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Abstract. In this paper we consider some Anderson type models, with free parts
having long range tails and with the random perturbations decaying at different rates
in different directions and prove that there is a.c. spectrum in the model which is
pure. In addition, we show that there is pure point spectrum outside some interval.
Our models include potentials decaying in all directions in which case absence of
singular continuous spectrum is also shown.
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1. Introduction

There have been but few models in higher dimensional random operators of the Anderson
model type in which presence of absolutely continuous spectrum is exhibited. We present
here one family of models with such behaviour.

The results here extend those of Krishna [10] and part of those in Kirsch—Krishna—
Obermeit [9], Krishna—Obermeit [12] while making use of wave operators to show the
existence of absolutely continuous spectrum, the results of Jaksic—Last [14] to show its
purity and those of Aizenman [1] for exhibiting pure point spectrum.

The new results in this paper allow for long range free parts, have models with com-
pact spectrum (in dimensions 2 and more) which contains both absolutely continuous and
dense pure point spectrum. Our models include the independent randomness on a surface
considered by Jaksic—Molchanov [15, 16] and Jaksic—Last [14, 13], while allowing for the
randomness to extend into the bulk of the material.

The literature on the scattering theoretic and commutator methods for discrete Laplacian
includes those of Boutet de Monvel-Sahbani [4, 5] who study deterministic operators on
the lattice.

The scattering theoretic method that we use is applicable even when the free operator is
not the discrete Laplacian but has long range off diagonal parts. We impose conditions on
the free part in terms of the structure it has in its spectral representation.

2. Main results

The models we consider in this paper are related to the discrete Laplacigim) =
Z|i|=1“(” + i) ont¢2(Z"). We denote byl¥ thev dimensional toru®” /277" ando the
invariant probability measure on it. We use the coordinate ¢itarty = (61,...,6,),0 <
0; < 2r} and the representatiom = []/_,(dd;/27) on the torus for calculations
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below without further explanation. Thef is unitarily equivalent to multiplication by
2)"Y_,cog6;) acting onL%(T", o), written in the above coordinates. We consider a
bounded self adjoint operatdiy which commutes withA and which is given by, on
L2(T", do), an operator of multiplication by a function®) there with/ satisfying the
assumptions below.

Hypothesi®.1. Leth be a real valued’®"*+3(T") function satisfying

1. his separable, i.eh(¥) = 3 _1 h;(6)).
2. The sets

. dh;
are finite foreacty = 1, ..., v. Let

Chj)=Tx...xTxCh)xT...xT,

where the sef(h ;) occurs in thejth position. We denote by
C= u;zlé(h i)

and note that this is a closed set of measure zeld in

We consider random perturbations of bounded self adjoint operators coming from func-
tions as in the above hypothesis. We assume the following on the distribution of the
randomness.

Hypothesi.2. Letu be a positive probability measure &satisfying:
1. u has finite variance? = [ x2du(x).
2. n is absolutely continuous.

Finally we consider some sequences of numbgiliadexed by the lattic&” oerrl =
Z* x 7' and assume the following on them.

Hypothesi2.3. (1)a, is a bounded sequence of non-negative numbers indexet! by
which is non-zero on an infinite subset2f.

(2) Letg(R) = anX(nez>:im|>R. vi<i<v)- Theng € LY((1, o0)).

(1) a, is a bounded sequence of non-negative numbers which are non-zero on an infinite
subset oz

(2) Letg(R) = anX{yezv+iyy =k, vizi<y)s THENg € L1(L,00)) .

Remarkl. In the case oZ" our hypothesis on the sequenggallows for the following
type of sequences

e a, =1+ n)% a<-1.
e a, = (1+ |n;|)*, forsomei, o < —1.
o a, =[i_;A+ D%, o; <0 with Y7 ;o < —1.
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Therefore in the theorems, on the existence of absolutely continuous spectrum, we can
allow the potentials to be stationary along all but one direction in dimensign&.
2. Inthe case ozfl, we can allow the sequence to be of the type

e a,=0, ny>N andg, =1, for n1 < N, forsome O< N < oo.
o ap =1+ |m% a<-L
® a, = ]_[:-):1(14— [n; D%, o; <0 with Z:‘):]_Oli < -1

Thus allowing for models with randomness @the boundary of a half space.
For the purposes of determining the spectra of the models we are going to consider here
in this paper we recall a definition given in Kirsch—Krishna—Obermeit [9], namely,

DEFINITION 2.4

Leta, be a non-negative sequence, indexediberZfl. Let u be a positive probability
measure ofiR. Then the a-suppy) is defined as

1. In the case o?",

a-suppu) = ﬂ {x: Z ,u(an_l(x—e,x+6))=oo, Ve>07.

keZ+ nekZv
k£0

2. Inthe case o7,

a—suppju):ﬂ X Z u(an_l(x—e,x+e)):oo, Ve>0

keZ+ v+1
o nekZ:;

Remark.1. In the sums occurring in the above definition We,us@i;l(x —€,x+¢€)) =0,
for thosen for whicha,, = 0. This notation is to allow for sequenagsthat are everywhere
zero except on an axis for example.

2. We note that whea, is a constant sequeneg = A # 0,

a-supfip) = A - SUPLL).

3. Whena, converge to zero d&| goes tooo, the a-supfu) is trivial if u has compact
support. It could be trivial even for some classuobf infinite support depending upon the
sequence,,.
4. If a, is bounded below by a positive number on an infinite subset along the directions
of the axes inz” (respectiverZlf“l), then the a-supg) could be non-trivial even for
compactly supported.

We consider the operator (fare ¢2(Z+)),

(Ayu)(n) = { ZEZ)—'— i):g,(n “ =0

Below we use eitheA | or its extension byA; ® I to EZ(ZHfl) by the same symbol, the
correct operator is understood from the context. Given a real valued continuous function on
the torusT, we consider the bounded self adjoint operatég®n ¢2(Z") which is unitarily
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equivalent to multiplication by: on ¢2(T", o). We also denote the extensiér® Ho of
Ho to ¢2(2*) by the symbolHp andL2(T”, o) as simplyL?(T") in the sequel.
We then consider the random operators

H® = Ho+V® V®=Y aq”n)P, on ("),

nel

HY = Hoy +V®, V° = Zanqw(n)Pn, Ho+ = Ay + Ho, on ¢2Z5h, (1)

nel

whereP, is the orthogonal projection onto the one dimensional subspace generaked by
when{s,} is the standard basis féf(/) (I = 2" or Z'{"™). {g®(n)} are independent and
identically distributed real valued random variables with distribujioriThe operatoiHy
is some bounded self adjoint operator to be specified in the theorems later.

Then our main theorems are the following. First we state a general theorem on the
spectrum offg in such models. For this we consider the operélgto denote a bounded
self adjoint operator 0f?(Z") coming from a functiork satisfying the Hypothesis 2.1 and
A defined as before.

Theorem 2.5. Let Hyand Hp be the operators defined as in €@), coming from functions
h satisfying the hypothesis1(1)(2) Let

v v

E+=Z sup hi(9), E,:Z inf £, (0).

j=106[0,27r] 196[0,27‘[]

Then, the spectra of botHy and Ho. are purely absolutely continuous and
o(Ho) =[E—, E{], and o(Hoy) =[-2+ E_, 2+ E4].

Part of the essential spectra of the operatdtsand HY are determined via Weyl se-
guences constructed from rank one perturbations of the free opekatarsd Hp, respec-
tively. The proof of this theorem is done essentially on the line of the proof of Theorem
2.4in[9].

Theorem 2.6. Let the indexing set | b&" or Zﬁfl and consider the operatailp coming

from a function h satisfying the conditions of hypoth&sig1)in the case of = 7" and

consider the associateHp in the case of = Z"jl. Suppose“(n), n € I arei.i.d

random variables with the distribution satisfying the hypothes®.2(1) Leta, be a

sequence indexed by | satisfying the hypoth28i€l) ©r (1) as the case may peAssume
also thatO € a-supgp), then

U o (Ho + APo) C desd H) almost everyo
L € a-suppp)

and

U o (Hoy + APp) C oesd HY) almost every.
A € a-supp(u)

Remarkl. Whenu has compact support amg goes to zero at infinity, or when has
infinite support butz, has appropriate decay at infinity, there is no essential spectrum
outside that ofdy for H* almost everyn. So the point of this theorem is to show that there
is essential spectrum outside thattf based on the properties of the paif@,¢, «).
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2. In Kirsch—Krishna—Obermeit [9] some examples of random potentials which have
essential spectrum outsie€Hp) even wherm,, goesto zero ato were given. The examples
presented there had a-supp as a half axis or the whole axis, this is because of the decay
of the sequences,. Here however, since we allow fo, to be constant along some
directions, our examples include cases where the spectt&’adre compact with some
essential spectrum outsidé Hp).

We letE4 be as in Theorem 2.5.. We also %€}, to be the cyclic subspace generated
by 8, and H®.

Theorem 2.7. Consider a bounded self adjoint operatéy coming from a function h
satisfying the conditions of hypothe&id (1) (2). Supposg® are i.i.d random variables
with the distributionu satisfying the hypothesis2(1)

1. Let! = 7" anda, be a sequence satisfying the hypoth@s&1) (2). Then,
oqc(H®) D [E_, E4] almost everyw.

Further whery satisfies the hypothes2s3(2) a, # 0onZ", He n, He.m NOt mutually
orthogonal for any n, m iZ" for almost allw and E. as in theoren2.5, we also have

os(H?) C R\ (E—, E4) almost everyw.
2. Letl = Zfl anda, be a sequence satisfying the hypoth@s3¢1’), (2). Then,
ouc(HY) D [-24+ E_, 24 E,] almost everyw.

Further whenu satisfies the hypothesds3(2) a,, # 0on a subset Q?Z‘fl that contains
the surface{(0, n) : n € Z'}, the subspacel,, », H,.m are not mutually orthogonal
almost everyo for m, nin{(0, k) : k € Z"}, we also have

os(H”) CR\ (=2, +E_, 2+ E;) almost everyw.

Remarkl. Whenu is absolutely continuous the theorem says that the spectrukit’of
in (E_, E4) (respectively i(—2+ E_, 2+ E) for the Zfl case) is purely absolutely
continuous, this is a consequence of a remarkable theorem of Jaksic—Last [14] who showed
that in such models with independent randomness, with the randomness non-zero a.e. on a
sufficiently big set o can be any bounded self adjoint operator in their theorem, provided
the set of points where the randomness lives gives a cyclic family for the opef&t)rs
whenever there is aninterval of a.c. spectrum itis pure almost exeéfpeir proofis based
on considering spectral measures associated with rank one perturbations and comparing
the spectral measures of different vectors (which give rise to the rank one perturbations).
2. Our theorem extends the models of surface randomness considered by Jaksic—Last
[13], to allow for thick surfaces where the randomness is located in a strip beyond the
surface into the bulk of the material. Such models (which are obtained by takiag
0, n1 > N, a, = 1, n1 < N for some finiteN) have purely absolutely continuous
spectrum in(—2v — 2, 2v 4 2). The purity of the a.c. spectrum is again a consequence of
a theorem of Jaksic—Last [14].
Finally we have the following theorem on the purity of a part of the pure point spectrum.
We denote

e4 = Supo (Hoy), e— =info(Hpy) and eg = max(le—|, le+]). (2)
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Theorem 2.8. Consider a bounded self adjoint operatély coming from a function h
satisfying the conditions of hypothegi&. Let|be the indexing setand suppq$&n), n €
I are i.i.d random variables with the distributigm satisfying the hypothes&2(1), (2).
Assume further that the densjfyx) = du(x)/dx is bounded. Set; = [ du(x)|x|. Then,

1. Let! = 7" and leta, be a sequence satisfying the hypoth2s3¢1), (2). Then there is
a critical energyE (1) > Eg depending upon the measuyresuch that

o.(H®) C (—E(u), E(u)) almost everyw.

2. Let] = Zfl and leta, be a sequence satisfying the hypoth&s&1'), (2). Then
there is a critical energy (1) > eg such that

oc(HY) C (—e(n), e(n)) almost everyw.

Remarkl. TheE () ande(u), while finite may fall outside the spectra of the operators
H® andH¢, for some pairga,, 1) whenpu is of compact support, so for such pairs this
theorem is vacuous. However since the numtiggg) (respectivelye(w)) depend only

on the operatorély (respectivelyHp, ) and the measurg we can still choose sequences

a, andp of large support such that the theorem is non-trivial for such cases. Of course
for u of infinite support, the theorem says that there is always a region where pure point
spectrum is present.

2. Since we allow for potentials with, not vanishing ato in all directions, we could not
make use of the technique of Aizenman—Molchanov [3], for exhibiting pure point spectrum.

3. Whenu has compact support, comparing the smallness of a moment near the edges of
support one exhibits pure point spectrum there by using the Lemma 5.1 proved by Aizenman
[1], comparing the decay rate in energy of the sums of low powers of the integral kernels of
the free operators with some uniform bounds of low moments of the measueighted
with singular but integrable factors occurring to the same power.

As in Kirsch—Krishna—Obermeit [9], Jaksic—Last [14] we also have examples of cases
when there is pure a.c. spectrum in an interval and pure point spectrum outside. The part
about a.c. spectrum follows as a corollary of theorem 2.6., while the pure point part is
proven as in [9] (following the proof of their theorem 2.3, whetecan be replaced by
any bounded self adjoint operator 6f(Z¢) and work through the details, as is done in
Krishna—Obermeit [12], Lemma 2.1). Further whBp = A, the Jaksic—Last condition
on the mutual non-orthogonality of the subspatés,, H. » is valid since given any
n, m we can find & so that(s,, A¥s,,) > O (reason, také = |n —m| = Yor_qlni —mil,
then

v k % %
Ak — (Z 7"1 + 7;—1) =c 1_[ ]"ilni*mil + c 1_[ ]"t‘flnifmil + |OW6I’ order
i=1 i=1 i=1

with T; denoting the bilateral shift in thith direction an ¢ a strictly positive constant
coming from the multinomial expansion). We see that we can add any operator diagonal
in the basigs, } to A without altering the conclusion.

COROLLARY 2.9

Leta, be asequence as in HypotheaiBandu as in Hypothesig.2. LetHy = A. Assume
further thata, # 0, n € Z" goes to zero ato anda-supgu) = R. Then we have, for
almost allw,
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1. 04,c(H?) =[—2v, 2v].
2. 0pp(H?) =R\ (=20, 2v).
3. 05c(H®) = 0.

The i given in the corollary below is a smoothrZ” periodic function, so it satisfies
the conditions of the Hypothesis 2.1. It is also not hard to verify that, because of the term
Y 7_,cog06;) occurring in its expression, the cyclic subspaces generated by the associated
Ho on any pair of(§,, 8,,} are mutually non-orthogonal.

COROLLARY 2.10

Leta, be a sequence as in Hypothe®i8andu as in Hypothesig.2 Let Hyp be a bounded
self adjoint operator coming from the function h givenigy) = Z;Zl Z,?’:l cogkb;).
Assume that, # 0, n € Z' goes to zero abo anda-supgu) = R. Then we have, for
almost allw,

1. 04c(H?) =[E—, E4].
2. Gpp(Hw) =R\ (E_, E}).
3. o5.(H®) = 0.

3. Proofs

In this section we present the proofs of the theorems stated in the previous section.

Proof of Theorer2.5. The statementaboutthe spectrurffgfollows from the Hypothesis
2.1(2) on the functiork. Each of the functions; is a real valued continuousr2periodic
function, hence has compact range. By the intermediate value theorem, we see that the
range of(0, 2) underh; is also an interval. Since the spectrumH is the algebraic
sum of the intervald;, — if Hp; denotes the operator associated withon £2(T), then
Ho=Hy1®I+1Q® Hyp®I+---+ 1 Q® Hp, hence this fact — the statement follows.

We note that?(Z") is unitarily equivalent to the Hardy spai#(T) of functions onl
whose negative Fourier coefficients vanish. Under this unitary transformation, the operator
A is unitarily equivalent to the operator of multiplication by the function Z2&pacting on
H2(T), which can be seen by the definitions/f , H2(T) and the unitary isomorphisii
that takesH?(T) to ¢2(Z) (explicitly this is 2t (U f)(n) = 02” do e="? £(9)). Therefore
the spectrumod ; is[—2, 2] and is purely absolutely continuous (there are no eigenvalues).
Therefore the spectrum éfp,. is also purely a.c. and equal$A ) +[E_, E4], with EL
as above. Hence the theorem follows.

Proof of Theoren2.6. We prove the theorem for the cal€ the proof for the casér{’
proceeds along essentially the same lines and we give a sketch of the proof for that case.
We consider any € a-supgu), which means that we have

> mato—er+e) =00, VkeZ' k#0, andalle > 0.

v4+1
nekZ’y;

We consider the distance functidpm| = maxn;|,i = 1,...,v onZ". We consider the
events, withe > 0,m € k7",

Akme ={o:ang®m) e A —e, A+e¢€), la,q®n)| <e€, VO< |n—m| <k —1}



186 M Krishna ard K B Sinha

and
B m,e = {w: lay qw(n)| <€, VO<|n—m| <k—1},

where the index in the definition of the above sets variesZh. Then each of the events
Ar.m.e are mutually independent for fixddande asm varies inkZ", since the random
variable defining them live in disjoint regions #'. Similarly By .. is a collection of
mutually independent events for fixeénde asm varies inkZ". Further these events have
a positive probability of occurrence, the probability having a lower bound given by

)v+1

Prob(Ag m.e) = piay 0. — €, A+ €)(u(—ce, ce))
and
ProbBym.e) = (u(—c e, c )*~H",
where we have taken= inf, czv a;l > 0. The definition of: implies that
(—ce,ce)Cay(—e€),Vmel'
Therefore the assumption thiate a-supggu) implies thatvk € Z+ \ {0},
3 ProtiAgme) = (u(—ce.c ) DS pa i — e+ €) = 00
mekZ? mekZY
and similarly
> ProlBym.e) = oo, Yk € Z*\ {0}.
mekz

Then Borel-Cantelli lemma implies that for all> 0, (settingRe = (A — ¢, A + €) and
Se = (—€,e) andAr(m) ={n € 2" :0 < |n —m| < k —1}), the events

Qe. k)= [ (@:ang”(m) € Re, ay ¢°(n) € Sc, Yn € Ag(m) \ {m})

melczV
#I=00

have full measure. Therefore the event
1
Q1= Q= k
1= ) <l )
1, kez+\{0}

has full measure, being a countable intersection of sets of full measure. Similarly the sets
Qe k)= (] {w:ang”n) € Se. Yn € Ar(m))
melczZV
#I=00
have full measure. Therefore the events
1
Qo = Qo -,k
= ) 274
1,keZ+\(0)

have full measure.
We take

Qo= Q1N Q2
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and note that it has full measure. We use this set for further analysis. We défiote=
Ho + APy. Then suppos& € o(H(1)), then there is a Weyl sequenge of compact
supporty; € ¢£2(Z) such that|y;| = 1 and

1
ICHQ) = Eyynll < 7

Suppose the support &f; is contained in a cube of sid€!), centered at 0. Denote by
Ar(x) a cube of sidé& centered ak in Z". We denoteV®(n) = a,q®(n), for ease of
writing. We then find cubes., ¢ («;) centered at the pointg such that

1 1
V() = Al < T Vel < 70 V€A (an) \ o).

Now considenrp; (x) = ¥;(x — o). Then by the translation invariance Hf we have for
anyw € Qo,

I(H” — E)ull < [I(Ho+ V(- + ) — E)Yill

=< I(Ho+ AP0 — EYYull + IV (- 4+ or) — APo)¢ |
1 1

Clearly sincep, is just a translate af;, ||¢;|| = 1 for eachl. We now have to show that the
sequence; goes to zero weakly. This is ensured by taking successiyelgrge so that

U'};}supn@) N Ay (ar) = @, and supppy) C Aoy (ag).

This is always possible for eachin Qg by its definition, thus showing that the poiftis
in the spectrum oH®, concluding the proof of the theorem.

Proof of Theoren2.7. We first consider the part (1) of the theorem and address the proof
of (2) later. The sef below is as in Hypothesis 2.1. We consider the set

D ={¢ € £32") : supg) C T"\ C and ¢ smooth, 4)

where we denote by the function in¢2(T") obtained by taking the Fourier series¢f
Since the sef is of measure zero, such functions form a dense subgé(4f). We also
note that the set is closed inl”, thus its complement is open (in fact it is a finite union of
open rectangles) and eaghn D has compact support ii* \ C.

We first consider the case whenhas compact support. The general case is addressed
at the end of the proof.

If we show that the sequend®(r, w) = €#“e~'Ho js strongly Cauchy for ang, then
standard scattering theory implies that(H®) O o,.(Hp) for thatw. We will show below
this Cauchy property for a setof full measure.

To this end we consider the quantity

EI[(W(t, w) = W(r, 0)oll}, ¢ €D (5)

and show that this quantity goes to zera a@dr go to+oco. Then the integrand being
uniformly bounded by an integrable functidig| and sincep comes from a dense set,
Lebesgue dominated convergence theorem impliesWh@at w) is strongly Cauchy for
everyw in a set of full measur@ (f) that depends orf in ¢2(Z"). Sincet?(z") is
separable, we take the countable dens®setnd consider

Q=) QU

feDa
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which also has full measure being a countable intersection of sets of full measure. For
eachw € Q3, W(r, w) is a family of isometries such thd¥ (¢, ») f is a strongly Cauchy
sequence for eacfi € D1, therefore this property also extends by densitpefto all of

£2(7") point wise inQ3. Thus it is enough to show that the quantity in (5) goes to zero as

¢t andr go to+oo0.

We have the following inequality coming out of Cauchy—Schwarz and Fubini, for an
arbitrary but fixedp € D. In the inequality below we denote, for convenience the operator
of multiplication by the sequencsg, asA and in the first step we write the left hand side
as the integral of the derivative to obtain the right hand side

t
E{|W (1, w)p — W (r, 0)¢|]} < [E{n / ds e“”‘”vwe—””%||}
t
< / ds E{veeisHog|)
t
< f ds o AesHop|. (6)

The required statement on the limit follows if we now show that the quantity in the integrand
of the last line is integrable in To do this we define the number

vg = inf inf{|1;(6,)] : & € suppp}, ¥ = (01.....6,). (7)
! ‘

We note that since the support $fis compact inT” \ C, h;’, j = 1,..., v (which are
continuous by assumption), have non-zero infima thereysis strictly positive. Then
consider the inequalities

loAe gl < llo AF(Inj| > vy s/4 Vj )& " Hog|
+ o AF(Inj| < vy s/4 for some j)esHog|
<olg@Ilgll+ ol AIIF(n;| < vy s/4, for some jre g, (8)
where we have used the notation ti#tS) denotes the orthogonal projection (if(Z"))
given by the indicator function of the sS§tand used the functiog as in the Hypothesis

2.3(2) which is integrable im, so the first term is integrable in We concentrate on the
remaining term.

|F(In;| < vy s/4, for some je "Hog|. (9)

To estimate the term we go to the spectral representatidityand do the computation
there as follows. Sincé:z;| < vy s/4 for somej, we may without loss of generality
setj = 1 and proceed with the calculation. Let us denote theSs@) = {n : |n1| <
vps/4, n; € Z, j # 1}. Inthe steps below we pass I3 (TV) via the Fourier series,
(where the normalized measure Dhis denoted by & (1%)).

T = ||[F(In1| < vy s/He sHog||
1/2

13 [ etop)|

nesi(s)

S

neSy(s)

5 1/2
do e—in-l?—is Z\;=1 hj(e'i)a(ﬂ)

'I]'U
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{ Z Z f_ Hdd(@) e lZ/ 2(nj0j+shi©0; ))/do(gl)

nezv— 1 nil<-4 Lps
2y1/2
} ) (10)

We define the functiod (8, s, n1) = n16 +sh1(). Whens is in the support o$ we have
that |’ (1) > vy, by eq. (7). This in turn implies that wheh= (61, ..., 6,) € suppp,

e—i(n191+sh1(91))$(29)d6 (61)

‘—J(Ql,s ny)| =

In1+ s hy(61)] > 3vy s/4 whenny < vy s/4.

We use this fact and do integration by parts twice with respect to the vadiatdeobtain

T:{ Z Z /ViHda(@)e’ZJZ”G“h(G)/do(Ql)

Ini|<4% nezv=t
241/2
} . (11)

. 3 1 2_
—i(n101+sh1(01))
e _— 9) ¢ do (0
{(391 J/(91,n1,s)> &( )} o (61)

We note that the quantity

I = (i#)z’\m)
Y=\ %61 7761, 1, 9) ¢

—=I® N 372 (J)? G 1 9 3+ ~J@ 3
(J)3 (J"e (J))? 362 (J"3 861

¢ (12)

isin L2(TY).

The assumptions on the lower bound Sn(when|n1| < vgs/4) and the boundedness
of its higher derivatives b¢'s (which is straightforward to verify by the assumption/os)
together now yield the bound

—~ =
{nqsn +liggr iz + 550l }

which gives the required integrability.

We proved the case (1) of the theorem assumingh@ds compact support. The case
when i has infinite support requires only a comment on the functioh®¢ being in
the domain orV® almost everywhere, whenis finite and for fixedp € D. Once this is
ensured the remaining calculations are the same. To see the stated domain condition we first
note that for each fixed the sequenc@e*”z%)(n) decays faster than any polynomial, (in
|n]). The reason being that, by assumptigrns smooth and of compact supportliti \ C,
|¢p(n)| < |n|~N foranyN > 0, as|n| — oo. On the other hand fdrn — m| > s|| Hol|, we
have

le=5Ho(n, m)| < foranyN > 0.

In —m|N’
These two estimates together imply that

11+ [m)?H2e Mg < 0o, Ve e D. (13)
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We now consider the events
An= {0 g”m)| > [n?"T1)

and they satisfy the condition

Z Proh(A,) < oo,

nezv

by a simple application of Cauchy—Schwarz and the finiteness of the second moment of
w. Hence, by an application of Borel-Cantelli lemma, only finitely many evaptsccur

with full measure. Therefore on a set of full measure all but finitely mghy:) satisfy,
lg®(n)| < |n|?"*+1. Let the set of full measure be denotedsby. Then for eacly € ©; we

have afinite sef(w) such thate’*0¢ isin the domain of the operat®” = V(I —Ps(a)),

where Ps ) is the orthogonal projection onto the subspates (w)), in view of the eq.

(13). Then the proof that the a.c. spectrum of the operator

HY = Ho+ V{, Yo € Q1N Qo

goes through as before. Since for eache Q1 N Qo, Ay’ differs from H* by a finite
rank operator, its absolutely continuous spectrum is unaffected (by trace class theory of
scattering) and the theorem is proved.

The statement on the singular part of the spectruni/6f is a direct corollary of the
Theorem 5.2. We note firstly that sing,, n € Z"} is an orthonormal basis f@?(2") it
is automatically a cyclic family foH* for everyw.

Secondly, by assumption, the subspakgs, andH,, , are not mutually orthogonal,
so the conditions of Theorem 5.2 are satisfied. Therefore, since the a.c. specifm of
contains the intervalE_, E ) almost everyw the result follows.

(2) We now turn to the proof of part 2 of the theorem. The essential case to consider
again as in (1) is whep has compact support, the general case goes through as before.
The proof is again similar to the one in (1), but we need to choose a denBe sethe
place ofD properly.

The operatorA , is self adjoint on¢?(Z*) and its restrictionA ;1 to ¢£2(Z* \ {0}) is
unitarily equivalent to multiplication by 2 c¢$) acting on the image a(Z+ \ {0}) under
the Fourier series map. We now consider the operator

Hoy1 = A1+ Ho
in the place ofHp; and show the existence of the Wave operators
W, = slim,_, o€ H¥ e Hor

almost everyo.
We take the seb as in eq. (4)D2 as in Lemma 3.1 and define

Di={¢:¢= > aipivj. vjeD. ¢ €D a;;€Ct. (14)
i,j finite
ThenD; is densein
Ho=1{f € @) : f(O,n) =0}.

We then define the minimal velocities fgre D, with wy, defined as in Lemma 3.1 for
¢1 € Da.
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Wig = ir]:f Wy
w2, = inf ir}f inf{|;6))] : & € suppjy}
vg = Minfwy,g, w2,4}. (15)
Calculating the limits, as in eq. (5)

” (eil‘Hw+ e—itH0+1 _ eirH(‘“r e—irHo+1)¢||

! . w. .
= / ds (€7 (V® — PoAy + —AL Po+ PoAL Poeo1g), (16)
;

where Py is the operatoipg ® I, with po being the orthogonal projection onto the one
dimensional subspace spanned by the veggdan ¢2(Z1). We note that by the definition

of A4, the termPp A Pp is zero. The estimates proceed as in the proof of (1), after taking
averages over the randomness and takirgD,. As in that proof it is sufficient to show
the integrability ins of the functions

o Ae™ S HosLg |1, 1181 )( S0l ® T€7SHorLg |, |[160 )( 81| @ Te " $Ho+1g,

respectively. By the definition db,., any ¢ there is a finite sum of terms of the form
@ (OVY;(O2,...,0,41), SO itis enough to show the integrability wheris just one such
product, sayp = ¢1¢1. Therefore we show the integrability inof the functions

o Ae™ S HosLg |1, 1[181 )( S0l ® Te7SHorig |, [[160 )( 81] ® Te " SHo+1g|,
for s large we are done. We have
F(n1| > vps/4)8 =0, i =0,1 and [0 AF(|nj| > vps/4, V)l € L1(1, 00),

by the Hypothesis 2.3(Ron the sequencs,. Therefore it is enough to show the integra-
bility of the norms

IF(Inj| < vps/He52% g1y |l, Vo1 € Do, Y1 € D,

foreachj =1,...,v+1. Whenj = 2,...,v+1, the proof is as in the previous theorem,
while for j = 1, the proof is given in the Lemma 3.1 below.

The statement on the absence of singular part of the spectratti-ofin (E_ —2, E4 +
2), is as before a direct corollary of the Theorem 5.2, since the set of veéigrs =
(0,m),m e 72"} is a cyclic family for HY, for almost allw and’H,, , and’H,, , are not
mutually orthogonal for almost ad whenm, n are in{(0, n) : n € Z"}, and the fact that
the a.c. spectrum @ contains the interval-2 + E_, 2+ E,) almost every.

The lemma below is as in Jaksic—Last [13](Lemma 3.11) and the enlarging of the space
in the proof is necessary since there are no non-trivial functiofé(i#i*) whose Fourier
series has compact support in (G;)2(all of them being boundary values of functions
analytic in the disk).

LemmaB.1. Consider the operatoa 1 on¢2(Z*1). Thenthere is a sé, dense int2(Z 1)
and a numbeuwg such that fors > 1,

IF(In] < wys/He 52| < C|s|72, V¢ € Da.

with the constant C independent of s.
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Proof. We first consider the unitary mag’ from H to a subspacé of {f € ¢2(Z) :
f(0) = 0}, given by
\/iéf(n), n>0

W) = ~Lf@m, n<o.

17

Then the range ofV is a closed subspace 64(Z) and consists of functions
S={fel@: fn)=—f(=m).

Under the Fourier series map this subspace goes to
S=1{¢p e L*M): ¢(6) = —p(—6))

so that the functions here have mean zero. Then under the magd¢@m\ {0}) to S ob-
tained by composinyy and the Fourier series map, the operater goes to multiplication
by 2 cog0). We now choose a set

D1 ={p €S : supfg) C T\ {0, 7}},
and define the number
wy = iNf{|2siNB)] : 6 € supp)},

foreachp € D1. We denote byD; all those functions whose images under the composition
of W and the Fourier series lies 1. The density ofD; in 02zt \ {0}) is then clear. We
shall simply denote by, elements irfD, whose images iy is ¢. Given ag € Dy and a

wy We see that

IF(n| < wys/He A fy)2 =

2
/Tda(e)e—me—izscos(a)(b(e) < Cls| ™4,
[n|<wgs/4

by a simple integration by parts, done twice, using the condition|thp#- 2s Sin(@)| >
wgs /4 in the support 0.

Proof of Theoren®.8. The proof of this theorem is based on a technique of Aizenman
[1]. We break up the proof into a few lemmas. First we show that the free oper@gors
and Ho+ have resolvent kernels with some summability properties, for energies in their
resolvent set.

Lemma3.2. Consider a function h satisfying the Hypothesikand consider the associated
operatorsHy or Hoy. Then for alls > v/(3v + 3),

SUp Y | (8n. (Ho— E) %8 ) I' < C(E),

v
neZ nezv

andC(E) — 0, |E| — oo. Similarly we also have for all > v/(3v + 3),

SUp Y | (8. (Hos — E) %8, ) I < C(E).

HEZY:rl nezv

Proof. We will prove the statement faky, the proof for Hy is similar. We write the
expression for the resolvent kernel in the Fourier transformed representation (we write
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the Fourier series of aff(Z") function asi(®) = 3_,,c,» €"7u(n)), use the Hypothesis
2.1(1), and integrate by parts 3- 3 times with respect to the variabg (recall that
U = (01, ...,6,)), to get the inequalities

(8u, (Ho— E) %8, ) = | do(®) €77 (hw)—E)™t= _O¥E
n, (110 I o ((m — n);)3v+3
. 9 83v+3 1
x / do () &M= a93v+3(h(19)—E)‘ , (18)
J

where we have chosen the indgsuch thati(m — n);| > |m — n|/v and assumed that
m # n (Whenm = n the quantity is just bounded). Let us set

‘ 3v+3

a3 @) = B\ (@) - E)H} :
J

Co(E) =max { su
el

It is easy to see that since the functibris of compact range and all it)3+ 3 partial
derivatives are bounded, by hypotheSig E) goes to zero a| goes taoco. We then get
the bound for any > v/(3v + 3),

3v+3

| (8n, (Ho— E) 18, ) Co(E).

< -
| - |m _n|3v+3

Given this estimate we have

1 ) ' vs(3v+3)
SUp > [ (8. (Ho— E) 16, ) I° < Co(E)* | sup |14 > e
nez’ =y nezy nE#ZV m—n
vs(3v+3)
s
= Co(E)" | 1+ Z i@+ | |
neZ’,m#0
< Co(E)'C(s), (19)

whereC (s) is finite sincejm|~*@+3D_ m = 0 is a summable function ii” whens(3v +
3) > v.

Proof of Corollary2.9. We prove the theorem only for the case the proof of the other
case is similar.

By the Hypothesis 2.3(2) on the finiteness of the second moment wé see that
[ du(x) |x] < oo, so that we can set= 1in the Lemma 5.1. Since the assumption in the
theorem ensures the boundedness of the densityn# can also set = oo in the Lemma
5.1 with thenQ¥1+4 = ||du/dx | . Then in the Lemma 5.1 the constahis given by

K 2k Q
_— =1 .
C<Q’1—2K’OO> +1—/c
The condition on the constantbecomes
Kk <1/3.

Below we choose asatisfyingﬁ < s < 1/3, and consider the expression

G((,(), Z,n, m) = < 8"7 (Hw - Z)_l‘sm >v G(Ov Z,n, m) = (8717 (HO - Z)_l(sm )1
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where we take = E + ie with € > 0. Then by the resolvent equation we have
G(w,z.n,m)=GO,z,n,m) = Y G(w,z,n,HV*()G(0,z,1,m). (20)

leZnu

We denote by
Gi(w, z,n,m) = {8y, (H? = VO P —2) 180 ),

where P; is the orthogonal projection onto the subspace generatéd byhen using the
rank one formula

Gi(w,z,n,0)
Gi(w,z,1,1)

vel) + Gi(w, z,1,H)71
whose proof is again by resolvent equation, we see that eq. (20) can be rewritten as
G(w,z,n,m) =G0, z,n,m)
Gi(w,z,n,l) (21)
Gi(w,z,1,D) w
V(UG z, 1, m).
+IEZZU (vwa) TG 2.1, z)l) OEOzLm
Raising both the sides to powefnoting thats < 1 so the inequalities are valid), we get
|G(w, z,n,m)|" =1G(0, z,n, m)’
Gi(w,z,n,l)
Gi(w,z,1,)
+ Z (vw(l) + (Gi(w, z,1, l)—l)

lezv

Glw,z,n,l) =

N

VeDIIGO, z, 1, m)|*.

(22)

Now observing thaG; is independent of the random variatM& (1), we see that
E(G(w, z,n,m)[*) = |G(0, z, n,m)|*

Gi(w,z,n,1)
Gi(w,z,1,])
E E
+ (vw(l) + (Gi(w, z, 1, l)—l)

IV“’(l)IS) GO, z,[,m)’.  (23)

aig®(l),
N
leZV >

lezv
Thisthenbecomes, integrating with respectto the varighl®, remembering that® (1) =
E(|G(w, z,n,m)') = |G(0, z, n, m)|*
Gi(w, z,n,1)
E - 7
+ Z (‘ Gi(w,z,1,])
x / d/"l/(x) -1 |X|s |G(O3 Zslsm)ls
lx +a,"Gi(w,z, 1,7
(24)

which when estimated using the Lemma 5.1 yields
E(G(w,z,n,m)*) <|G(O, z,n,m)|*

G(w,z,n,1) s)
KE||=———
r2 K (’Gz(w,z,l,l)

1
X du(x GO, z,1,m)|,
/( e |x+allG1(w,Z,l,l)l|s>| ( !
(25)
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whereK; is the constant appearing in Lemma 5.1 witlset equal to. We takeK =
(sup, lan|*) Ky, and rewrite the above equation to obtain

E(IG(w, z,n,m)|*) = |G(0, z,n,m)|* + Z KE((G(w, z,n,DI’|G(0, z,1,m)]*.  (26)
lezv
We now sum both the sides over set

I = Z E(|G(w, z,n, m)[*)

mezZ”

and obtain the inequality

1<) 16O, z,n,m)| +sup Y KIIGO,z,l,ml.

lez

mezY meZzV

Therefore when there is an interval ¢) in which

Ksup Y |GO.z.1.m)° <1, E € (a.b), (27)

lezy meZnu

we obtain that

b
/ dE Y E(G(w, E +i0,n,m)|*) < oo,

meZY

by an application of Fatou’s lemma implying that for almostfale (a, b) and almost all
w, we have the finiteness of

Y 1G(@. E+i0,n,m)|? < o0,

meZzY

satisfying the Simon—Wolff [19] criterion. This shows that (the proof follows as in Theo-
rems 11.5, 1.6 [18]) the measures

VO() = (8, Ego()8,)

are pure point ind, b) almost everyw. This happens for alt, hence the total spectral
measure o “ itself is pure point in4, ») for almost allw.

There are two different ways to fix the critical enerfyu) now. Firstly if K is large,
then in view of the Lemma 3.2 (by whidfig(E) — 0, |E| — o0) and the fact thaK is
finite (by Lemma 5.1)

Ksup Y 1G(0,z,1,m)|* < KCo(E)’'C(s) <1, |E|— oc. (28)

lezv meZnu

Therefore there is a large enougliw) such that for all interval&a, b) in (—oo, —E () U
(E(u), 00), the condition in eq. (25) is satisfied.

On the other hand if the momeBt = [ |x| du(x) is very small, then we can choose
E(w) by the condition,

KCo(E)Cs < 1,

even wherCo(E) > 1, since it is finite forE in the resolvent set aflp by Lemma 3.2.
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4. Examples

In this section we present some examples of the operatgronsidered in the theorems.
We only give the functions stated in the Hypothesis 2.1.

e Examples of operator&y

1.

h(®) = >_1_;2cog6;), corresponds to the usual discrete $clinger operator and

it is obvious that the Hypothesis 2.1 are satisfied. The Jaksic—Last condition 5.2 on
mutual non-orthogonality of the subspaces generateliggnds,, for differentn in

7" are also satisfied, by an elementary calculation taking powef afepending

upon a pair of vectors, ands,,, since the operatatlg is given byZ + 71, with T

being the bilateral shift 0A?(Z).

Ch@) = Y0 hi(0), hi(6) = Y cosk6;), N(i) < oo. Clearly eachy; is a

smooth function iR” and eactk; and all its derivatives are2periodic. Hence the
Hypothesis 2.3 is satisfied. Further eactkpfs a trigopnometric polynomial, and its
derivative is also a trigonometric polynomial and hence has only finitely many zeros
on the circle.

The condition in Jaksic—Last condition Theorem 5.2 on mutual non-orthogonality
is again elementary to verify in this case.

. Consider the functions

hi(0) = 0> T4@2n — 0>+, 0<6, <27, i=1,...,v

and takeh = >, h;(9) extended to the whole 6% periodically. Clearly these are
in C3"+3(T), by construction.

e Examples of pairga,, 1)
We give next some examples of sequenggesatisfying the Hypothesis 2.2 such that

SUPA(1) = a-SUPRLL).

We considew > 2 and the sequeneg = (1+ |n1|)*, ¢ < —1. Then we have that

kZ' N{©O,n):neZ" Yy ={0,n):nekz"Y

anda(j,}n)(a, b) = (a, b for any interval (a, b) and any € Z"~1. Therefore for any
positive integer k, we have

D wayta, by = Y pla, b)) =0

mekZ” mekzv-1

whenevem ((a, b)) > 0.

e Examples of measurgswith small moment

We next give an example of an absolutely continuous measure of compact support such
that the Aizenman condition (in Lemma 5.1 is satisfied. We use the notation used in that
lemma for the example.

We consider numbers @ ¢, 8 < 1, R and letu be given by
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=

—€

s,
R, (29)

|m oq|

, 0<x
S <x

IA A

du(x)/dx =

=

_5 £
0, otherwise

Thenpu is an absolutely continuous probability measure and
o<ty Lt
-85 R-9¢
We taker = 1, then the momen® is bounded by
B<(1—-¢€)¥+(R+5e/2

Now if we fix R large and choose = 1/R% ands = 1/R?, we obtain an estimate
K

R2¢

B < and BX Q1% < 8r? 6

Takingx = s in the lemma and noting that< 1/3 implies 2— 6s < 0 so that both the
terms above go to zero &goes taco. We see that by taking with large support but

small moment, we can make the const&nh the Lemma 5.1 as small as we want. This

in particular means that in the Theorem 2.8. given a ené&iggutside the spectrum of

Hp we can find a measupe which is absolutely continuous of small moment such that

K is smaller tharCq(Ep)* C, in the proof of Theorem 2.8. and henE¢u) < |Eg|. We

can use such measures to give examples of operators with compact spectrum with both
a.c. spectrum and pure point spectrum present but in disjoint regions.

Example when Jaksic—Last condition is violated

We finally give examples where Jaksic—Last condition is violated and yet the conclusion
of their theorem is valid.

Considen = 1, for simplicity, and let:(9) = 2 cog26). Then the associatddy has
purely a.c. spectrum in [-2, 2] and we see that the opetdgor 72 + T2 if T is the
bilateral shift acting orf?(Z). Then if we consider the operatols” = Ho + V¢, and
the cyclic subspacés,, 1, He, 2 generated by th&“ and the vectors,, 5> respectively,
such an operator satisfies

Heo1 C 21} + 27), Heo C €2({1+ 1) +27), almost everyw.
We then have
Ho1 CL2{2n+1, n € 7)), Hyo2 C £2(27), almosteveryo.

The subspaceZ({n : n odd}) and¢?(27) are generated by the familigs, k odd} and
{8k, k ever} respectively. (We could have taken any odd intdgerthe place of 1 to do
the above)

These two are invariant subspacesHf which are mutually orthogonal, a.ew.
Therefore the Jaksic—Last theorem is not directly valid. However, by considering the
restrictions of H to these two subspaces, one can go through their proof in these
subspaces to again obtain the purity of a.c. spectrum for such operators when they exist.

We consider two examples to illustrate the point, for which wegtétn) denote a
collection of i.i.d. random variables with an absolutely continuous distribytiasf
compact support iR, its support containing 0.
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1. fV®(n) = a,q®(n),with0 < a, < (1+ |n|)~%, « > 0, we see that there is pure
a.c. spectrum in [-2, 2], a.e: by applying trace class theory of scattering.

2. Onthe other hand if, with & a,, < (1+ |n])™%, a > 1,

an,q®(n), nodd

Ve = { q®(n), neven

then there is dense pure point spectrum embedded in the a.c. spectrum in [-2, 2].

We can give similar, but non trivial, examples in higher dimensions but we leave it to the
reader.

5. Appendix

In this appendix we collect two theorems we use in this paper. One is alemma of Aizenman
[1] and another a theorem of Jaksic—Last [14].

The first lemma and its proof are those of Aizenman [1](Lemma A.1) which reproduce
below (with some modifications in the form we need), with a slight change in notation (we
in particular call the numberin Aizenman’s lemma as),

Lemmab.1 (Aizenmah Let 1 be an absolutely continuous probability measure whose
densityf satisfies(, dx| f (x)|}4 = Q < oo for somey > 0. LetO < t < 1and suppose
B = [ du(x) |x|” < co. Then for any

e2el]
Kk<|14—-—+-—

T g
we have

X —

« 1
/d,u(x) it KK/ du(x) ———, forall aeC,
R | | R lx —a|©

with K, given by

K, = B (21 1 a) [Bli + BY C(0Q. 1# q)TTZK:| < 0.

_ %’
T

Remark. We see from the explicit form of the constakj, that the momenB can be
made sufficiently small by the choice @feven when its support is large. This will ensure
that in some models of random operators, the region where the Simon—Wolff criterion is
valid extends to the region in the spectrum. This is the reason for our wiitinigp this

form.

Proof. The strategy employed in proving the lemma is to consider the ratio
G
Jp ) o

and obtain upper bounds for the numerator and lower bounds for the denominator.
Note first thatB finite and« < t implies thatjx — «|* is integrable even i& is purely
real and we have

b q
/ F)dy < QT b — a| T (30)
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by Holder inequality. Hence

1
/du(x)
lx — of

)

o0 1
§l+/ dr w({x : >
lx — o]

1, K20
1+q K

= C(Q. k. q), (31)

where the integral is estimated using the estimate in eq. (30).

Consider the regiof| > (ZB)%: We then estimate for fixed the contributions from the
regions|x| < |«|/2 and|x| > |a|/2 to obtain

[t < 2 ([ dww e fauco
x—aF
2¢

=areee(e m"” ) .

with ¥ chosen so that/(1 — 2«/7) < q/(1+ ¢). (Here we have explicitly calculated
the p occurring in the lemma of Aizenman in termsofindz). For a fixedr andgq this
condition is satisfied wheneversatisfies the inequality stated in the lemma.

The lower bounds off dit(x) 1/|x — «|* is obtained first by noting tha < oo implies

p(x tIx|" > (2B)}) <

NI =

Since|a| > (ZB)%, we have the trivial estimate

1 1
/du(x) p Z/ L du(x)
|x — | Ix|>(2B)T lx —
1
Z/ L du(x) p
X|<(2B)7 |x —«af

> _r —.
2(|o] + (2B)7)*
Putting the inequalities in (32) and (33) together we obtain, (rememberingathat
1
(2B)7),

=

+f du(x) !
L (x
lx|<@B)? lx —al

(33)

fRdM(x) Ix a‘x
fR dp(x) m

We now consider the regio| < (ZB)%: Estimating as in eq. (32) but now splitting
the region agx| < (ZB)% and|x| > (ZB)%, we obtain the analogue of the estimate in
eq. (32), in this region ok as

|x |€ 1 . |x |2
du(x) - < | du) x4+ [ die(x) —
Ix — «f (2B)* lx —af

=2
< (rrre(eige) ) o

< 2t p*t [B1T+B C(Q d ) } (34)

T
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Similarly the estimate for the denominator term is done as in eq. (33),

1 1 1
[aw——r= [ du——r [ e
|x — «af Ix|>(2B)T lx —«a Ix|<(2B)T |x — af

> / Ayt () ——
> p(x
|<(2B)7 lx — ol

1
Z 1 1
2((2B) + (2B)~)
1
- (36)
4(2B)*
Using the above two inequalities we obtain the estimate,
f[R dl’L(-x) % K K K =2
—H§4 Bli?+B? C(Q’—vq) T s (37)
Jr A (x) |x—1a\" 1- %

when|a| < (ZB)%. Using the inequalities (34) and (36) obtained for these two regions of
values ofx we finally get
Jedu(n) 2
Ja () w57

foranya € R.
We next state a theorem (Corollary 1.1.3) of Jaksic—Last [14] without proof, its proof is
as in Corollary 1.1.3 of Jaksic—Last [14]. We state it in the form we use in this paper.

=2

< BT 2% 1 4 [Bl—f FBTCQ g )

2%

} . (39)

T

Theorem 5.2[Jaksic-Ladt SupposeH is a separable Hilbert space dnA a bounded
self adjoint operator. Suppoge,} are normalized vectors and |é, denote the orthog-
onal projection on to the one dimensional subspace generated byggadtet ¢“(n) be
independent random variables with absolutely continuous distribujignsConsider

A = A+ qu(n)Pn, almost everyw.

n

Suppose that the following conditions are valid
1. The family{¢,} is a cyclic family forA® a.e. w.

2. LetH,, , denote the cyclic subspace generatediyandg, . Then the cyclic subspaces
Hy.n andH,, ,,, are not orthogonal.

Then whenever there is an interv@l, b) in the absolutely continuous spectrumAsf =
A+Y",q°(n)P,, almost allw, we have

o,(A®) N (a, b) = ¥, almost everyw.
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