
ar
X

iv
:c

on
d-

m
at

/0
51

02
90

v2
  [

co
nd

-m
at

.s
tr

-e
l] 

 6
 D

ec
 2

00
6

Biaxial spin-nematic phase of two dimensional disordered rotor models and spin-one bosons in
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We show that the ground state of disordered rotor models withquadrupolar interactions can exhibit biaxial
nematic ordering in the disorder-averaged sense. We present a mean-field analysis of the model and demonstrate
that the biaxial phase is stable against small quantum fluctuations. We point out the possibility of experimental
realization of such rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical
lattice in the limit of a large number of atoms per site and also suggest an imaging experiment to detect the
biaxial nematicity in such systems.
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I. INTRODUCTION

Nematic phases of matter have been widely studied in many
different areas of condensed matter physics1. For example,
consider a system of molecules having some vector quantity
(say a polarization vectorp) associated with each of them.
Since molecules are extended objects, a local coordinate sys-
tem can be attached to each molecule. Hence, for a molecule
at a pointi, one can define a local nematic order parame-
ter: Qαβ

i = piαpiβ −
∑

α p
2
iα/3

1. The nematic phase is
then defined as the state of the system for which

∑

i pi = 0

whereas
∑

i Q
αβ
i becomes a traceless3×3 matrix with eigen-

valuesQ = [−(Q1 +Q2), Q1, Q2]. Such phases are of two
types: uniaxial nematic whereQ1 = Q2 and biaxial ne-
matic for whichQ1 6= Q2

1. In both these phases, the sys-
tem breaks rotational symmetries while preserving transla-
tional invariance. Uniaxial nematic phases occurs more fre-
quently whereas the first experimental observation of biax-
ial nematic phase in a classical system of molecules has only
been recently reported2. Although much more difficult to re-
alize, biaxial nematic phases are of great theoretical interest
since they are known to support non-Abelian defects3. Uni-
axial nematic phases have also been studied in the context of
several quantum condensed matter systems such as strongly
correlated electron systems4,5,6,7,8,9,10and ultracold spin-one
atoms in optical lattice11,12,13. For example, in the case of
spin-one boson system, in some parameter regime, the ground
state breaks spin-rotational invariance along one of the axes
while maintaining translational invariance with no spin-order
〈S〉 = 0 and with two equal non-zero eigenvalues of the ma-
trix

〈

SαSβ
〉

. However, there has been no proposals of realiza-
tion of biaxial nematic ground states in the context of quantum
condensed matter systems using standard local Hamiltonians.

In this work, we point out that disorderedO(2) rotor models
with quadrupolar interaction in two dimensions (2D) can ex-
hibit biaxial nematic phase in the disordered averaged sense.
Such rotor models are described by the Hamiltonian

Hrotor = U
∑

i

L2
i − g

∑

<ij>

(

∑

a=x,y,z

diaΛa
ijdja

)2

(1)

whered ≡ (dx, dy, dz) = (sin θ cosφ, sin θ sinφ, cos θ) is a
unit vector expressed in terms of the rotor anglesθ andφ,
Li denotes angular momentum of the rotor,

∑

〈ij〉 denotes
sum over nearest neighbor sites, andΛij are dimensionless
random couplings between the unit vectorsd at sitesi and
j. In the following we shall considerΛx = Λy 6= Λz, and
chooseΛx(z) to have Gaussian distributions with same width
δΛ and means̄Λx(z). The main result of this work is that in the
limit

∣

∣Λ̄x − Λ̄z
∣

∣ /δΛ ≪ 1, the model given by Eq. 1 exhibits
a biaxial nematic ground state in the disordered average sense
for U ≪ g. We also show, using a mean-field analysis, that
the biaxial phase is stable against quantum fluctuations until
ν = g/U is reduced to a critical valueνc. Note that the above-
mentioned regime can also be reached for arbitrarily weak dis-
order: δΛ ≪ Λ̄x, Λ̄z provided that

∣

∣Λ̄x − Λ̄z
∣

∣ ≪ δΛ. This
particular feature of the rotor model, as we shall see, makesit
easily realizable using ultracold atoms in optical lattices.

The choice of the rotor Hamiltonian (Eq. 1) is not arbitrary,
but is motivated by their connection with ultracold spin-one
bosons in an optical lattice. The low energy effective Hamil-
tonian of such bosons systems has been derived in the ab-
sence of disorder in Refs. 11,12,13. It has been shown that
the effective theory of the Mott phases of such a system can
be described, in the limit of large number of bosons per site,
by rotor models similar to Eq. 1, supplemented by an addi-
tional constraint on the numberN and the total spinS of the
bosons per site:N + S = even11,12,13. We generalize this
analysis to include disorder and show that in the presence of
spin-dependent disordered optical lattices, which can be easily
created by using a speckled laser field14,15, the Mott phases of
ultracold spin-one bosons is indeed described by Eq. 1 supple-
mented by the constraint condition mentioned above. Further,
as will be shown later, forU ≪ g, the constraint condition
becomes irrelevant and in this limit we expect our analysis of
the rotor model to apply for the bosons as well. This corre-
spondence therefore allows us to suggest experiments on ul-
tracold atoms which can in principle probe such a biaxial ne-
matic phase. We suggest a straightforward imaging of ultra-
cold atoms using a polarized laser beam which can distinguish
the biaxial phase from other spin or uniaxial nematic phases.
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The organization of the paper is as follows. In Sec. II, we
analyze the rotor model (Eq. 1) and demonstrate that it ex-
hibits a biaxial nematic ground state. This is followed by Sec.
III A, where we derive the effective low-energy Hamiltonian
of spin-one ultracold Bosons in a spin-dependent disordered
optical lattice and discuss its relation to the rotor model an-
alyzed in Sec. II. In Sec.III B, we suggest an experiment to
detect biaxial nematic order. Finally, we conclude in Sec.IV.

II. ANALYSIS OF THE ROTOR MODEL

In this section, we first present an analysis of the rotor
model (Eq. 1) and demonstrate the presence of biaxial ne-
maticity atU = 0. This is followed by the derivation and
analysis of a mean field theory for finiteU which illustrates
the stability of the biaxial phase against small quantum fluc-
tuations.

A. Limit of U = 0

For U = 0, in the absence of quantum fluctuations, the
Hamiltonian (Eq, 1) is diagonal in the|θ, φ〉 basis. This allows
us to write

H ′
rotor = −g

∑

〈ij〉

A2
ij , (2)

whereAij is given by

Aij = Λx
ij sin θi sin θj cos(φi − φj) + Λz

ij cos θi cos θj (3)

with 0 ≤ θi ≤ π and0 ≤ φi < 2π. Let us now consider a
ground state configuration of the HamiltonianH ′

rotor given by

ΨG =
∣

∣θ01, φ
0
1; θ

0
2, φ

0
2; ...θ

0
i , φ

0
i ; ....θ

0
N , φ

0
N ; ....

〉

(4)

where(θ0i , φ
0
i ) denotes the value of the anglesθ andφ at the

ith site in the ground state. From Eqs. 2 and 3, one can imme-
diately see thatH ′

rotor has an infinite number of degenerate
ground states since any local transformationθ0i → π − θ0i ,
φ0

i → φ0
i + π leavesH ′

rotor invariant for any random set of
Λx,z

ij . It is also easy to see that such a local transformation
changesdi → −di and leaves the local nematic order param-
eterQab

i = da
i d

b
i − δab/3 invariant. Hence for the purpose

of computing the nematic order parameter, we can choose any
one of these ground state configurations.

The rotor HamiltonianH ′
rot is also invariant under two

global transformations. The first of themT1 : φ → φ + η is
a gauge freedom which allows us to choose the orientation of
the globalx axis. The second transformationT2 : θ → π − θ
leaves the diagonal components ofQi

ab invariant while chang-
ing the off-diagonal components. The ground statesΨG (Eq.
4) andT2ΨG = Ψ′

G are degenerate.
Using the above-mentioned local and global transformation

properties, we can considerably simplify the numerical proce-
dure for obtaining ground states ofH ′

rotor for a given disorder
realization. First, from Eq. 3, we find that any ground-state

configurationΨG will always haveφi − φj = 0, π. Using the
transformationT1 , we can therefore choose each individual
φi to be either0 or π. This is a gauge choice and, hence, does
not affect any physical quantity. Next instead of usingΨG to
computeQi

ab, we find the stateΨ
′′

G, for whichφi = 0 at every
site. This can be done sinceΨ

′′

G is always a part of the degen-
erate states which can be reached fromΨG by successive ap-
plication of the above-mentioned local transformation. Using
these two facts, we see that for any set of random coefficients
Λx,z

ij , one can computeQab =
∑

i diadib − δab/3 by finding

the ground state configuration ofH
′′

rotor = −g∑<ij>(A′
ij)

2

with

A′
ij = Λx

ij sin θi sin θj + Λz
ij cos θi cos θj . (5)

The ground states ofH
′′

rotor is two-fold degenerate and these

two ground statesΨ(1)
G and Ψ

(2)
G = T2Ψ

(1)
G are related by

the global transformationT2. The two ground states have
opposite signs for off-diagonal elements ofQab in the cho-
sen gauge and therefore after averaging over these ground
states, the off-diagonal elements ofQab vanishes. Thus
we are finally left with the diagonal componentsQaa =
(−(Q1 + Q2), Q1, Q2) = (C − 1/3,−1/3,−(C − 2/3)),
where0 ≤ C ≤ 1, for a given set of random coefficients
Λx,z

ij . Finally, one can numerically average over different re-
alizationsQ̄a = 〈Qaa〉disorder to obtain the disorder-averaged
nematic order parameter. The biaxial nematic phase is real-
ized whenC̄ 6= 0, 1

2 or 1.
The ground state ofH ′′

rotor can be obtained numerically
using standard minimization procedure for each disorder real-
ization. For the sake of brevity, we chooseΛ

x(z)
ij to be a set

of random numbers having a Gaussian distribution with same
standard deviationδΛ and different means̄Λx(z) and average
over 500 disorder realizations. We choosēΛx > Λ̄z here
without loss of generality. We study finite-size systems with
sizes ranging fromNS = 8×8 toNS = 20×20 with periodic
boundary conditions and use standard1/NS extrapolation to
obtain the infinite system size limit16. A few comments about
the numerical procedure are in order here.

First, for (Λ̄x − Λ̄z)/δΛ ≫ 1, it is clear that the sys-
tem energy reaches its minimum atsin θi sin θj = 1 and
cos θi cos θj = 0 for all sites and disorder realizations. Conse-
quently, after disorder-averaging,C̄ = 1, and the ground state
is an uniaxial nematic phase.

Second, in the limit(Λ̄x − Λ̄z)/δΛ ≪ 1, for a given disor-
der realization, we find that the configuration with minimum
energy is part of a group of three possible solutions. The
first corresponds tosin θi sin θj = 1 and cos θi cos θj = 0
for all sites. For a single disorder realization with this solu-
tion, the order parameter then hasC = 1. The second solu-
tion possibly assumed by the system issin θi sin θj = 0 and
cos θi cos θj = ±1 for all sites. The value of the order param-
eter corresponding to such a disorder realization is then given
byC = 0. Finally, the third possible solution corresponds to a
configuration for whichsin θi sin θj andcos θi cos θj are nei-
ther0 nor±1, and are varying in values from site to site. For
such a disorder realization,C 6= 0, 1

2 or1 and one has a biaxial
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FIG. 1:−(Q̄1 + Q̄2) = C̄ − 1/3 as a function of the inverse lattice
size for several disorder strengths. For moderate disorder(Λ̄x −
Λ̄z)/δΛ ≥ 0.1, an extrapolation to large system size shows that the
ground-state will be uniaxially ordered,̄C → 1. For strong disorder
(Λ̄ − Λ̄z)/δΛ ≤ 0.07, the ground-state remains biaxially ordered,
C̄ 6= 1 after disorder averaging within1/NS extrapolation. [Note:
Q̄1 = 〈Q1〉, Q̄2 = 〈Q2〉, C̄ = 〈C〉, Λ̄x = 〈Λx〉, Λ̄z = 〈Λz〉]

nematic. However, havingC 6= 0, 1
2 or 1 for a single disor-

der realization does not guarantee that the system is biaxially
ordered. The system can in fact be separated into domains,
each domain representing one of the three possible solutions.
For example, the system could be separated into domains rep-
resenting only the first and second type of solutions and still
haveC 6= 0, 1

2 or 1. Nonetheless, this situation is unlikely;
in most cases whereC 6= 0, 1

2 or 1 we find that the system
adopts the third solution. Nevertheless, as mentioned previ-
ously, to find the physically meaningful ground state, we need
to average over many disorder realizations and by doing so re-
store the translational invariance of the system. Consequently,
C̄ 6= 0, 1

2 or 1 can be used only after disorder-averaging to
determine whether the system is biaxially ordered for certain
disorder strength.

The result of the numerical calculation, which corrobo-
rates the above discussion, is shown in Fig. 1. After fitting
second order polynomial functions to our data and extrap-
olating the resulting functions to1/NS → 0, we find that
for (Λ̄x − Λ̄z)/δΛ ≤ 0.07, the ground state is biaxial ne-
matic with C̄ 6= 1. For intermediate or larger values of
(Λ̄x − Λ̄z)/δΛ ≥ 0.1, C̄ = 1 and we have an uniaxial ne-
matic ground state. So this demonstrates that forU = 0, the
rotor model exhibits a biaxial nematic ground state in the dis-
ordered average sense in the limit(Λ̄x − Λ̄z)/δΛ ≪ 1. In the
next subsection, we study the effect of quantum fluctuations
on this state.

A comment about the validity of the1/NS extrapolation is
in order here. This procedure definitely leaves open a possibil-
ity that a large enough system size has not been reached in our
numerics and the biaxial nematic state seen here is an artifact
of finite system size. The resolution of this question, within
our numerical procedure, is not straightforward. However,we
can be certain that even if this is the case, with small enough

(Λ̄x − Λ̄z)/δΛ, the biaxial phase will manifest itself over a
large window of energy scale at finite temperature, even if the
zero temperature ground state turns out to be uniaxial nematic.

B. Quantum fluctuations for U 6= 0

To study the effect of quantum fluctuations, it is more con-
venient to switch to a path integral representation of the rotor
Hamiltonian (Eq. 1). To this end, we first write the partition
function of our Hamiltonian as

Z = Tr exp(−βHrotor) = Tr exp [−β(T + V )] (6)

T = U
∑

i

L2
i (7)

V = −g
∑

abcd

∑

〈ij〉

diadjbΓ
abcd
ij dicdjd (8)

where we have introduced the notationΓabcd
ij = Λa

ijΛ
c
ijδabδcd.

To obtain the partition function we calculate the trace in (6)
by writing it as a path integral overM time slices, and then
inserting a complete set of coherent states|θ, φ〉 over each
slice, so that

Z = lim
M→∞

Tr [exp {−δτ(T + V )}]M

=

∫

DθDφ
M−1
∏

α=0

〈θ(τα+1);φ(τα+1)| exp [−δτT ]

× exp [−δτV ] |θ(τα);φ(τα)〉 (9)

whereδτ = β/M . Inserting a set of complete states|l,m〉
(defined by〈θ, φ|l,m〉 = Ylm(θ, φ), whereYlm are the spher-
ical harmonics) on each slice, we get

Z =

∫

DθDφ
M−1
∏

α=0

exp [−δτV (θ, φ)] Tα (10)

Tα =

∞
∑

lα=0

lα
∑

mα=−lα

∏

i

exp [−Uδτlα(i) (lα(i) + 1)]

×Y ∗
lα(i),mα(i) (θα+1(i), φα+1(i))

×Ylα(i),mα(i) (θα(i), φα(i)) (11)

To rewrite (11) in a suitable form, we use the identities17

eh cos(∆θ) =

√

8π3

h

∞
∑

l=0

l
∑

m=−l

Il+ 1

2

(h)Y ∗
lm(θ, φ)Ylm(θ′, φ′)

lim
h→∞

Il+ 1

2

(h) = exp

[

− (l+ 1/2)2 − 1/4

2h

]

+O(1/h2)

(12)

whereIl+ 1

2

is the modified Bessel function andcos∆θ =

cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). Then, after a few
straightforward manipulations, we get in terms ofd =
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(sin θ cosφ, sin θ sinφ, cos θ) fields,

Z =

∫

Dd
∏

i

δ

(

∑

a

|dia|2 − 1

)

exp (−S) (13)

S =

∫

dτ





∑

ia

(∂τdia)
2 − ν

∑

<ij>

∑

abcd

diadicΓ
abcd
ij djbdjd





(14)

where we have rescaledδτ so that4Uδτ = 1 andν = g/4U .
Next, we introduce a Lagrange multiplier fieldλi(τ) to im-

plement the constraint and decouple the quartic term inS us-
ing an auxiliary fieldN i

ab. After some algebra, we get

Z =

∫

DdDNDλ exp (−S1) (15)

S1 =

∫

dτ

[

∑

i

[

∑

a

(∂τdia)
2

+ iλi

(

∑

a

|dia|2 − 1

)

−i
∑

ab

diadibN
i
ab

]

− 1

2ν

∑

<ij>

∑

abcd

N i
ac(Γ

abcd
ij )−1N j

bd

]

(16)

where the auxiliary fieldsN i
ab are not the order parameter

fields, but their conjugate. The order parameter fieldsP i
ab can

now be introduced by a second Hubbard-Stratonovitch trans-
formation which yields

Z =

∫

DdDNDλDP exp (−Seff) (17)

Seff =

∫

dτ

[

∑

i

{

∑

a

(∂τdia)
2

+ iλi

(

∑

a

|dia|2 − 1

)

−i
∑

ab

N i
ab

(

diadib − P i
ab

)

}

−ν
∑

<ij>

∑

abcd

P i
acΓ

abcd
ij P j

bd

]

(18)

An integration over the auxiliary fieldsN i
ab shows thatP i

ab =
〈diadib〉 and hence the nematic order parameterQab =
∑

i

(

P i
ab − δab

∑

c P
i
cc/3

)

can be directly obtained in terms
of theP i

ab fields.
Consequently, we can now seek the saddle point solution

to the above action. At the saddle point, the constraint fields
are time-independent and thedi fields can be integrated out.
Notice that in contrast to the clean system, the constraint fields
λi are space-dependent. The mean-field action becomes

SMF =
∑

i

Tr[lnG−1
MF ]

−
∫

dτ

[

∑

i

(

iλi − i
∑

ab

N i
abP

i
ab

)

+ν
∑

<ij>

∑

abcd

P i
acΓ

abcd
ij P j

bd

]

(19)

G−1
MF (τ, λi, N

i) =
[(

−∂2
τ + iλi

)

δab − iN i
ab

]

(20)
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FIG. 2:−(Q̄1+Q̄2) as a function ofν = g/4U for (Λ̄x−Λ̄z)/δΛ =
0.03. This result, obtained forNS = 10 × 10 andNS = 12 × 12
lattices, shows that for a wide range ofν > νc the ground-state
remains biaxial nematic. [Note:̄Q1 = 〈Q1〉, Q̄2 = 〈Q2〉]

The saddle point equations can now be obtained from Eq. 19,

1 =

∫

dω

2π

∑

a

[

GMF
aa

(

ω, λi, N
i
)]

(21)

iN i
ab = ν

∑

cd

∑

j

Γij
acbdP

i
cd (22)

P i
ab =

∫

dω

2π
GMF

ab

(

ω, λi, N
i
)

(23)

and are solved numerically to obtain the mean field order pa-
rameterQab =

∑

i

(

P i
ab − δab

∑

c P
i
cc/3

)

for each disorder
realization.

For a given disorder realization, we solve the set of mean-
field equations Eqs. 21, 22, and 23 in order to find, for each
lattice sitei, the fieldsP i

ab (with a, b = {x, y, z}). We then
average over100 disorder realizations and for finite sizes
NS = 10 × 10 and 12 × 12. We find that the real val-
ued solutions of the order parameter are diagonal and obtain
Q̄a = 〈Qa〉disorder ≡ (−(Q̄1 + Q̄2), Q̄1, Q̄2). The result is
shown in Fig. 2 for(Λ̄x − Λ̄z)/δΛ = 0.03. We find, from the
plot of −(Q̄1 + Q̄2) as a function ofν, that the biaxial phase
persists for a wide range ofν > νc ≡ 1. This shows that the
effect of quantum fluctuations, at least at a saddle point level,
does not destabilize the biaxial phase as long asν > νc. This
qualitative feature seems to be independent of system size,
as can be seen from Fig. 2 and we expect it to hold in the
NS → ∞ limit.

III. ULTRACOLD SPIN-ONE ATOMS

In this section we first show that the low energy effective
Hamiltonian of spin-one ultracold atoms in the Mott insulat-
ing phase can be mapped onto the rotor Hamiltonian (Eq. 1)
which we analyzed earlier. Then we propose an imaging ex-
periment on ultracold atoms which can detect the biaxial ne-
matic phase.
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A. Effective rotor model

We consider a system of bosonicS = 1 atoms in a disor-
dered optical lattice with spin-dependent confining potentials
and antiferromagnetic interaction between atoms. The many-
body Hamiltonian for this system is given in second-quantized
notation by

H =

∫

dr ψ̂†
a(r)

(

− ~
2

2m
∇2 + Va(r)

)

ψ̂a(r)

+
1

2

∫

drdr′ψ̂†
a(r)ψ̂†

a′(r
′)W (r − r′)ψ̂b(r

′)ψ̂b′(r),

(24)

whereψ̂†
a(r) is the boson field operator that creates a particle

with spin projectiona = {−1, 0, 1} at positionr, Va(r) is
the spin-dependent and spatially disordered external potential,
andW (r − r′) = δ(r − r′)(U0 + U2S1 · S2) is the two-
body interatomic potential18. HereU2 = 4π~

2

3m
(a2 − a0) and

U0 = 4π~
2

3m
(2a2 + a0) are the on-site interactions,a2(0) are

the s -wave scattering lengths in theS = 2(0) spin channels,
andm is the mass of the atoms. For example, for23Na, the
scattering lengths area2 = (52± 5)aB anda0 = (46± 5)aB

whereaB is the Bohr radius12 so thatU2/U0 ∼ 0.04. In what
follows, we shall be interested in the Mott states of the spin-
one bosons which occur in the limit of deep lattice potential
with V1 = V−1 6= V0.

A spin-dependent disordered potentialVa(r) can be gen-
erated by superposing a speckled laser field on a sinusoidal
spin-dependent lattice potentialV0a(r). The spin dependence
of the sinusoidal potential can be achieved by tuning the laser
frequency close to the hyperfine splitting (but far away from
the fine structure splitting) of the atoms19,20,21,22,23,24. In ap-
pendix A, we propose a method to obtain a spin-dependent
lattice potential withV1 = V−1 6= V0. Generation of the dis-
ordered potentialδVa(r) can be achieved by reflecting a laser
at the same frequency but with a much lower intensity off a
speckled mirror. The net lattice potential seen by the atomsat
spin statea is thenVa(r) = V0a(r) + δVa(r). In what fol-
lows, we shall consider the situation where the speckled field
laser is weak compared to the one generating the sinusoidal
potential such thatδVa ≪ V0a.

For free ultracold atoms in an optical lattice, the energy
eigenstates are Bloch wave functions and a superposition of
these Bloch states yields a set of Wannier functions which are
well localized on the individual lattice sites for deep lattices25.
The energies involved in the system dynamics being small
compared to excitation energies to the second band, we ex-
pand the boson field operators in the Wannier basis and keep
only the lowest states,ψa(r) =

∑

i biaw(r − ri). Conse-
quently, the many-body Hamiltonian (24) reduces to11

H =
U0

2

∑

i

n̂i(n̂i − 1) +
U2

2

∑

i

(

S2
i − 2n̂i

)

− µ
∑

i

n̂i

−
∑

〈ij〉

∑

a

(

b†iat̃
ij
a bja + h.c

)

, (25)

wherebia is the spin-one boson operator at siteiwith spin pro-
jectiona = {−1, 0, 1}, n̂i =

∑

a b
†
iabia is the boson density

at sitei, Ŝi =
∑

ab b
†
iaSabbib is the spin operator (S being the

spin rotation matrices for spin-one bosons),µ is the chemical
potential, and̃tija are given by

t̃ija =

∫

drw∗(r−ri)

(

− ~
2

2m
∇2 + Va(r)

)

w(r−rj). (26)

so that̃t1 = t̃−1 6= t̃0 for V1 = V−1 6= V0.
Note that for weak speckled fields, we always have

σt/t̄a ≪ 1, whereσt and t̄a are the standard deviation and
average of the hopping coefficientt̃a. However, in this setup,
one can always tune the sinusoidal potentialV0a so that we
are in a regime where|t̄1 − t̄0|/σt ≪ 1. As we shall see, this
is precisely the regime where one expects to see the biaxial
phase. Also we note that due to the on-site disordered poten-
tial, the chemical potentialµi should also be site-dependent.
However,µi has only a power law dependence on disorder by
comparison to an exponential dependence for the hopping co-
efficients. Consequently, the standard deviation ofµi is small
and does not influence the nature of the Mott states. So we re-
placedµi by its average valueµ in Eq. 25. Notice that this ap-
proximation is valid only when the potential due to the speck-
led field is weak compared to the one due to the sinusoidal
field.

Next, following Ref. 12, we switch to a representation
where the boson operators transform as vectors under spin ro-
tation

biz = bi0, bix =
1√
2
(bi−1 − bi 1), biy =

−i√
2
(bi−1 + bi1).

(27)

Using these operators, the kinetic term in (25) is rewrittenas

−
∑

〈ij〉

∑

a∈{x,y,z}

(

b†iat
ij
a bja + h.c

)

, (28)

with tijx = tijy = 2t̃ij1 andtijz = t̃ij0 .
We now consider this spin-one Bose-Hubbard model in the

limit whereN ≫ 1 and we are in the Mott phase of the bosons
with a large odd number (N ) bosons per site. A straightfor-
ward generalization of the analysis of Ref. 12, shows that the
low energy effective Hamiltonian in this limit can be mapped
on to a rotor model. Using the decompositionbia = diaai,
where the boson operatorai changes the number of particles
Ni but not the orientation of the boson spin given bydi, we
obtain in second order perturbation theory11,12

Heff =
U2

2

∑

i

S2
i − 2N2t̄2x

U0

∑

<ij>

(

∑

a=x,y,z

dia

tija
t̄x
dja

)2

.

(29)

Eq. 29 has to be supplemented with the constraintNi + Si =
even whereNi is the number of bosons at sitei, andSi =
iǫijkdj

∂
∂dk

is the total spin which can be identified as the rotor
angular momentum. However, the constraintNi + Si = even
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becomes irrelevant in the smallU2 limit12. Therefore in this
limit, the effective low energy Hamiltonian (Eq. 29) can be
directly mapped to the rotor model (Eq. 1) with the identifica-
tion U2/2 → U , 2N2t̄2x/U0 → g andtija /t̄x → Λij

a . For the
biaxial nematic phase to occur, we therefore need a window
where the conditions4N2t̄2x/U2U0 ≫ 1, andNt̄x/U0 < 1
are simultaneously satisfied. The second condition arises
here since we need to be away from the superfluid transi-
tion point of boson systems. These conditions can be ex-
pected to be easily satisfied. For example, in a deep lattice
(V = 10ER whereER is the recoil energy) set by red de-
tuned light (λ = 985 nm) and containing about10 sodium
atoms per well,4N2t̄2x/U2U0 ∼ 14, andNt̄x/U0 ∼ 0.4.

B. Detection of biaxial nematic order

In this section, we propose a method to detect experimen-
tally biaxial nematic order in a condensate of spin-one cold
atoms. Consider the atoms being in a Mott state which has bi-
axial nematic order parameter. First, as is customary in most
of the experiments in ultracold atoms25, we switch off both the
lattice potential and the trap, and let the atoms expand freely.
We then probe the expanding cloud by a right-circular (σ+)
polarized laser beam. The dielectric tensor of the atoms as
seen by the laser beam is given by23

〈ǫjk〉 = δjk + c0〈ρ〉δjk − ic1εjkl〈Sl〉 + c2〈Qjk〉, (30)

where the coefficientsca={0,1,2} depends on the laser fre-
quency and〈ρ〉, 〈S〉 and〈Qjk〉 are the density, average spin
and the nematic order parameters of the atomic cloud. If the
laser frequency is too far detuned from hyperfine splitting fre-
quency of the atomic levels,c2 vanishes and the nematic order
is not probed. On the other hand, if the laser frequency is not
detuned enough from the hyperfine splitting frequency, there
will be significant absorption which will weaken the intensity
of the transmitted light. As shown in Ref. 23, there indeed
exist a window for several spin-one atom species where the
imaging can be done.

If the expanding cloud is sufficiently optically thin and ho-
mogeneous, the polarization of the transmitted beam (takento
be propagating along thez axis) is

℘out = e
iω∆

c [1 +
iω

c

∫ ∆

0

dz (
√
ǫ(xy) − 1)] ℘in, (31)

where℘in = (℘x, ℘y) is the two-component polarization vec-
tor of the incoming laser beam,ǫ(xy) is the reduced dielectric
tensor in the(xy) plane and∆ is the thickness of the medium.
As discussed in Ref. 23, the presence of spin order〈S〉 in
the atom cloud gives a phase shift to the atoms whereas a ne-
matic order leads to a left-circular (σ−) polarized component
in the transmitted beam. So, if we shine on the spin-one sam-
ple a beam of pureσ+ light in such a way that the principal
axesQ1 andQ2 of the nematicity ellipsoid are orthogonal to
the direction of the propagating beam, the intensity of theσ−
component of the transmitted beam is given by

I− = | α+
iωc2
4c

∫ ∆

0

dz (〈Q1〉 − 〈Q2〉) |2 (32)

whereα+ is the amplitude of the incoming beam. Note that
this method distinguishes between uniaxial and biaxial ne-
matic ground states. In the uniaxial state〈Q1〉 = 〈Q2〉
and I− = 0; however, for a biaxial nematic ground state
〈Q1〉 6= 〈Q2〉 soI− 6= 0. Thus passing the transmitted beam
through a crossed polarizer, one should be able to measureI−
and hence detect the presence of a biaxial nematic state.

IV. CONCLUSION

We have studied a disordered O(2) rotor model with
quadrupolar interaction and demonstrated that the model ex-
hibits a biaxial nematic phase in the disordered average sense.
It is demonstrated that within mean-field analysis, the biax-
ial nematic phase is stable against small quantum fluctua-
tions. Such models are shown to be realized in the Mott
phase of spin-one ultracold bosons in optical lattices with
spin-dependent disordered potential in the limit of large num-
ber of bosons per site. We have also suggested an experiment
which can, using laser imaging of the spin-one atoms, detect
the biaxial nematic phase.
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APPENDIX A: SPIN-DEPENDENT OPTICAL LATTICE

We propose here a method to create a spin-dependent opti-
cal square lattice. Using our approach, trapped bosons with
Sz = {−1, 1} experience the same potential,V−1 = V1,
while bosons withSz = 0 are subject to a different poten-
tial V0.

Consider atoms with total angular momentumS = 1 in-
teracting with a configuration of laser beams producing an
electric fieldE(r). Building on previous work forS = 1/2
particles24, we deduce that atoms withS = 1 experience an
external potential of the form

Vαβ(r) = V (r)δαβ + B(r) · Ŝαβ +Nij(r)Ĝijαβ , (A1)

with α, β = {−1, 0, 1}. In Eq. A1, the scalar potentialV (r)
is proportional to the light intensity, the vector fieldB(r) is
proportional to the electromagnetic spin24 and couples to the
total atomic angular momentum operatorŜ, and the second-
rank tensorNij(r) is proportional to the light nematicity23 and
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couples to the quadrupole moment operatorĜij :

V (r) = b0E
∗(r) · E(r)

B(r) = −ib1E∗(r) × E(r)

Nij(r) = b2
[1

2
(E∗

i (r)Ej(r) + E∗
j (r)Ei(r))

− 1

3
E∗(r) ·E(r)δij

]

Ŝαβ = 〈1, α|Ŝ|1, β〉

Ĝijαβ = 〈1, α|
[

1

2
(Ŝ†

i Ŝj + Ŝ†
j Ŝi) −

1

3
Ŝ2δij

]

|1, β〉.

(A2)

The coefficientsb0,1,2 are functions of the light frequency and
the atomic structure. To obtain an effective coupling to the
light nematicity (i.e. a large enoughb2 value), one needs to
tune the laser frequency close to the hyperfine splitting of the
atoms, but far from the fine structure splitting such thatb1 ≪
b2, b0.

Then, to generate the optical square lattice (say in thexy
plane), we use two orthogonal pairs of counter propagating
monochromatic lasers, and choose these equal intensity light
fields to be linearly polarized in thez direction. The total
electric field produced by this configuration is thus given by

E(t, x, y) = 2 E0 ẑ eiωt
[

eiφx cos(kx) + eiφy cos(ky)
]

,

(A3)

wherek is the wavevector, andφx, φy are the initial phases
for the electric field propagating in thex andy directions re-
spectively. We choose the difference between these two initial
phases∆φ = φx − φy to be equal toπ/2. Using this elec-
tric field configuration, we find the electromagnetic spin to be
zero and the external potential to be

Vαβ(x, y) = 4|E0|2
(

cos2(kx) + cos2(ky)
)

×
(

(b0 −
2

3
b2)δαβ + b2〈1, α|Ŝ2

z |1, β〉
)

.

(A4)

Hence, only the diagonal terms of the external potential tensor
are non-zero and are given by

V00 = A(x, y)(b0 −
2

3
b2)

V11 = A(x, y)(b0 +
1

3
b2)

V−1−1 = A(x, y)(b0 +
1

3
b2), (A5)

whereA(x, y) = 4|E0|2(cos2(kx) + cos2(ky)). As a result,
we obtain a spin-dependent optical square lattice withV1 =
V−1 6= V0.
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