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One-dimensional itinerant ferromagnets with Heisenberg symmetry and the

ferromagnetic quantum critical point
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We study one-dimensional itinerant ferromagnets with Heisenberg symmetry near a ferromagnetic
quantum critical point. It is shown that the Berry phase term arises in the effective action of itinerant
ferromagnets when the full SU(2) symmetry is present. We explicitly demonstrate that dynamical
critical exponent of the theory with the Berry term is z = 2 + O(ǫ2) in the sense of ǫ expansion,
as previously discovered in the Ising limit. It appears, however, that the universality class at the
interacting fixed point is not the same. We point out that even though the critical theory in the
Ising limit can be obtained by the standard Hertz-Millis approach, the Heisenberg limit is expected
to be different. We also calculate the exact electron Green functions G(x, t = 0) and G(x = 0, t)
near the transition in a range of temperature, which can be used for experimental signatures of the
associated critical points.

PACS numbers: 71.10.Pm, 71.10.Hf, 75.10.Lp

I. INTRODUCTION

Quantum phase transitions from a paramagnetic to a
ferromagnetic (FM) state in two and three dimensional
itinerant electron system have been studied extensively in
the past1,2. The standard approach in studying such sys-
tems, first advocated by Hertz1, involves two steps. First,
one decouples the electron-electron interaction term in
the Hamiltonian using a Hubbard-Stratonovitch transfor-
mation. Next, the fermions are integrated out to obtain
an effective Landau-Ginzburg (LG) theory in terms of
the FM order parameter which provides an effective de-
scription of the transition. However, it has been recently
pointed out that the procedure of integrating out the
gapless fermions in the above mentioned scheme might
be tricky3. In particular, it might lead to singular terms
in the effective LG functional which can change the crit-
ical property of the transition.

In contrast, very little attention has been paid to such
transitions in one dimension (1D), partly due to the Lieb-
Mattis theorem4 which states that the ground states of
one-dimensional Hubbard models with nearest-neighbor
hopping and density dependent short-range interaction
are always spin singlets. However, numerical work car-
ried out in Ref. 5, has shown that the presence of a next-
nearest-neighbor hopping term in the above mentioned
class of models can result in a FM ground state. The
properties of such ’FM Luttinger liquids’ has been stud-
ied in detail in Ref. 6. Recently, a bosonization analysis
has also been carried out to study the paramagnetic-FM
transition in 1D Hubbard models with Ising symmetry7.
It is shown that in d = 1, the critical theory is below its
upper critical dimension and is governed by an interact-
ing fixed point. A similar conclusion was reached in Ref.
8 from analysis of rotor models of ferromagnets.

In this work, we carry out a similar analysis which ap-
plies for Heisenberg ferromagnets by explicitly keeping
track of the full SU(2) symmetry of the model. In par-
ticular, we show that at the Gaussian level, the presence

of a Berry phase term in the effective action of such fer-
romagnets does not change the dynamical critical expo-
nent z of the transition: z = 2+O(ǫ2) in the ǫ expansion
sense. We point out that in spite of the same value of
the dynamical critical exponent z at the Gaussian level,
the universality class of this transition can be different
from its Ising counterpart. Our analysis also shows that
contrary to the claim of Ref. 7, the critical theory for
Ising symmetry can be obtained by the standard Hertz-
Millis procedure and in 1D such a procedure is identical
to the bosonization approach for Ising FM quantum crit-
ical points. However, for the SU(2) case, it appears that
the critical theory may not be described by the standard
Hertz-Millis procedure. We also consider the effect of the
FM critical fluctuations on the electron Green function at
finite temperature. We obtain an exact expression for the
electron Green functions G(x = 0, t) and G(x, t = 0) in
a temperature range, which can be accessed experimen-
tally by measuring the tunneling density of states (DOS)
and the momentum distribution function respectively.

The organization of the paper is as follows. In the next
section, we obtain the effective action for 1D quantum
ferromagnets with Heisenberg symmetry at the Gaussian
level and determine z by analyzing this action. Then
we discuss the interacting fixed point in the ǫ-expansion
sense and the issue of universality of the Ising and Heisen-
berg cases in the light of possible quartic couplings. This
is followed by Sec. III, where we obtain the electron
Green’s function at finite temperature. We summarize
and discuss our results in Sec. IV.

II. CRITICAL THEORY IN THE HEISENBERG

LIMIT

We first derive the effective action for the critical the-
ory by incorporating the transverse spin fluctuations in
Sec. II A. This is followed by the analysis of the effective
action to derive the dynamical critical exponent z in Sec.
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II B.

A. Derivation of the effective action

We start from a one dimensional t-J model given by

H = −
∑

<ij>

[

∑

σ

t
(

ψ†
iσψjσ + h.c.

)

+ JSi · Sj

]

(1)

where ψiσ represents an electron at site i with spin σ,

and S denotes the electron spin operators Sia = ψ†
i σaψi

where σa are the usual Pauli matrices. The correspond-
ing action can be written as

S =

∫

dx

∫ β

0

dτ
[

ψ†(x, τ) (∂τ − µ)ψ(x, τ) + H
]

(2)

where τ is the imaginary time and β = 1/kBT de-

notes inverse temperature. Note that ψ† = (ψ†
↑, ψ

†
↓) and

ψ = (ψ↑, ψ↓)
T are spinor representations of the electron

operators. We have switched to a continuous represen-
tation of space and this amounts to replacing the last
term in Eq. 1 by −

∫

dxdx′J(x − x′)S(x) · S(x′) where
J(q) = J cos(qxa), where a is the lattice spacing and
we shall consider J > 0 throughout as appropriate for
studying a ferromagnetic instability.

Next, following Schultz9, we introduce new fermionic
fields ψ′ defined as ψ(x, τ) = U(x, τ)ψ′(x, τ). Here U
represent SU(2) rotation matrices such that U †(x, τ)σ ·
n(x, τ)U(x, τ) = σz . The unitary matrices U therefore
correspond to the rotations of the local spin quantization
axis of the electrons to ẑ. The action S, in terms of these
new fields, becomes

S = S0 + SJ

S0 =

∫

dxdτ ψ′†
[

∂τ − µ− C0 − 2t cos (−i∂x − Cx)
]

ψ′

SJ = −

∫

dτdxdx′ J(x− x′)Sz(x)Sz(x′) (3)

where the fields Cµ = −iU †∂µU =
∑

a=x,y,z σaΩa
µ/2 are

the SU(2) gauge fields which describes the spin fluctu-
ations of the system, µ = (τ, x) refers to the time and
space components of the fields and ∂µ = (i∂τ , ∂x). The
gauge freedom here consists of rotation of the spin of the
ψ′ fields about the ẑ axis: ψ′ → ψ′ exp (iσzΦ). Such a
rotation changes Ωz

µ → Ωz
µ + ∂µΦ and therefore leaves

the action invariant.
From now on we shall replace ψ′ by ψ for notational

convenience. The fermion fields can be written in terms
of the right and the left movers: ψ(x) = ψL(x)e−ikF x +
ψR(x)eikF x, where kF is the Fermi wavevector. The right
and the left moving fermions have energy dispersion

ǫα(kx) = sgn(α)vF kx +
k2

x

2m
(4)

where vF = 2ta sin (kF a) is the Fermi velocity and
m = 1/

[

4ta2 cos (kFa)
]

is the mass for the fermions and
sgn(α) = +(−) for α = R(L). In most of our analysis,
we shall restrict ourselves to the linearized dispersion re-
lation for the fermions, which amounts to neglecting the
quadratic term in ǫα(kx). However, for deriving an ef-
fective action for the spin-fluctuations we shall need to
retain the quadratic term, and hence it can not be ne-
glected at the outset10.

In terms of these fields, the action reads

S = S0 + S1 + S2 + SJ

S0 =

∫

d2k
∑

α

ψ†
α(k)G−1

0 ψα(k) (5)

S1 =

∫

d2k d2p
∑

α

ψ†
α(k + p)

×

[

∂G−1
0

∂kµ
, Cµ(p)

]

+

ψα(k) (6)

S2 =

∫

d2k d2p
∑

α

ψ†
α(k + p)

×

[

∂2G−1
0

∂k2
µ

, C2
µ(p)

]

+

ψα(k) (7)

SJ = −

∫

d2q
∑

αα′

Jαα′(q)Sz
α(q)Sz

α′(−q) (8)

Here
∫

d2k is the shorthand notation for
β−1

∑

ωn

∫

dkx/(2π), kµ = (iωn, kx), [..]+ denotes anti-
commutator, α denotes the R,L indices for the right(R)
and left(L) moving fermions, G−1

0 = iωn − ǫα(kx) is the
free fermion propagator, and Jαα′(q) = Jαα′ cos(qx).
We have neglected all 2kF terms in S since we shall
be primarily interested in studying the action near a
ferromagnetic instability. The matrix Jαα′ = J + δJδαα′

has an additional δJ term in its diagonal components,
which is added to make the matrix J invertible and will
be set to zero at the end of the calculation. The term S2

(7) represents the diamagnetic term of the SU(2) gauge
fields Cµ and is known to be important for deriving a
low energy effective description of the spin fluctuations.
Note that to obtain this term, one needs to go retain the
quadratic term in ǫα(kx)10.

We then carry out a Hubbard-Stratonovitch transfor-
mation to decouple SJ :

S = S0 + S1 + S2 + SI + Sφ

SI =

∫

d2k
∑

α

iφα(k)Sz
α(−k) (9)

Sφ = −
1

4

∫

d2k
∑

αα′

(J(q))−1
αα′φα(q)φα′ (−q) (10)

Notice that the field φ does not correspond to the phys-
ical spin-density fields, but their conjugate. However,
for studying the ferromagnetic instability, it is prefer-
able to look at the physical spin-density fields. We
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therefore introduce these fields ρ via a second Hubbard-
Stratonovitch transformation which decouples Sφ:

S = S0 + S1 + S2 + Sint + SHS

Sint =

∫

d2k
∑

α

iφα(k) [Sz
α(−k) − ρα(−k)] (11)

SHS = −

∫

d2k
∑

αα′

Jαα′(q)ρα(q)ρα′ (−q) (12)

The next task is to integrate out the fermionic fields and
obtain an effective low-energy description of the system
in terms of the fields Cµ, ρ and φ. This procedure turns
out to be quite subtle as discussed in Ref. 10, but can be
carried out11. The resulting effective action, to Gaussian
order, reads

Seff = SNLSM + SBerry + S[ρ, φ] (13)

SNLSM =
N(0)

4

∫

dτdx
[

(∂τn)
2

+ v2
F (∂xn)

2
]

(14)

SBerry =

∫

d2qΩz
0(q)

∑

α

ρα(−q) (15)

S[ρ, φ] =

∫

d2q
∑

αα′

(

1

2
φαΠ−1

αα′φα′ − iφα(q)ρα′(−q)δαα′

−Jαα′(q)ρα(q)ρα′(−q)

)

(16)

where we have expressed SNLSM in terms of the unit vec-
tor field n using the identity10: Tr [Cµ]2 − Tr [σzCµ]2 =

(∂µn)
2
/4. The Berry phase term SBerry, as is well known,

can not be expressed in terms of n vector since Ωz
0 de-

pends on gauge choice of the SU(2) fields12. The polar-
ization tensor Παα′ in S[ρ, φ] is given by

Π−1
αα′ (q) = δαα′N(0)

sgn(α)vF q

−iq0n + sgn(α)vF q
(17)

Within the linearized dispersion and in one dimension
Eq. 16 is known to be exact13.

We now introduce the spin-density fields in the sym-
metric(S) and the antisymmetric(A) channels ρS(A) =
(ρR + (−)ρL), integrate out the auxiliary fields φα from
Eq. 16. Since the ferromagnetic instability corresponds
to the instability of the spin-density fields in the sym-
metric channel, we also integrate out the ρA to obtain an
effective action for ρS

Seff = SNLSM + SBerry + S[ρS ] (18)

SBerry =

∫

d2qΩz
0(q)ρS(−q) (19)

S[ρS] =

∫

d2qρS(q)SS(q)ρS(−q)

= −

∫

d2qρS(q)

(

q20
v2

F q
2
− r − bq2

)

ρS(−q)

(20)

where r = (1 − JN(0)), b = JN(0)a2/2, and a is the
lattice spacing. Here we have Wick-rotated back to real
frequency and expanded J(q) ≃ J(1 − q2xa

2/2) . Notice
that the ferromagnetic instability in Eq. 20 is signaled by
r = 0 or JN(0) = 1 which agrees with the usual Stoner
criteria for ferromagnets.

We would like to stress that, unlike the Ising case stud-
ied in Ref. 7, our final effective action (Eq. 18) is not only
S[ρS ], but also contains SNLSM and SBerry. This is cru-
cial for a correct description of the transverse spin fluctu-
ations which are natural consequence of the SU(2) sym-
metry of the problem. This point is best illustrated by
studying the action (Eq. 18) inside the FM phase. Here
the spin-density fields are gapped out and 〈ρS〉 = M ,
where M is the magnetization of the system. In the FM
phase, the low energy theory is therefore described by
SNLSM and SBerry. Note that the presence of the Berry
phase term is crucial for the k2

x dispersion of the spin
waves, as pointed out in Ref. 14 in the context of 2D
ferromagnets. A similar analysis in this line for the Ising
limit would yield Eq. 20 as the final effective action which
is exactly the same result obtained in Ref. 7.

We also note that a similar procedure can be carried
out in higher dimension. In that case, due to the pres-
ence of a continuous isotropic Fermi surface, instead of
two Fermi points, the index α becomes the momentum
k‖ along the Fermi surface and the sum over α has to
be replaced by an integral over k‖. This changes the

q20/(v
2
F q

2) term in SS(q) (Eq. 20) to |q0|/(vf q) and im-
mediately leads to z = 3. This result can also be al-
ternatively obtained by finite dimensional bosonization
technique13.

B. Analysis of the effective action and critical

theory

We now analyze the critical theory for 1D. Our starting
point is Eq. 18 derived in the previous subsection. From
Eq. 14, the fluctuations of the n field are gapless in the
Heisenberg limit, it is not a priori clear whether the cou-
pling of ρS to these fluctuations changes the universality
class of the transition. To check this, we aim to integrate
out the transverse fluctuation modes to obtain the final
effective action in terms of the ρS fields. To this end, we
rewrite the action SNLSM and SBerry using the CP(1) rep-
resentation. In this representation, the unit vector field
n is represented by two complex fields (z1, z2) with the
constraint |z1|

2 + |z2|
2 = 1. Following Refs. 15,16, one

can write

SNLSM =

∫

dt dx
∑

j=1,2

| (∂µ − iAµ) zj |
2 + λ(|zj |

2 − 1)

(21)

where the U(1)gauge fields Aµ are given by

Aµ = Ωz
µ = i

∑

j

[

z∗j ∂µzj − (∂µz
∗
j )zj

]

(22)
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The field λ is a Lagrange multiplier field used to imple-
ment the constraint of unit norm for the CP(1) fields.
Note that in this representation, SBerry can be written as

SBerry =

∫

d2qA0(q)ρS(−q) (23)

and has the convenient interpretation of the action de-
scribing coupling of a U(1) scalar potential to matter
field.

To describe the Berry term in a gauge invariant fash-
ion, we now define a spin-current jz

x which satisfies the
continuity relation

∂tρs + ∂xj
z
x = ∂µJµ(x) = 0 (24)

and write the Berry term as

SBerry =

∫

d2qAµ(q)Jµ(−q) (25)

Although this procedure seems ad-hoc, the additional
term in SBerry introduced here could easily be obtained
rigorously from our starting action (Eq. 3) if we carried
out the analysis in the presence of a spin-current inter-
action term Hcurrent = −

∫

dx
∫

dx′K(x − x′)j(x) · j(x′)

where jα
x = ψ†σα∂xψ(x) is the spin-current operator.

Such a current-current interaction term, although always
present in principle, is usually neglected since it is very
small (O(v2

F /c
2)) compared to SJ . The only relevant in-

formation, apart from the continuity condition (24), that
we shall need for our analysis here is that the spin-current
correlator in the symmetric channel is given by17

KS(q) = −v2
F

(

q20
v2

F q
2
− 1 +K cos(qa)N(0)

)

≃ −v2
F

(

q20
v2

F q
2
− r′

)

(26)

where r′ = 1 − KN(0). We therefore simply use this
information and avoid carrying out a detailed analysis
involvingHcurrent. Note that the propagatorKS is always
massive near the critical point. Hence it is not necessary
to retain the q2 term in its expression.

At this stage, we find that to understand the effect of
SBerry on the ferromagnetic quantum critical point, we
need to obtain an effective action for the gauge fields
Aµ. This involves integrating out the fields z and λ from
SNLSM. It is well known that such an analysis can be
reliably carried out for CP(N − 1) theories only in the
large N limit15,16. However, it is conjectured in Ref. 15
that the qualitative results hold even for N = 2. We
therefore follow the large N analysis of Refs. 15,16 to
obtain

Seff = Sgauge + SBerry + Smatter (27)

Sgauge = −

∫

d2pAµ(p)
(

p2δµν − pµpν

)

Aν(−p)

=

∫

d2pAµ(p)Gbare
µν (p)Aν(−p) (28)

where pµ = (p0, vF px). Notice that the propagator Gbare

is not invertible. This problem can be easily taken care
of by simply adding a gauge fixing term, as is customary
for the photon propagator in QED. However, we shall
not need to invert the bare propagator at any stage of
our analysis, and hence retain the form of Gbare as given
in Eq. 28. The action Smatter has now to be supplemented
by a quadratic term in the spin current jz

x which involves

Smatter =

∫

d2q
[

ρS(q)SS(q)ρS(−q)

+jz
x(q)KS(q)jz

x(−q)
]

(29)

The final step is to integrate out the gauge fields. To
do this, we first integrate out the matter field Jµ and
obtain an effective dressed propagator Gdressed for the
gauge fields Aµ

Gdressed(k) = −

(

v2
Fk

2
x + 1

4SS(k) ωvFkx

ωvFkx ω2 + 1
4KS(k)

)

(30)

We then replaceGbare byGdressed in Eq. 28, and integrate
out the gauge fields to obtain the contribution δS of the
gauge fields to the effective action for the matter fields
Jµ

18

S′
eff = Smatter + δS

δS =

∫

d2Jµ(p)(δP )µν(p)Jν(−p) (31)

δP (k) =
KS(k)SS(k)

KS(k)ω2 + v2
F k

2
xSS(k)2 + 1/4

×

(

ω2 + 1
4K(k) −ωvFkx

−ωvFkx v2
Fk

2
x + 1

4SS(k)

)

(32)

Note that the term δS couples the ρS and jz
x fields. To

obtain the effective action for the ρS fields, we integrate
out the jz

x fields and evaluate the resulting propagator
at the critical point r = 0 and retain the lowest order
terms in ω and k. After some straightforward algebra,
one obtains the correction term δS′[ρS ]

δS′[ρS ] ≃ −

∫

d2kρS(k)

(

ω2

v2
F k

2
x

− k2
x + ...

)

ρS(−k)(33)

where the ellipsis represent terms which are higher or-
der in ω and kx. So we conclude that the effect of the
Berry term is merely to renormalize the coefficients of the
existing terms in S[ρS ]. The critical theory obtained by
integrating out the transverse fluctuation at the Gaussian
level thus has z = 2. By the usual ǫ expansion argument,
we expect this analysis to give correct value of z to O(ǫ2).

Next we comment on the universality class of the
transition. To determine the universality class, since
we are below the upper critical dimension of the the-
ory, we need to retain the possible fourth order dia-
grams while integrating out fermions in Eq. 11. Two
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FIG. 1: Representative diagrams for quartic coupling terms
for Heisenberg theory. The left diagram is also present for
Ising ferromagnets and generates the usual ρ4

S interaction
term. The diagram on the right side generates quartic cou-
plings between ρS and n fields (see discussion in text), and
has no analog in Ising ferromagnets. The internal lines in-
volve Fermion Green functions and the vertices represent ei-
ther σz or Λµ

a = σa∂G−1
0 /∂kµ as shown. Both the diagrams

are nonzero only if the Fermion dispersion has a non-zero cur-
vature.

such representative diagrams are shown in Fig. 1. The
diagram in the left panel is present for the Ising fer-
romagnets studied in Ref. 7, while that in the right
panel is a consequence of the Heisenberg symmetry of
the problem. After some algebra13, one can show that
the diagram in the left panel of Fig. 1 generates Ising
type contributions ∼

∫

dxdtρ4
S while the diagram in

the right panel generates, for example, quartic couplings
∼
∫

dxdtρ2
S(∂xn)2 (apart from other similar quartic and

higher order terms). The former type of terms are exactly
those that are expected at quartic order for the Ising fer-
romagnets, either from a bosonization analysis7 or Hertz-
Millis approach1,2. Therefore, our analysis shows that
the standard Hertz-Millis procedure in 1D, gives exactly
the same critical theory as obtained in Ref. 7 by bosoniza-
tion for the Ising case.

The latter type of diagrams are absent in the Ising
model studied in Ref. 7. In the FM phases, where the
amplitude mode is gapped, these terms represents a triv-
ial renormalization of the parameters such as spin-wave
stiffness of SNLSM (Eq. 14). Near the transition, they
generate quartic coupling between the amplitude and the
spin-wave modes. Notice that these terms are different
from the standard m4 quartic terms expected from the
usual Hertz-Millis analysis of a Heisenberg magnet with
a vector order parameter. We expect such quartic cou-
pling terms to change the universality class of the transi-
tion from that of Ising ferromagnets. A determination of
the universality class would therefore require a detailed
analysis of Eq. 18 supplemented with all such possible
relevant quartic coupling terms. In particular, this re-

quires a consideration of both coupled longitudinal and
transverse modes at the same footing. In this work, we
shall be content with pointing out the necessity of such
an analysis.

The quartic terms mentioned above makes the Gaus-
sian fixed point, described by Eq. 18, unstable. However,
all such diagrams, including the Ising type quartic terms,
are non-zero only when the fermionic dispersion has a fi-
nite curvature7,13. Thus, above a temperature scale set
by this curvature, the properties of the system is expected
to be well described by the Gaussian theory described by
Eq. 18. We discuss this point in more details in the next
section.

III. ELECTRON GREEN’S FUNCTION

It is well known that the presence of a quantum criti-
cal point shows up in experimentally accessible quantities
such as tunneling DOS and the momentum distribution
function of the electrons. To obtain these quantities one
needs to estimate the effect of critical fluctuations on the
electron Green function. However, the fixed point con-
cerned here is an interacting one. This means to compute
the electron Green function at T = 0 near the critical
point, one needs to solve the problem of electrons cou-
pled to interacting bosons. For the Ising ferromagnets
these bosons can be described by an action

S =

∫

dxdτ
[

φ
(

−∂2
τ − r∂2

x + b∂4
x

)

φ+ u(∂xφ)4
]

,(34)

where u is determined by the curvature of the fermionic
dispersion. Obtaining the electron Green function cou-
pled with these interacting bosons, even for the Ising
ferromagnets, is a difficult task. However, it might be
still be possible to compute the properties of Green func-
tion at finite temperature using the Gaussian fixed point,
if the RG flow, which can be computed for Ising ferro-
magnets from Eq. 34, generated by temperature takes
us to a regime where bq2T > r(T ) ≫ u∗, where qT =
√

T/TF kF / [1 − r(T )]
1/4

is the thermal wavevector and
u∗ is the value of the coupling u at the interacting fixed
point.

To explain the last sentence a little better, we consider
the RG flow of the action S (Eq. 34) at finite temper-
ature, to one loop. As noted in Ref. 7, the flow of u
and b are negligible as r flows away from the fixed point
according to

dr

dl
= 2r +

3u

π

(

Λ2 −
r

2

)

coth

(

Λ2

2T

)

(35)

where T = T0 exp(zl) is the scaled temperature. There-
fore we may envisage that when ǫ is small, there will be
a temperature T1, above which r(T ) ≫ u∗, so that the
effect of interaction can be neglected. The key question is
then whether at and above T1, r(T ) is small compared to
the ∂4

x term in S (Eq. 34). A simple estimate shows that
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for this to happen, we need to be below a temperature
T2 given by

T2

TF
=

r(T2)
√

1 − r(T2)
(36)

For T > T2, r can not be neglected and the behavior of
the system is similar to that of a Luttinger liquid at finite
temperature.

If indeed T1 < T2, there exists a finite window where
the effect of the critical fluctuations on the electron Green
function can be calculated neglecting the effect of inter-
action. We refrain from estimating T1 and T2 since they
need the knowledge of precise value of u∗ and is therefore
non-universal in the RG sense. Instead, in the rest of this
section, we shall assume that such a window exists and
compute the behavior of the electron Green function for
T1 < T < T2. Note that such an analysis, which requires
only properties of the Gaussian fixed point, also holds for
the Heisenberg ferromagnets, since the Gaussian action
is the same in both cases. The question of existence of
such a window of course has to be separately investigated
for the Heisenberg ferromagnets. Such an investigation
requires a detailed analysis of quartic couplings for the
Heisenberg theory and is beyond the scope of the present
work. However since all such quartic terms depends on
the curvature of the Fermionic dispersion, we expect such
a window to exist also for the Heisenberg ferromagnets
also when the curvature is small.

To calculate the Green function for the electron we
start from the action

S = S0 + S1

S0 =
∑

α

∫

d2qd2k ψ†
α(k + q)

×
(

G−1
0 + iσzφα(q)

)

ψα(k)

S1 =
∑

α

d2qφα(q)F−1
RPA(q)φα(−q) (37)

where φ denotes the bosonic fields with the propagator
FRPA given by

FRPA(q) =
J(qx)

1 + J(qx)
∑

α Π̃−1
αα(q)

(38)

where Π̃−1
αα = N(T )αvF qx/ (iΩn − αvF qx) is the finite

temperature generalization of Π−1
αα′(q) in Eq. 17 for

qx/kF ≪ 1, and N(T ) =
∑

k ∂f(ǫ)/∂(ǫ) ≃ N(0) is the
free fermion DOS. Note that the starting action given by
Eq. 37 can be easily obtained from Eqs. 11 and 12 with
the propagator for the ρ(q) fields replaced by FRPA

19.
To obtain the Green’s function of the electrons, we

proceed following the analysis carried out in Ref. 13. The
equation for the Green function is given by

δ(k − k′) =
∑

k1

[

G−1
0 (k)δ(k − k1)δσσ′

+i(σz)σσ′φα(k − k1)]G
σσ′

α (k, k′) (39)

which in 1D can be solved exactly using Schwinger
ansatz13,20. After some straightforward manipulations,
we get, Gσσ′

(x, τ) = δσσ′G(x, τ), where

G(x, τ) =
∑

α

eiαkF xGα(x, τ)

Gα(x, τ) = G0α(x, τ) exp [Q(αx, τ)] (40)

G0α(x, τ) =

∫

d2k ei(kxx−ωnτ) 1

iωn − αvF kx

=

(

−i

2π

)

ξ−1

sinh [(αx− ivF τ) /ξ]
(41)

Q(αx, τ) =

∫

d2q FRPA(q)
1 − cos (qxx− Ωnτ)

(iΩn − αvF qx)
2 .

(42)

Here ωn (Ωn) denote fermionic (bosonic) frequencies sat-
isfying the usual anti-periodic (periodic) boundary con-
ditions, ξ = ~vF /kBT is the thermal correlation length,
and one needs to make the standard Wick rotation τ = it
to obtain the Green functions in real time.

To proceed further, we note that experimentally ac-
cessible quantities such as the momentum distribution
nα(k) or the tunneling DOS ρ(ω), do not probe the full
Green function Gα(x, τ), but only Gα(0, τ) and Gα(x, 0),
since

nα(kx) =

∫

dkx

2π
exp(ikxx)Gα(x, 0), (43)

ρ(ω) =

∫

dtIm [exp(−iωt)Gα(0, t)] . (44)

Therefore we resort to the simpler task of computing
G(x, 0) and G(0, τ). The frequency sums in the expres-
sions of Q(x, 0) and Q(0, τ) (Eq. 42) can now be evalu-
ated in a straightforward manner. We express the final
result in terms of the crossover temperature T1 and the
corresponding length scale ξ1 = ~vF /kBT1 = k−1

F TF/T1:

Q(x, 0) = exp

(

−

∫ ∞

q′

c

dq′
1 − cos(q′x′)

q′

×

[

[1 + γ(q′)] coth

(

µ(q′)q′

2s

)

− coth

(

q′

2s

)

])

(45)

Q(0, t) = exp

(

−

∫ ∞

q′

c

dq′

[{

1 − cos(q′µ(q′)t′)

q′

× [1 + γ(q′)] coth

(

µ(q′)q′

2s

)

−
1 − cos(q′t′)

q′
coth

(

q′

2s

)

}])

, (46)

where all momenta, length, and time scales are ex-
pressed in terms of q′ = qxξ1, x

′ = x/ξ1, s = T/T1 is
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FIG. 2: Plot of G(x, 0) (dashed line) and G(0, t) (solid line)
near the critical point (r = 0) at T = T1. The decay of G(0, t)
is slower than G(x, 0) as discussed in the text.

the dimensionless temperature, and t′ = vF t/ξ1. Here
µ(q′) = ṽF (q′)/vF is the ratio of the renormalized and
the bare Fermi velocities and γ(q′) is a dimensionless pa-
rameter given by

γ(q′) =
1 + µ(q′)2

2µ(q′)
− 1

µ(q′) =
√

r + b′q′2 b′ = b/ξ21 (47)

and q′c = qcξ1 is the dimensionless infrared cutoff. Note
that in our notation, the non-interacting limit corre-
sponds to µ(q) = 1 = r.

Before looking at the Green function in its full gen-
erality, it is instructive to check that it reproduces the
well- known result for the Luttinger liquid Green func-
tion when b′ = 0 and r 6= 0. In this limit the integrals
in Eq. 45 and 46 can be calculated analytically and one
gets at T = T1,

GLL
α (x′, 0) =

(

−i

2π

)(

µ(0)/ξ1
sinh(αx/ξ1)

)

×

(

µ(0)/q′cξ1
sinh (|x′|µ(0)/ξ1)

)γ(0)

GLL
α (0, t′) = Gα(αx′ = t′, 0). (48)

From Eq. 48, one can identify γ(0) to be the anoma-
lous dimension13. Note that, as is well known for Lut-
tinger liquids, the Green functions G(x, 0) and G(0, t)
has identical behavior. This is a consequence of the lin-
ear dispersion of the bosonic density fluctuations. As
we approach the critical point, r → 0, and consequently
one must retain the b′ term, in the expression of γ(q′).

When b′ 6= 0, it is not possible to evaluate Q analyti-
cally at finite temperature. However, since the electrons
now see the critical bosonic fluctuations with dispersions
ω ≃ q2x, we expect the Green functions G+(x, 0) and
G(0, t) to have different behavior. A plot of the Green
functions shown in Figs. 2, confirms the above qualitative
discussion. The characteristic scale of decay for G(x, 0)
is seen to be much shorter compared to G(0, t). This fea-
ture arises from the presence of critical fluctuations with
ω ∼ q2x dispersion ( in contrast to ω ∼ qx fluctuations in
standard Luttinger liquid ) and is therefore a signature
of the quantum critical point at finite temperature. We
expect that a measurement of ρ(ω) and n(kx) will probe
this behavior.

IV. DISCUSSION

In this work, we have shown, by explicitly keeping
track of the full SU(2) symmetry of the problem, that
in 1D the Luttinger liquid to FM transition for Heisen-
berg ferromagnets has z = 2 + O(ǫ2) in an ǫ expan-
sion sense. The analysis done here was carried out at
a Gaussian level, which is exact in 1D as long as the
dispersion of the Fermions are linear. The curvature in
Fermionic dispersion introduces quartic coupling terms
beyond the Gaussian approximation. Although we have
not carried out a full analysis of the problem with such
coupling terms in the presence of the SU(2) symmetry,
we have identified the typical quartic terms and discuss
their consequences. In particular, we pointed out that for
a ferromagnet with Ising symmetry, our analysis reduces
to the standard Hertz-Millis theory. The Hertz-Millis ap-
proach is therefore completely equivalent to the bosoniza-
tion approach of Ref. 7 in 1D for Ising ferromagnets. In
contrast, we find that for the Heisenberg ferromagnets,
our theory does not reduce to that obtained by the tra-
ditional Hertz-Millis approach. We identify that this is
due to additional coupling terms between the longitudi-
nal and the transverse modes, shown in right panel of
Fig. 1, which has no analog in the Ising case and are also
different from the usual expected m4 interaction terms
that one obtains using the Hertz-Millis approach. It will
be interesting to carry out our analysis in higher dimen-
sion and compare the results with those of Ref. 3, where
a possible problem with such m4 quartic terms in the
usual Hertz-Millis approach has been discussed from a
different point of view. A detailed analysis of this issue
is left as a subject of future work.

We have also obtained an exact expression for the elec-
tron Green functions G(x, 0) and G(0, t) for a range of
finite temperature. Although we have not obtained the
expression of the Green functions at the interacting fixed
point, we hope that over a range of temperature where
the properties of the system is expected to be well de-
scribed by the Gaussian fixed point, G(x, 0) and G(0, t)
can be probed by experimentally accessible quantities
such as the momentum distribution and tunneling DOS
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