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We show that the ground state of disordered rotor models guitidrupolar interactions can exhibit biaxial
nematic ordering in the disorder-averaged sense. We praseean-field analysis of the model and demonstrate
that the biaxial phase is stable against small quantum #tiots. We point out the possibility of experimental
realization of such rotor models using ultracold spin-omsdatoms in a spin-dependent and disordered optical
lattice in the limit of a large number of atoms per site and agggest an imaging experiment to detect the
biaxial nematicity in such systems.

PACS numbers: 75.10.Nr, 71.35.Lk, 03.75.Mn

I. INTRODUCTION whered = (d*,d¥,d*) = (sin 6 cos ¢, sin sin ¢, cos 9) is a
unit vector expressed in terms of the rotor angleand ¢,

Nematic phases of matter have been widely studied in mang: denotes angular momentum of the rotdr, , ., denotes
different areas of condensed matter physicBor example, Sum over nearest neighbor sites, akg are dimensionless
consider a system of molecules having some vector quantiti@ndom couplings between the unit vectdrat sitesi and
(say a polarization vectop) associated with each of them. j. In the following we shall considet® = AY # AZ, and
Since molecules are extended objects, a local coordinate sychooseA®(*) to have Gaussian distributions with same width
tem can be attached to each molecule. Hence, for a molecufé! and meand*(*). The main result of this work is that in the
at a pointi, one can define a local nematic order paramelimit [A* — A#| /6A < 1, the model given by Eq]1 exhibits
ter: QY7 = piapis — S p2,/3L. The nematic phase is a biaxial nematic ground state in the disordered averageesen
then defined as the state of the system for whichp; = 0 for U < g. We also show, using a mean-field analysis, that
whereas™, 0 becomes a traceless 3 matrix with eigen- the blaxal phase is stablg against quantum fluctuatiorik unt
valuesQ - [—l(Q1 +Q2),01,0Qs]. Such phases are of two ¥ = g_/U is reduced to a critical value.. Note that the above-
types: uniaxial nematic7whlar@1 — (Q, and biaxial ne- mentioned regime can also be reached for arbitrarily wesk di
matic for which@Q; # Q1. In both these phases, the sys- order: oA < A*, A” provided thafA” — A*| < JA. This
tem breaks rotational symmetries while preserving translap"’m.ICUIar feature Of. the rotor model, as we shall See, midkes
tional invariance. Uniaxial nematic phases occurs more freeaSIIy realizable using ultracold atoms in optical lagice
quently whereas the first experimental observation of biax- ¢ noice of the rotor Hamiltonian (Ed. 1) is not arbitrary,
Eé:ﬁlii%ﬁ??;gé?tg d‘iﬁiﬁ'ﬁgf%ﬁg?ﬂ%rrg(ﬂﬁﬁgllﬁftg?z _Onyut is m_otivated _by thei( connection with ultracold_ spireon_
alize, biaxial nematic phases are of great theoreticatéste bos_ons in an optical lattice. The low energy eff_echvg Hamil

Lo : ) tonian of such bosons systems has been derived in the ab-
since they are known to support non-AbeI_lan _def*?éctsnl- sence of disorder in Refs.|11,12,13. It has been shown that
axial nematic phases have also been studied in the context

| q d h Ie effective theory of the Mott phases of such a system can
several quantum condense %agt}gr systems such as strongly described, in the limit of large number of bosons per site,
correlated electron systeftsf.":8:210and ultracold spin-one

. ; X ) by rotor models similar to EqJ 1, supplemented by an addi-
atoms in optical lattice:1%13 For example, in the case of y 4] kb y

; . , tignal constraint on the numbéf and the total spirb' of the
spin-one boson system, in some parameter regime, the groupd .\« per siteN + § — even!1213 We generalize this
state bregks_spln—rotatlon_al Invariance ann_g one Of. tes ax analysis to include disorder and show that in the presence of
while maintaining translational invariance with no spirtder spin-dependent disordered optical lattices, which carabiye
<$> :2 aﬁnd with two equal non-zero eigenvalues of the Ma%reated by using a speckled laser fié#, the Mott phases of
trix <S S > Howevgr, there has bee.n no proposals of reallza[Jltracold spin-one bosons is indeed described by Eq. 1 suppl
tion of biaxial nematic ground states in the context of quamt

. -~ mented by the constraint condition mentioned above. Fgrthe
condensed matter systems using standard local Hamilt®nian,

inthi K - tout that disord 9) rof del as will be shown later, fot/ < g, the constraint condition
_nthiswork, we point out that disor _er@i _> rolormodelS  hacomes irrelevant and in this limit we expect our analybis o
with quadrupolar interaction in two dimensions (2D) can ex-

hibit biaxial ic oh in the disordered s the rotor model to apply for the bosons as well. This corre-
it biaxial nematic phase in the disordered average ensspondence therefore allows us to suggest experiments on ul-
Such rotor models are described by the Hamiltonian

tracold atoms which can in principle probe such a biaxial ne-
2 matic phase. We suggest a straightforward imaging of ultra-
Hrotor = UZLf ) Z ( Z d/iaA?jdja> (1)
i <i3> \a=zx,y,z

arXiv:cond-mat/0510290v2 [cond-mat.str-el] 6 Dec 2006

cold atoms using a polarized laser beam which can distihguis
the biaxial phase from other spin or uniaxial nematic phases
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The organization of the paper is as follows. In Se. 11, weconfiguration¥ ¢ will always havep; — ¢, = 0, 7. Using the
analyze the rotor model (Ef] 1) and demonstrate that it extransformatioril; , we can therefore choose each individual
hibits a biaxial nematic ground state. This is followed bg.Se ¢; to be eithel or 7. This is a gauge choice and, hence, does
where we derive the effective low-energy Hamiltonian not affect any physical quantity. Next instead of usihg to
of spin-one ultracold Bosons in a spin-dependent disotterecomputeR’,,, we find the stat&_,, for which¢; = 0 at every

optical lattice and discuss its relation to the rotor model a gjte. This can be done sinde, is always a part of the degen-

alyzed in Sed.]I. In SeC.IIB, we suggest an experiment tograte states which can be reached frém by successive ap-

detect biaxial nematic order. Finally, we conclude inSéc.l  piication of the above-mentioned local transformationings
these two facts, we see that for any set of random coefficients

A%, one can comput®., = Y. diadir — dap/3 by findin
Il ANALYSIS OF THE ROTOR MODEL i PR, = 2.; iy = 0un/3 bY find 0
the ground state configuration &f, .., = —g>__;.- (A};)

. . , . with
In this section, we first present an analysis of the rotor

model (Eq[1) and demonstrate the presence of biaxial ne- AT ) i ) 2 ‘ ‘

maticity at/ = 0. This is followed by the derivation and Aij = Afysin0i sin0; + Aj; cos 0; cos ;. ©)

analysis of a mean field theory for finité which illustrates _

the stability of the biaxial phase against small quantum-fluc is two-fold degenerate and these

tuations. two ground statesI/g) and \I/(G?) = TQ\IIS) are related by
the global transformatiofi,. The two ground states have
opposite signs for off-diagonal elements@f; in the cho-

A. Limitof U =0 sen gauge and therefore after averaging over these ground

states, the off-diagonal elements @f,;, vanishes. Thus

For U = 0, in the absence of quantum fluctuations, theWe are finally left with the diagonal componentg,, =
Hamiltonian (Eq[L) is diagonal in tHé, ¢) basis. Thisallows (—(@1 + Q2),@1,@2) = (C —1/3,-1/3,—(C — 2/3)),

The ground states o,

rotor

us to write where0 < C < 1, for a given set of random coefficients
Afj’z. Finally, one can numerically average over different re-
Higtor = —9 Z Az, (2) aIizatic_msQa = (Qaa) disorder 10 ObtaIN the disorder-averaged
(i) nematic order parameter. The biaxial nematic phase is real-

o ized whenC' # 0, 1 or 1.
whereA;; is given by The ground state off”’,.;., can be obtained numerically
Ay = A sin 0 sin 0; cos(én — ) + A%, cos 0 cos; (3) using standard minimization procedure for each disordsr re
i = iy SMTSME; COS\Pi = @ ij (08U COSU; ization. For the sake of brevity, we chooﬁéj(z) to be a set
with 0 < 6; < 7 and0 < ¢; < 2r. Let us now consider a of random nu_mk_Jers having a Gaussian distribution with same
ground state configuration of the Hamiltoniaf,, givenby ~ Standard deviationA and different meand*(*) and average
over 500 disorder realizations. We choog¢ > A“ here
Ve = (600, 69; 09, 65; .07, 60 ....0%, s .0 (4)  Wwithout loss of generality. We study finite-size systemshwit
sizes ranging fronVs = 8 x 8to Ng = 20 x 20 with periodic
where(6?, ¢?) denotes the value of the angléand at the boundary conditions and use standaydvs extrapolation to
ith site in the ground state. From Efgs. 2 Bhd 3, one can immebtain the infinite system size lim# A few comments about
diately see thaH’ . has an infinite number of degenerate the numerical procedure are in order here.
ground states since any local transformatyn— = — 69, First, for (A® — A*)/6A > 1, it is clear that the sys-
#) — ¢? + 7 leavesH],,,, invariant for any random set of tem energy reaches its minimum gt ¢;sin¢; = 1 and
A7, Itis also easy to see that such a local transformatiowos 0; cos 6; = 0 for all sites and disorder realizations. Conse-
changesl; — —d; and leaves the local nematic order param-quently, after disorder-averaging,= 1, and the ground state
eterQ?® = d¢d? — §.,/3 invariant. Hence for the purpose is an uniaxial nematic phase.
of computing the nematic order parameter, we can choose any Second, in the limitA* — A#) /A < 1, for a given disor-
one of these ground state configurations. der realization, we find that the configuration with minimum
The rotor HamiltonianH/ , is also invariant under two energy is part of a group of three possible solutions. The
global transformations. The first of thef : ¢ — ¢ + nis first corresponds tein¢;sinf; = 1 andcos;cosf; = 0
a gauge freedom which allows us to choose the orientation dbr all sites. For a single disorder realization with thisuso
the global: axis. The second transformati@p : § — = — 6  tion, the order parameter then h@s= 1. The second solu-
leaves the diagonal componentsif, invariant while chang-  tion possibly assumed by the systensiis ¢, sin6; = 0 and
ing the off-diagonal components. The ground states(Eq.  cos; cos8; = *£1 for all sites. The value of the order param-
4) andT> ¥V = ¥, are degenerate. eter corresponding to such a disorder realization is thesngi
Using the above-mentioned local and global transformatiomy C' = 0. Finally, the third possible solution corresponds to a
properties, we can considerably simplify the numericatpro  configuration for whichsin 6; sin ; andcos 6; cos 6; are nei-
dure for obtaining ground states B .., for a given disorder  ther0 nor=+1, and are varying in values from site to site. For
realization. First, from Ed.]3, we find that any ground-statesuch a disorder realizatio6, # 0, % or1 and one has a biaxial



3

(A — A#)/6A, the biaxial phase will manifest itself over a

0.8 . - X
large window of energy scale at finite temperature, evereif th
1 zero temperature ground state turns out to be uniaxial iemat
© [T
T 0.6 P e (SN>=<A\*>)I8N A
A T, T
& . M; )
| B. Quantum fluctuations for U # 0
Nooal T : 007
(o S . 0.05 . -
Y | 003 To study the effect of quantum fluctuations, it is more con-
("5. ' * ' venient to switch to a path integral representation of therro
Yy 02r 1 Hamiltonian (Eq[IL). To this end, we first write the partition
' | | function of our Hamiltonian as
0 . I I 7 =T — =T —06(T 6
0 0.004 0.008 0.012 Fexp(—FHrotor) = Trexp [T+ V)] (6)
1INg T =U> L} ©)
i

FIG. 1: —(Q1 + Q2) = C — 1/3 as a function of the inverse lattice abed

size for s(everal digorder stre/ngths. For moderate disqibi&r— v -9 Z Z diadjpl55" dicdja (8)

A#)/6A > 0.1, an extrapolation to large system size shows that the abed (i)

ground-state will be uniaxially ordered, — 1. For strong disorder

(A — A%)/5A < 0.07, the ground-state remains biaxially ordered, where we have introduced the notatioff“* = A AS;6ap0ca.

C # 1 after disorder averaging withih/Ns extrapolation. [Note:  To obtain the partition function we calculate the tracelip (6

Q1= (Q1), Q2 = (Q2), C = (C), A" = (A"), A" = (A7)] by writing it as a path integral ove¥/ time slices, and then
inserting a complete set of coherent stafgs)) over each
slice, so that

nematic. However, having' # 0, % or 1 for a single disor-
der realization does not guarantee that the system is iaxia Z = lim Tr[exp {—07(T + V)
ordered. The system can in fact be separated into domains, Moo

each domain representing one of the three possible sodution R et 0 _ 5o

For example, the system could be separated into domains rep- ~ — / ¢ H {0(Ta+1); ¢(Tat1)| exp [-07T]
resenting only the first and second type of solutions anid stil a=0

haveC # 0,  or 1. Nonetheless, this situation is unlikely; x exp [=07V][0(7a); $(7a)) )

in most cases wher€ # 0, L or 1 we find that the system .
. : : ~ . whereér = 3/M. Inserting a set of complete statgsm,)
adopts the third solution. Nevertheless, as mentioned PreY (defined by(d, |1, m) = Yi,,.(8, ¢), whereYi,, are the spher-

ously, to find the physically meaningful ground state, wechee . X .
. 2 . ical harmonics) on each slice, we get

to average over many disorder realizations and by doing-so re

store the translational invariance of the system. Consgtyle Mo1

C #0, % or 1 can be used only after disorder-averaging to 7 — /DHD(;S H exp [0V (0, 9)| T (10)

determine whether the system is biaxially ordered for @erta o ’ “

disorder strength. - L

The result of the numerical calculation, which corrobo- T — Z Z Hexp [~ U871 () (Ia (i) + 1)]

rates the above discussion, is shown in Eig. 1. After fitting

second order polynomial functions to our data and extrap- la;o*ma:_la 19 . .
olating the resulting functions to/Ng — 0, we find that XYie (i) .ma (i) (Bat1(2), Pata (1)
for (A* — A#)/6A < 0.07, the ground state is biaxial ne- XY, (i), ma (i) (0a (i), pali)) (11)

matic with C # 1. For intermediate or larger values of

(A* — A#)/6A > 0.1, C = 1 and we have an uniaxial ne- To rewrite [I1) in a suitable form, we use the identtles
matic ground state. So this demonstrates that/fct 0, the

rotor model exhibits a biaxial nematic ground state in tree di

= = cos 873 - l *
ordered average sense in the lififi" — A%)/6A < 1. In the eheos(B0) — - DN L (W)Y (6,6) Y (0, )

next subsection, we study the effect of quantum fluctuations 1=0 m=-1
on this state. I 2
. +1/2)"-1/4
A comment about the validity of the/ Ng extrapolation is hlingo Ii 1 (h) =exp —% +0(1/h?)
in order here. This procedure definitely leaves open a pibssib
ity that a large enough system size has not been reached in our (12)

numerics and the biaxial nematic state seen here is ancartifa

of finite system size. The resolution of this question, withi where/;, . is the modified Bessel function angs A =
our numerical procedure, is not straightforward. Howewer, cosfcos§ + sinfsin cos(¢ — ¢'). Then, after a few
can be certain that even if this is the case, with small enoughktraightforward manipulations, we get in terms @f =



(sin € cos ¢, sin 0 sin ¢, cos 0) fields,

/DdH6 <Z \dia|? — 1) exp (—5)
/dT Z 0. dza -V Z Z dzadicrélf(:ddjbdjd

<ij> abed

Z

(13)

(14)

where we have rescaléd so thadUdr = 1 andv = ¢g/4U.

Next, we introduce a Lagrange multiplier field(7) to im-
plement the constraint and decouple the quartic ters) urs-
ing an auxiliary fieldV?,. After some algebra, we get

Z

= / DADNDMexp (—851) (15)

/dT [Z [Z (ard/ia)2 + 2/\1 (Z |dia|2 - 1)
Z Z Nz Fabcd 1Ngd‘|

—demd s N? ] -
<’Lj> abed

S

(16)

where the auxiliary fieldsV/, are not the order parameter
fields, but their conjugate. The order parameter fiél¢iscan

now be introduced by a second Hubbard-Stratonovitch trans-

formation which yields

Z = / DADNDADP exp (—Sefr) (17)
Seft = /dT [Z { > (0rdia)” +iN; (Z |dial® — 1)
i SN, (diad — Py) }
ab
—v YN PLTHP), (18)
<ij> abed

An integration over the auxiliary field¥?, shows that’’, =
<diad1b> and hence the nematic order parametgy,
>, (Pl — bap > Pi./3) can be directly obtained in terms
of the P}, fields.
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FIG. 2: —(Q1+Q-2) as afunction of = g/4U for (A*—A%)/6A =

0.03. This result, obtained foNs = 10 x 10 and Ng = 12 x 12
lattices, shows that for a wide range »f > v. the ground-state
remains biaxial nematic. [Not€)1 = (Q1), Q2 = (Q2)]

The saddle point equations can now be obtained from Eq. 19,

dw , i
1= /§Z[G£ff (w, X, NY)] (21)
iNG, = uZZFacbd (22)
i = [ 5o (@A) (23)

and are solved numerically to obtain the mean field order pa-
rameterQq, = >, (P, — dap >, P!, /3) for each disorder
realization.

For a given disorder realization, we solve the set of mean-
field equations Eq§. 2L, P2, ahd 23 in order to find, for each
lattice sitei, the fieldsP?, (with a,b = {z,y, 2}). We then
average overl00 disorder realizations and for finite sizes
Ng = 10 x 10 and 12 x 12. We find that the real val-
ued solutions of the order parameter are diagonal and obtain
Qa = <Qa>disordcr = (_(Ql + Q2)a Qla QQ) The result is
shown in Fig[2 foA* — A*)/6A = 0.03. We find, from the
plot of —(Q1 + Q2) as a function of/, that the biaxial phase
persists for a wide range of > v. = 1. This shows that the

Consequently, we can now seek the saddle point solutioaffect of quantum fluctuations, at least at a saddle poiretiJev
to the above action. At the saddle point, the constraintdield does not destabilize the biaxial phase as long asv.. This

are time-independent and tkie fields can be integrated out.
Notice that in contrast to the clean system, the constraiai
\; are space-dependent. The mean-field action becomes

Z Tr[ln Gy/p)

_/dT[Xi: (z’)\i —i%:Néchfb)

SMF

+v Y Y P Telp (19)
<17> abed
Goir (T A, NY) = [(=02 +iX;) Gap — iNJ,] (20)

gualitative feature seems to be independent of system size,
as can be seen from Figl 2 and we expect it to hold in the
Ng — oo limit.

Ill.  ULTRACOLD SPIN-ONE ATOMS

In this section we first show that the low energy effective
Hamiltonian of spin-one ultracold atoms in the Mott insulat
ing phase can be mapped onto the rotor Hamiltonian[(Eq. 1)
which we analyzed earlier. Then we propose an imaging ex-
periment on ultracold atoms which can detect the biaxial ne-
matic phase.



A. Effective rotor model

We consider a system of bosorfic= 1 atoms in a disor-
dered optical lattice with spin-dependent confining pasdsit

5

whereb,, is the spin-one boson operator at giteith spin pro-
jectiona = {-1,0,1},n; = >, bjabia is the boson density
at sitei, S; = Y ab bZTaSabbib is the spin operato being the
spin rotation matrices for spin-one bosons)s the chemical

and antiferromagnetic interaction between atoms. The manyotential, and’/ are given by

body Hamiltonian for this system is given in second-quattiz

notation by
2
H = /dr @l(r) (—;—mw + Va(r)) z/;a(r)

% / drdr'f ()], ()W (x = )y (x )by (x),
(24)

t9 = /drw*(r—ri) (—%VQ + Va(r)> w(r—r;). (26)

SO thatfl = t~,1 7§ t~0 for Vi=V_ 7§ Vo.

Note that for weak speckled fields, we always have
ot/t, < 1, whereo; andt, are the standard deviation and
average of the hopping coefficielit However, in this setup,
one can always tune the sinusoidal potentig/ so that we
are in a regime wherg; — #|/o: < 1. As we shall see, this

whereyf (r) is the boson field operator that creates a particlés precisely the regime where one expects to see the biaxial

with spin projectiona = {—1,0,1} at positionr, V,(r) is
the spin-dependent and spatially disordered externahgiate
andW(r —r') = 0(r — v')(Uy + U281 - Sy) is the two-
body interatomic potenti#l. HerelU, = 47/ (az — ag) and

— 3m
Uy = 4;;;2 (2a2 + ao) are the on-site interactionsgy are

the s -wave scattering lengths in the= 2(0) spin channels,
andm is the mass of the atoms. For example, ¥Xa, the
scattering lengths are, = (52 £ 5)ap andag = (46 £ 5)ap
wherea s is the Bohr radiv¥ so thatUs /Uy ~ 0.04. In what

follows, we shall be interested in the Mott states of the spin
one bosons which occur in the limit of deep lattice potential

with Vi=V_ 75 .
A spin-dependent disordered potenfigl(r) can be gen-

phase. Also we note that due to the on-site disordered poten-
tial, the chemical potential; should also be site-dependent.
However,u; has only a power law dependence on disorder by
comparison to an exponential dependence for the hopping co-
efficients. Consequently, the standard deviation,as small
and does not influence the nature of the Mott states. So we re-
placedu; by its average valug in Eq.[25. Notice that this ap-
proximation is valid only when the potential due to the speck
led field is weak compared to the one due to the sinusoidal
field.

Next, following Ref.[12, we switch to a representation
where the boson operators transform as vectors under spin ro
tation

erated by superposing a speckled laser field on a sinusoidal 1 —1i

spin-dependent lattice potentidl, (r). The spin dependence
of the sinusoidal potential can be achieved by tuning therlas
frequency close to the hyperfine splitting (but far away from

the fine structure splitting) of the atoA§g®%:21.22.23.24 |n ap-

(bi—1 —bi1), biy = E(bifl + bi1).
(27)

iz —

biabiz:_
’ V2

Using these operators, the kinetic term[in](25) is rewrigten

pendix[A, we propose a method to obtain a spin-dependent

lattice potential withl; = V_; # V4. Generation of the dis-
ordered potentialV, (r) can be achieved by reflecting a laser
at the same frequency but with a much lower intensity off a

-3 (bjatfjbja - h.c) :

(ij) ae{z,y,z}

(28)

speckled mirror. The net lattice potential seen by the at@ms ;i 47 — 1 = 27 andtii = £,

spin stateu is thenV, (r) = Voa(r) + 6V, (r). In what fol-

x

We now consider this spin-one Bose-Hubbard model in the

lows, we shall consider the situation where the speckled fiel jimit where N > 1 and we are in the Mott phase of the bosons
laser is weak compared to the one generating the sinusoidglith a large odd number\) bosons per site. A straightfor-

potential such thatV, <« V,.

ward generalization of the analysis of Refl. 12, shows that th

_For free ultracold atoms in an optical lattice, the energyiow energy effective Hamiltonian in this limit can be mapped
eigenstates are Bloch wave functions and a superposition @ to a rotor model. Using the decompositian = d;.a;,
these Bloch states yields a set of Wannier functions whieh arwhere the boson operatoy changes the number of particles

well localized on the individual lattice sites for deepilza®.

N; but not the orientation of the boson spin givendyy we

The energies involved in the system dynamics being smalhptain in second order perturbation thedri?
compared to excitation energies to the second band, we ex-

pand the boson field operators in the Wannier basis and keep

only the lowest states),(r) = >, bi;w(r — r;). Conse-
quently, the many-body Hamiltonian (24) reduce' to

U . U: . .
70 ni(ni—l)—k??Z(Sf—Qni)—,uXi:ni

A A

=33 (Wb + b)),

(ij) @

H:

(25)

°t

Us 2N
22T (

0 >

Hcﬁ' =

tid ’
> dmfidja> :
a=x,yY,z x
(29)

Eq.[29 has to be supplemented with the constriint- S; =
even wWhere N; is the number of bosons at siteand.S; =
ieijkdja—‘;’lk is the total spin which can be identified as the rotor
angular momentum. However, the constraitt+ S; = even



becomes irrelevant in the smalh limit12. Therefore in this wherea is the amplitude of the incoming beam. Note that
limit, the effective low energy Hamiltonian (EQ.]29) can be this method distinguishes between uniaxial and biaxial ne-
directly mapped to the rotor model (Eq. 1) with the identifica matic ground states. In the uniaxial sta@,) = (Q2)
tion Uz/2 — U, 2N?t2 /Uy — g andt /t, — A%, Forthe andI_ = 0; however, for a biaxial nematic ground state
biaxial nematic phase to occur, we therefore need a windowQ@) # (Q2) soI_ # 0. Thus passing the transmitted beam
where the conditiond N%#2 /UsUy > 1, andNt, /Uy < 1 through a crossed polarizer, one should be able to meésure
are simultaneously satisfied. The second condition ariseand hence detect the presence of a biaxial nematic state.
here since we need to be away from the superfluid transi-
tion point of boson systems. These conditions can be ex-
pected to be easily satisfied. For example, in a deep lattice
(V = 10ERr where Ey, is the recoil energy) set by red de-
tuned light @ = 985 nm) and containing aboutd) sodium
atoms per welld N2¢2 /UsUy ~ 14, andNt,. /Uy ~ 0.4. We have studied a disordered O(2) rotor model with
guadrupolar interaction and demonstrated that the model ex
hibits a biaxial nematic phase in the disordered averaggesen
B. Detection of biaxial nematic order It is demonstrated that within mean-field analysis, the biax
ial nematic phase is stable against small quantum fluctua-
In this section, we propose a method to detect experimertions. Such models are shown to be realized in the Mott
tally biaxial nematic order in a condensate of spin-one coldohase of spin-one ultracold bosons in optical lattices with
atoms. Consider the atoms being in a Mott state which has bspin-dependent disordered potential in the limit of largen
axial nematic order parameter. First, as is customary irt moder of bosons per site. We have also suggested an experiment
of the experiments in ultracold atoAiswe switch off boththe ~ which can, using laser imaging of the spin-one atoms, detect
lattice potential and the trap, and let the atoms expandyfree the biaxial nematic phase.
We then probe the expanding cloud by a right-circutar
polarized laser beam. The dielectric tensor of the atoms as
seen by the laser beam is givertby

(€jk) = 6jk + co(p)djk — P18k (S1) + c2(Qjk),  (30)

where the coefficients,_;o 1 2, depends on the laser fre-  This work was supported by NSERC, the Canadian Institute
quency andp), (S) and(Q,x) are the density, average spin for Advanced Research, the Canada Research Chair Program
and the nematic order parameters of the atomic cloud. If théYBK, KS, JSB), and Le Fonds québécois de la recherche
laser frequency is too far detuned from hyperfine splittigg f  sur la nature et les technologies (JSB). YBK thanks Chetan
guency of the atomic levels; vanishes and the nematic order Nayak for discussions that sparked his interest in biaxéal n

is not probed. On the other hand, if the laser frequency is natatic phases, KS thanks Duncan O'dell and Ying-Jer Kao for
detuned enough from the hyperfine splitting frequency,eher helpful discussions.

will be significant absorption which will weaken the intetysi

of the transmitted light. As shown in Ref.123, there indeed
exist a window for several spin-one atom species where the
imaging can be done.

If the expanding cloud is sufficiently optically thin and ho-
mogeneous, the polarization of the transmitted beam (taken  We propose here a method to create a spin-dependent opti-
be propagating along theaxis) is cal square lattice. Using our approach, trapped bosons with
A S. = {—1,1} experience the same potenti#dd,; = V4,

?/ dz (\/€zy) — 1)] pin,  (31) v_vhlile bosons withS. = 0 are subject to a different poten-

0 tial Vp.
wherep;, = (g, py) iS the two-component polarizationvec-  Consider atoms with total angular moment$m= 1 in-
tor of the incoming laser beary,,) is the reduced dielectric teracting with a configuration of laser beams producing an
tensor in thgzy) plane and\ is the thickness of the medium. electric fieldE(r). Building on previous work foiS = 1/2
As discussed in Ref. 23, the presence of spin of@erin  particleg*, we deduce that atoms with = 1 experience an
the atom cloud gives a phase shift to the atoms whereas a nexternal potential of the form
matic order leads to a left-circulas () polarized component
in the transmitted beam. So, if we shine on the spin-one sam- _ & Y
ple a beam of pure light in such a way that the principal Vap(r) = V(£)dap + B(r) - Sag + Nij(r)Gijap, - (AD)
axes@®; and(@- of the nematicity ellipsoid are orthogonal to
the direction of the propagating beam, the intensity of¢the
component of the transmitted beam is given by

IV.  CONCLUSION
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APPENDIX A: SPIN-DEPENDENT OPTICAL LATTICE

iwA w
©out = € ¢ [1 +

with o, 3 = {—1,0,1}. In Eq.[A], the scalar potenti&(r)
is proportional to the light intensity, the vector fie{r) is
proportional to the electromagnetic sgirmand couples to the

. A . ~

iwcee 9 total atomic angular momentum operafjrand the second-
dc /0 dz ((Q1) = (@2)) | (32) rank tensoiV;; (r) is proportional to the light nematic#and

I_:|Oé+



couples to the quadrupole moment operaigr.

<
=
|

= bE*(r)  E(r)
B(r) = —ib1E*(r) x E(r)

Nij(r) = ba[5 (B () E;(x) + B} (1) i)

1 *
—3E (r) - E(r)d;;]
(1,alS]1, B)

1 ~+24 At oA 1A
Gijop = (1,0] 5(sjsj+S.j.si)—gs%sij 1, 3).

(A2)

w2
)
g

I

The coefficient$y ; o are functions of the light frequency and

wherek is the wavevector, and,, ¢, are the initial phases
for the electric field propagating in theandy directions re-
spectively. We choose the difference between these twalinit
phasesA¢ = ¢, — ¢, to be equal tar/2. Using this elec-
tric field configuration, we find the electromagnetic spin¢o b
zero and the external potential to be

Vag(z,y) = 4|Eo|? (cos®(kx) + cos®(ky)) x

((bo - gbg)éaﬁ + ba(1, a|S3|1,g>) :
(A4)

Hence, only the diagonal terms of the external potentiaden

the atomic structure. To obtain an effective coupling to theare non-zero and are given by

light nematicity (i.e. a large enough value), one needs to
tune the laser frequency close to the hyperfine splittingnef t
atoms, but far from the fine structure splitting such that
b2, bo.

Then, to generate the optical square lattice (say imthe

plane), we use two orthogonal pairs of counter propagating
monochromatic lasers, and choose these equal intendity lig

fields to be linearly polarized in the direction. The total
electric field produced by this configuration is thus given by

E(t,z,y) =2 Eg 2 €™ [¢'%* cos(kx) + "% cos(ky)] ,
(A3)

2
Voo = A(z,y)(bo — §b2)

1
Vit = Az, y)(bo + 3b2)
1
Voo = Afz,y)(bo + 3b2), (A5)
whereA(z,y) = 4|Eo|*(cos?(kz) + cos?(ky)). As a result,

we obtain a spin-dependent optical square lattice With=
Vo # V.
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