0 − 1))
are the on-site energy costs of adding a particle and a
hole respectively to the Mott phase, and z = 2d denotes
the coordination number for a d dimensional hypercubic
lattice. The phase diagram can now be obtained by min-
imizing the variational energy Ev for given (tB/U, µ/U).
The Mott-superfluid phase boundary then corresponds
to the minimum value of tc(µ) for which the superfluid
order parameter ∆ (Eq. 42) is non-zero. Notice that ig-
noring the O(t2B/U

2) terms amount to setting E2 = 0.
Our numerical results in this section, however, retains all
terms in E2.

Next, we obtain the expression of tmf
c using mean-

field theory. This can be done in a standard manner as
shown in Refs. 3,5,6,37 and the mean-field critical hop-
ping strength in d dimensions can be obtained37

tmf
c =

(

n0 + 1

Un0 − µ
+

n0

µ− U(n0 − 1)

)−1

. (A5)

where n0 denotes the boson occupation number of the
Mott phase from which the phase boundary is ap-
proached.

Finally, we compare the phase diagram obtained from
minimizing the variational energy Ev with the strong-
coupling expansion developed in Ref. 26. The main idea
behind the strong-coupling expansion is that at the phase
transition point, for a given µ/U , the defect state, which
corresponds to an additional particle or hole added to the
Mott state, becomes energetically more favorable. Thus,
the energy difference of the particle or hole defect states
with the Mott state given to O(t2B/U

2) by35

ǫp = δEp − ztB(n0 + 1) +
zt2B
2U

(5n0 + 4)n0

−z
2t2B
U

n0 (n0 + 1) (A6)

ǫh = δEh − ztBn0 +
zt2B
2U

(5n0 + 1) (n0 + 1)

−z
2t2B
U

n0 (n0 + 1) (A7)
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vanishes at tB = tpc or thc . The phase boundary is ob-
tained by finding the critical hopping tc = Min[tpc , t

h
c ].

Before resorting to numerical evaluation of the phase
diagram from all different techniques, we would like
to clarify the following points. First, although both
the defect state calculations of Ref. 26 and the
projection operator technique outlined here captures
some contributions of t2B/U

2 fluctuations, they are
not identical to each other. To see this, we con-
sider a second order virtual process for a defect state
with one additional particle(hole) |n0 + (−)1〉i |n0〉j →
|n+ (−)2〉i |n− (+)1〉j → |n+ (−)2〉i |n〉j , where i and
j are nearest neighbor sites on the square lattice.
This process, which after summing over all sites, gives
O(t2B/U

2) energy contributions Ep = −z2t2Bn0(n0 +
2)/2U for particles and Eh = −z2t2B(n2

0−1)/2U for holes.
Note that all the states involved in such a process lie out-
side the low energy manifold and hence are not captured
within the projection operator technique even if states
with |n0 ± 2 > are incorporated in the variational wave-
function (Eq. 40). On the other hand, the projections
operator technique together with the variational wave-
functions leads to terms in E2 (Eq. A4) which involves
product of states with one additional particle and hole
(terms which involve product of the coefficients b and
c). These terms, which becomes important mostly near
the tip of the Mott lobe, are necessarily absent in de-
fect state calculations in Ref. 26 which considers energy
lowering due to a single particle or hole added over the
Mott state. Thus we find that the best way to compare
different approaches is to compare the phase diagrams
obtained using them.

Second, if we neglect the O(t2B/U
2) terms, the saddle

point equations for b and c can be easily obtained by
minimizing the variational energy in Eqs. A2 and A3:

[

(n0 + 1) − δEp

ztB

]

b = 2(n0 + 1)b3 + n0c
2b

[

n0 −
Eh

ztB

]

c = n0c
3 + (n0 + 1)b2c (A8)

where we have used the constraint a2 + b2 + c2 = 1. For
the Mott phase, the solution to Eq. A8 is b = 0 = c and
a = 1. Note that this ensures that the density in the Mott
state is pinned to 〈n〉 = n0. Solutions with non-zero b
and c occurs when in the SF phase for which tB ≥ tc. We
find that in the superfluid phase near the Mott transition
line, Eq. A8 admits the following solutions. For µ/U ≤
n0/(2n0 + 1) one gets tc = thc = δEh/zn0 and

c =
1√
2

(

1 − thc
tB

)1/2

b = 0, (A9)

whereas for µ/U ≥ n0/(2n0 + 1) one has tc = tpc =
δEp/z(n0 + 1) and

b =
1√
2

(

1 − tpc
tB

)1/2

, c = 0. (A10)

Eqs. A9 and A10 shows that near the phase transition
b, c≪ a, which is crucial to our analysis. Further, as nor-
mally expected in a second order quantum phase tran-
sition, the coefficients b and c are continuous across the
transition. Next, we discuss inclusion of O(t2B/U

2) terms.
If these terms (Eq. A4) are included, obtaining analytical
solutions for b and c becomes difficult as it amounts to
solving two coupled cubic equations. However, we have
checked during numerical evaluation of the phase dia-
gram minimizing Eq. A1 ( which retains second order
terms in Eq. A4) that b and c are always small compared
to a near the phase transition and that near the ends of
the Mott lobe their numerical values are well reproduced
by Eqs. A9 and A10.

Finally, we comment about our choice of variational
wavefunction in which we have only retained states with
one additional particle and hole per site over the parent
Mott state. In principle, one can retain states with two
or more particle per sites which leads to a more compli-
cated trial wave function. For example, one can retain
the states |n0 ± 2〉 so that the variational wavefunctions
become

|ψ′〉 =
∏

i

|ψ′〉i

|ψ′〉i = a |n0〉 + b |n0 + 1〉 + c |n0 − 1〉
+d |n0 + 2〉 + e |n0 − 2〉 (A11)

which leads to a variational energy to O(tB/U) (Eq. 39)
E′

v = 〈ψ′|H0(λ = 0) + T 0 |ψ′〉 = E′
0v + E′

1v, where,

E′
0v = δEpb

2 + δEhc
2 + δE2pd

2 + δE2he
2

δE2p = −2µ+ U(2n0 + 1) δE2h = 2µ− 3U(n0 − 1)

E′
1v = −ztb

[

(n0 + 1)a2b2 + n0a
2c2 + (n0 − 1)c2e2

+
√

n0(n0 − 1)c2ae+
√

(n0 + 2)(n0 + 1)b2ad

+2
√

(n0 − 1)(n0 + 2)bcde+ (n0 + 2)d2b2

+abc

(

d
√

n0(n0 + 2) + e
√

n2
0 − 1

)

]

(A12)

To analyze the phase diagram obtained from Eqs. A11
and A12, we first note that in the Mott phase a = 1
and b = c = d = e = 0, as discussed before. Next let
us discuss the minimization of E′

v near the Mott-SF
transition line. When d = e = 0, the MI-SF transition
occurs at ztc = Min(tpc , t

h
c ), with b, c ≪ 1 and a ≃ 1. So

to find out whether non-zero d and/or e is favorable for
energy minimization, we need to find the effect of turning
on a non-zero d and/or e near this transition point and
check whether it leads to lowering of the variational
energy. We find that turning on a non-zero d and/or e
near this point, as can be seen from the expression of
E′

1v (Eq. A12), leads to energy gain ≪ ztc (since in the
expression of E′

1v, d and e always appear as a product
with b and c which are small), whereas the energy cost
(Eq. A11) is O(δE2p) and/or O(δE2h). It turns out that
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FIG. 9: (Color online) Phase diagram for d = 2 and n0 = 1
calculated by minimizing variational energy Ev (black dots),
mean-field theory (red solid line) and defect energy calcu-
lation to O(t2B/U2) (blue solid line). The phase boundaries
computed by minimizing Ev and by defect energy calculations
compare well to each other but differs from the mean-field
theory near the tip of the Mott lobe.

the latter is always greater than the former which leads
to a net non-zero energy cost. As a specific example to
demonstrate this point, let us consider µ ≃ U so that
for tB ≃ tc = tpc , b 6= 0 and c = 0 (Eq. A10). Then
turning on a non-zero d results in an energy change δE =

d
(

δE2pd− ztc

[

(n0 + 2)b2d+
√

(n0 + 2)(n0 + 1)b2a
])

>

0 since b, d ≪ 1 and δE2h − ztc ≃ U(n0 + 1) − µ > 0.
Thus near tB = tc, the energy cost from E′

0v clearly
outweighs energy gain from E′

1v (since ztc/U ≪ 1 for
all parameter regime and b, c, d, e ≪ 1 near tB = tc)
and hence the coefficients d and e remain vanishingly
small at the phase transition. As we move inside
the superfluid phase and tB becomes large compared
to tc, these coefficients becomes significant. In the
present work, we have always restricted ourselves to
regions sufficiently near the transition line where the
coefficients d and e are small. We note that we have
explicitly checked numerically from the full variational
energy ( including O(t2B/U

2) terms which we have not
written down explicitly here to avoid clutter), that the
above-mentioned qualitative argument always holds for
all the regimes studied in the present work. We shall
therefore neglect these terms in the rest of this section.

To compare the results from different approaches, we
now plot the phase diagrams for n0 = 1 obtained by min-
imizing the full variational energy Ev to O(t2B/U

2)(Eq.
A1), from the mean-field equation (Eq. A5), and by com-
puting the energy of the defect states to O(t2B/U

2)26.
These plots are shown in Fig. 9 for d = 2 and in Fig.
10 for d = 3. We find that in spite of the dissimilar-
ity of the two approaches discussed above, the numeri-

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01
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0.03

0.04

0.05

t B
/U

µ/U

FIG. 10: (Color online) Phase diagram for d = 3 and n0 =
1. All notations are same in Fig. 9. As in 2D, the phase
boundaries computed by minimizing Ev and by defect energy
calculations compare well to each other but differs from the
mean-field theory near the tip of the Mott lobe.

cal phase boundary obtained by minimizing Ev matches
that obtained from O(t2B/U

2) defect state calculation of
Ref. 26 quite well in both cases, but differs substan-
tially from the phase boundary obtained using the mean-
field theory. Further, for d = 2, Quantum Monte Carlo
data, available for the critical hopping at the tip of the
Mott lobe26,36, predicts (tc/U)MC = 0.061 ± 0.006. The
corresponding values obtained from minimization of Ev

and O(t2B/U
2) defect state energy calculation of Ref.

26 are (tc/U)var = 0.0755 and (tc/U)defect = 0.0735
respectively. The mean-field theory predicts a value
(tc/U)mf = 0.041 while an O(t3B/U

3) calculation of de-
fect states energies26 gives (tc/U)defect = 0.068. Thus
we conclude that the phase boundary obtained from our
variational energy calculation scheme compares well with
the defect state energy calculation to O(t2B/U

2).

In d = 3, we can compare our results in Fig. 10 to Figs.
5, 6 and 7 for λ = 0 and µ = 0.7 and µ = 0.4 respectively.
We find that the phase diagram obtained using the pro-
jection operator techniques predicts tc/U = 0.0232 for
µ/U = 0.7 and η = 5 (Fig. 5) and predicts tc/U = 0.0431
for µ/U = 0.4 and η = 4, (Fig. 7). As seen from
Fig. 10, these values compares well to those obtained
from defect state calculations to O(t2B/U

2). However,
they do not compare favorably with tmf

c which predicts
tmf
c /U = 0.0208 for µ/U = 0.7 and tmf

c /U = 0.0266 for
µ/U = 0.4. Further, the corresponding values of tc/U
from the third order defect state calculation are 0.0225
for µ/U = 0.7 and 0.0405 for µ/U = 0.4 which com-
pares quite favorably to the projection operator method,
but not to the mean-field theory. At the tip of the Mott
lobe (µ/U ≃ 0.37), where the difference between results
obtained from different methods become most appar-
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ent, the values of tc/U obtained from different methods
are 0.0419 (third order defect state), 0.0459 (second or-
der defect state), 0.0451 (projection operator technique),

0.0276 (mean field) and 0.03480(2) (very recently avail-
able Quantum Monte Carlo results38).
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