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Abstract. In this paper we consider some Anderson type models, with free parts
having long range tails and with the random perturbations decaying at different rates
in different directions and prove that there is a.c. spectrum in the model which is
pure. In addition, we show that there is pure point spectrum outside some interval.
Our models include potentials decaying in all directions in which case absence of
singular continuous spectrum is also shown.
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1. Introduction

There have been but few models in higher dimensional random operators of the Anderson
model type in which presence of absolutely continuous spectrum is exhibited. We present
here one family of models with such behaviour.

The results here extend those of Krishna [10] and part of those in Kirsch–Krishna–
Obermeit [9], Krishna–Obermeit [12] while making use of wave operators to show the
existence of absolutely continuous spectrum, the results of Jaksic–Last [14] to show its
purity and those of Aizenman [1] for exhibiting pure point spectrum.

The new results in this paper allow for long range free parts, have models with com-
pact spectrum (in dimensions 2 and more) which contains both absolutely continuous and
dense pure point spectrum. Our models include the independent randomness on a surface
considered by Jaksic–Molchanov [15, 16] and Jaksic–Last [14, 13], while allowing for the
randomness to extend into the bulk of the material.

The literature on the scattering theoretic and commutator methods for discrete Laplacian
includes those of Boutet de Monvel–Sahbani [4, 5] who study deterministic operators on
the lattice.

The scattering theoretic method that we use is applicable even when the free operator is
not the discrete Laplacian but has long range off diagonal parts. We impose conditions on
the free part in terms of the structure it has in its spectral representation.

2. Main results

The models we consider in this paper are related to the discrete Laplacian(1u)(n) =∑
|i|=1 u(n+ i) on`2(Zν). We denote byTν theν dimensional torusRν/2πZν andσ the

invariant probability measure on it. We use the coordinate chart{ϑ : ϑ = (θ1, . . . , θν), 0<
θi < 2π} and the representationσ = ∏ν

i=1(dθi/2π) on the torus for calculations
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below without further explanation. Then1 is unitarily equivalent to multiplication by
2
∑ν
i=1 cos(θi) acting onL2(Tν, σ ), written in the above coordinates. We consider a

bounded self adjoint operatorH0 which commutes with1 and which is given by, on
L2(Tν, dσ), an operator of multiplication by a functionh(ϑ) there withh satisfying the
assumptions below.

Hypothesis2.1. Leth be a real valuedC3ν+3(Tν) function satisfying

1. h is separable, i.e.h(ϑ) = ∑ν
j=1 hj (θj ).

2. The sets

C(hj ) =
{
x :

dhj
dθ

(x) = 0

}
are finite for eachj = 1, . . . , ν. Let

C̃(hj ) = T × . . .× T × C(hj )× T . . .× T,

where the setC(hj ) occurs in thej th position. We denote by

C = ∪νj=1C̃(hj )

and note that this is a closed set of measure zero inTν .

We consider random perturbations of bounded self adjoint operators coming from func-
tions as in the above hypothesis. We assume the following on the distribution of the
randomness.

Hypothesis2.2. Letµ be a positive probability measure onR satisfying:

1. µ has finite varianceσ 2 = ∫
x2dµ(x).

2. µ is absolutely continuous.

Finally we consider some sequences of numbersan indexed by the latticeZν or Zν+1
+ =

Z+ × Zν and assume the following on them.

Hypothesis2.3. (1)an is a bounded sequence of non-negative numbers indexed byZν

which is non-zero on an infinite subset ofZν .
(2) Letg(R) = anχ{n∈Zν :|ni |>R, ∀1≤i≤ν}. Theng ∈ L1((1,∞)).

(1′) an is a bounded sequence of non-negative numbers which are non-zero on an infinite
subset ofZν+1

+ .

(2′) Let g(R) = anχ{n∈Zν+1
+ :|ni |>R, ∀1≤i≤ν}. Theng ∈ L1((1,∞)) .

Remark1. In the case ofZν our hypothesis on the sequencean allows for the following
type of sequences

• an = (1 + |n|)α, α < −1.

• an = (1 + |ni |)α, for some i, α < −1.

• an = ∏ν
i=1(1 + |ni |)αi , αi ≤ 0 with

∑ν
i=1 αi < −1.
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Therefore in the theorems, on the existence of absolutely continuous spectrum, we can
allow the potentials to be stationary along all but one direction in dimensionsν ≥ 2.

2. In the case ofZν+1
+ , we can allow the sequence to be of the type

• an = 0, n1 > N and an = 1, for n1 ≤ N , for some 0< N < ∞.

• an = (1 + |n1|)α, α < −1.

• an = ∏ν
i=1(1 + |ni |)αi , αi ≤ 0 with

∑ν
i=1 αi < −1.

Thus allowing for models with randomness ona the boundary of a half space.
For the purposes of determining the spectra of the models we are going to consider here

in this paper we recall a definition given in Kirsch–Krishna–Obermeit [9], namely,

DEFINITION 2.4

Let an be a non-negative sequence, indexed byZν or Zν+1
+ . Letµ be a positive probability

measure onR. Then the a-supp(µ) is defined as

1. In the case ofZν ,

a-supp(µ) =
⋂
k∈Z+
k 6=0

{
x :

∑
n∈kZν

µ(a−1
n (x − ε, x + ε)) = ∞, ∀ ε > 0

}
.

2. In the case ofZν+1
+ ,

a-supp(µ) =
⋂
k∈Z+
k 6=0

x :
∑

n∈kZν+1
+

µ(a−1
n (x − ε, x + ε)) = ∞, ∀ ε > 0

 .
Remark.1. In the sums occurring in the above definition we setµ(a−1

n (x− ε, x+ ε)) ≡ 0,
for thosen for whichan = 0. This notation is to allow for sequencesan that are everywhere
zero except on an axis for example.
2. We note that whenan is a constant sequencean = λ 6= 0,

a-supp(µ) = λ · supp(µ).

3. Whenan converge to zero as|n| goes to∞, the a-supp(µ) is trivial if µ has compact
support. It could be trivial even for some class ofµ of infinite support depending upon the
sequencean.
4. If an is bounded below by a positive number on an infinite subset along the directions
of the axes inZν (respectivelyZν+1

+ ), then the a-supp(µ) could be non-trivial even for
compactly supportedµ.

We consider the operator (foru ∈ `2(Z+)),

(1+u)(n) =
{
u(n+ 1)+ u(n− 1), n > 0,
u(1), n = 0.

Below we use either1+ or its extension by1+ ⊗ I to `2(Zν+1
+ ) by the same symbol, the

correct operator is understood from the context. Given a real valued continuous function on
the torusTν , we consider the bounded self adjoint operatorsH0 on`2(Zν)which is unitarily
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equivalent to multiplication byh on `2(Tν, σ ). We also denote the extensionI ⊗ H0 of
H0 to `2(Zν+1

+ ) by the symbolH0 andL2(Tν, σ ) as simplyL2(Tν) in the sequel.
We then consider the random operators

Hω = H0 + V ω, V ω =
∑
n∈I

anq
ω(n)Pn, on `2(Zν),

Hω
+ = H0+ + V ω, V ω =

∑
n∈I

anq
ω(n)Pn,H0+ = 1+ +H0, on `2(Zν+1

+ ), (1)

wherePn is the orthogonal projection onto the one dimensional subspace generated byδn
when{δn} is the standard basis for`2(I ) (I = Zν or Zν+1

+ ). {qω(n)} are independent and
identically distributed real valued random variables with distributionµ. The operatorH0
is some bounded self adjoint operator to be specified in the theorems later.

Then our main theorems are the following. First we state a general theorem on the
spectrum ofH0 in such models. For this we consider the operatorH0 to denote a bounded
self adjoint operator oǹ2(Zν) coming from a functionh satisfying the Hypothesis 2.1 and
1+ defined as before.

Theorem 2.5. LetH0 andH0+ be the operators defined as in eq.(1), coming from functions
h satisfying the hypothesis2.1(1)(2). Let

E+ =
ν∑
j=1

sup
θ∈[0,2π ]

hi(θ), E− =
ν∑
j=1

inf
θ∈[0,2π ]

hi(θ).

Then, the spectra of bothH0 andH0+ are purely absolutely continuous and

σ(H0) = [E−, E+], and σ(H0+) = [−2 + E−, 2 + E+].

Part of the essential spectra of the operatorshω andHω+ are determined via Weyl se-
quences constructed from rank one perturbations of the free operatorsH0 andH0+ respec-
tively. The proof of this theorem is done essentially on the line of the proof of Theorem
2.4 in [9].

Theorem 2.6. Let the indexing set I beZν or Zν+1
+ and consider the operatorH0 coming

from a function h satisfying the conditions of hypothesis2.1(1) in the case ofI = Zν and
consider the associatedH0+ in the case ofI = Zν+1

+ . Supposeqω(n), n ∈ I are i.i.d
random variables with the distributionµ satisfying the hypothesis2.2(1). Let an be a
sequence indexed by I satisfying the hypothesis2.3(1) (or (1′) as the case may be). Assume
also that0 ∈ a-supp(µ), then⋃

λ ∈ a-supp(µ)

σ (H0 + λP0) ⊂ σess(H
ω) almost everyω

and ⋃
λ ∈ a-supp(µ)

σ (H0+ + λP0) ⊂ σess(H
ω
+) almost everyω.

Remark1. Whenµ has compact support andan goes to zero at infinity, or whenµ has
infinite support butan has appropriate decay at infinity, there is no essential spectrum
outside that ofH0 forHω almost everyω. So the point of this theorem is to show that there
is essential spectrum outside that ofH0 based on the properties of the pairs ({an}, µ).
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2. In Kirsch–Krishna–Obermeit [9] some examples of random potentials which have
essential spectrum outsideσ(H0)even whenan goes to zero at∞ were given. The examples
presented there had a-supp(µ) as a half axis or the whole axis, this is because of the decay
of the sequencesan. Here however, since we allow foran to be constant along some
directions, our examples include cases where the spectra ofHω are compact with some
essential spectrum outsideσ(H0).

We letE± be as in Theorem 2.5.. We also setHω,n to be the cyclic subspace generated
by δn andHω.

Theorem 2.7. Consider a bounded self adjoint operatorH0 coming from a function h
satisfying the conditions of hypothesis2.1(1), (2). Supposeqω are i.i.d random variables
with the distributionµ satisfying the hypothesis2.2(1).

1. Let I = Zν andan be a sequence satisfying the hypothesis2.3(1), (2). Then,

σac(H
ω) ⊃ [E−, E+] almost everyω.

Further whenµ satisfies the hypothesis2.3(2), an 6= 0 onZν , Hω,n, Hω,m not mutually
orthogonal for any n, m inZν for almost allω andE± as in theorem2.5., we also have

σs(H
ω) ⊂ R \ (E−, E+) almost everyω.

2. Let I = Zν+1
+ andan be a sequence satisfying the hypothesis2.3(1′), (2′). Then,

σac(H
ω
+) ⊃ [−2 + E−, 2 + E+] almost everyω.

Further whenµ satisfies the hypothesis2.3(2), an 6= 0 on a subset ofZν+1
+ that contains

the surface{(0, n) : n ∈ Zν}, the subspacesHω,n, Hω,m are not mutually orthogonal
almost everyω for m, n in{(0, k) : k ∈ Zν}, we also have

σs(H
ω) ⊂ R \ (−2,+E−, 2 + E+) almost everyω.

Remark1. Whenµ is absolutely continuous the theorem says that the spectrum ofHω

in (E−, E+) (respectively in(−2 + E−, 2 + E+) for theZν+1
+ case) is purely absolutely

continuous, this is a consequence of a remarkable theorem of Jaksic–Last [14] who showed
that in such models with independent randomness, with the randomness non-zero a.e. on a
sufficiently big set (H0 can be any bounded self adjoint operator in their theorem, provided
the set of points where the randomness lives gives a cyclic family for the operatorsHω),
whenever there is an interval of a.c. spectrum it is pure almost everyω. Their proof is based
on considering spectral measures associated with rank one perturbations and comparing
the spectral measures of different vectors (which give rise to the rank one perturbations).

2. Our theorem extends the models of surface randomness considered by Jaksic–Last
[13], to allow for thick surfaces where the randomness is located in a strip beyond the
surface into the bulk of the material. Such models (which are obtained by takingan =
0, n1 > N, an = 1, n1 ≤ N for some finiteN ) have purely absolutely continuous
spectrum in(−2ν − 2, 2ν + 2). The purity of the a.c. spectrum is again a consequence of
a theorem of Jaksic–Last [14].

Finally we have the following theorem on the purity of a part of the pure point spectrum.
We denote

e+ = supσ(H0+), e− = inf σ(H0+) and e0 = max(|e−|, |e+|). (2)
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Theorem 2.8. Consider a bounded self adjoint operatorH0 coming from a function h
satisfying the conditions of hypothesis2.1. Let I be the indexing set and supposeqω(n), n ∈
I are i.i.d random variables with the distributionµ satisfying the hypothesis2.2(1), (2).
Assume further that the densityf (x) = dµ(x)/dx is bounded. Setσ1 = ∫

dµ(x)|x|. Then,

1. LetI = Zν and letan be a sequence satisfying the hypothesis2.3(1), (2). Then there is
a critical energyE(µ) > E0 depending upon the measureµ such that

σc(H
ω) ⊂ (−E(µ),E(µ)) almost everyω.

2. Let I = Zν+1
+ and letan be a sequence satisfying the hypothesis2.3(1′), (2′). Then

there is a critical energye(µ) > e0 such that

σc(H
ω
+) ⊂ (−e(µ), e(µ)) almost everyω.

Remark1. TheE(µ) ande(µ), while finite may fall outside the spectra of the operators
Hω andHω+ , for some pairs(an, µ) whenµ is of compact support, so for such pairs this
theorem is vacuous. However since the numbersE(µ) (respectivelye(µ)) depend only
on the operatorsH0 (respectivelyH0+) and the measureµ we can still choose sequences
an andµ of large support such that the theorem is non-trivial for such cases. Of course
for µ of infinite support, the theorem says that there is always a region where pure point
spectrum is present.

2. Since we allow for potentials withan not vanishing at∞ in all directions, we could not
make use of the technique of Aizenman–Molchanov [3], for exhibiting pure point spectrum.

3. Whenµ has compact support, comparing the smallness of a moment near the edges of
support one exhibits pure point spectrum there by using the Lemma 5.1 proved by Aizenman
[1], comparing the decay rate in energy of the sums of low powers of the integral kernels of
the free operators with some uniform bounds of low moments of the measureµ weighted
with singular but integrable factors occurring to the same power.

As in Kirsch–Krishna–Obermeit [9], Jaksic–Last [14] we also have examples of cases
when there is pure a.c. spectrum in an interval and pure point spectrum outside. The part
about a.c. spectrum follows as a corollary of theorem 2.6., while the pure point part is
proven as in [9] (following the proof of their theorem 2.3, where1 can be replaced by
any bounded self adjoint operator on`2(Zd) and work through the details, as is done in
Krishna–Obermeit [12], Lemma 2.1). Further whenH0 = 1, the Jaksic–Last condition
on the mutual non-orthogonality of the subspacesHω,n, Hω,m is valid since given any
n,m we can find ak so that〈δn,1kδm〉 > 0 (reason, takek = |n−m| = ∑ν

i=1 |ni −mi |,
then

1k =
(

ν∑
i=1

Ti + T −1
i

)k
= c

ν∏
i=1

T
|ni−mi |
i + c

ν∏
i=1

T
−|ni−mi |
i + lower order

with Ti denoting the bilateral shift in theith direction and c a strictly positive constant
coming from the multinomial expansion). We see that we can add any operator diagonal
in the basis{δn} to1 without altering the conclusion.

COROLLARY 2.9

Letan be a sequence as in Hypothesis2.3andµ as in Hypothesis2.2. LetH0 = 1. Assume
further thatan 6= 0, n ∈ Zν goes to zero at∞ anda-supp(µ) = R. Then we have, for
almost allω,
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1. σac(Hω) = [−2ν, 2ν].

2. σpp(Hω) = R \ (−2ν, 2ν).

3. σsc(Hω) = ∅.

Theh given in the corollary below is a smooth 2πZν periodic function, so it satisfies
the conditions of the Hypothesis 2.1. It is also not hard to verify that, because of the term∑ν
i=1 cos(θi) occurring in its expression, the cyclic subspaces generated by the associated

H0 on any pair of{δn, δm} are mutually non-orthogonal.

COROLLARY 2.10

Letan be a sequence as in Hypothesis2.3andµ as in Hypothesis2.2. LetH0 be a bounded
self adjoint operator coming from the function h given byh(ϑ) = ∑ν

j=1
∑N
k=1 cos(kθj ).

Assume thatan 6= 0, n ∈ Zν goes to zero at∞ anda-supp(µ) = R. Then we have, for
almost allω,

1. σac(Hω) = [E−, E+].

2. σpp(Hω) = R \ (E−, E+).
3. σsc(Hω) = ∅.

3. Proofs

In this section we present the proofs of the theorems stated in the previous section.

Proof of Theorem2.5. The statement about the spectrum ofH0 follows from the Hypothesis
2.1(1) on the functionh. Each of the functionshi is a real valued continuous 2π periodic
function, hence has compact range. By the intermediate value theorem, we see that the
range of(0, 2π) underhi is also an interval. Since the spectrum ofH0 is the algebraic
sum of the intervalsIi , – if H0j denotes the operator associated withhj on `2(T), then
H0 = H01 ⊗ I + I ⊗H02 ⊗ I + · · · + I ⊗H0ν hence this fact – the statement follows.

We note that̀ 2(Z+) is unitarily equivalent to the Hardy spaceH2(T) of functions onT

whose negative Fourier coefficients vanish. Under this unitary transformation, the operator
1+ is unitarily equivalent to the operator of multiplication by the function 2 cos(θ)acting on
H2(T), which can be seen by the definitions of1+, H2(T) and the unitary isomorphismU
that takesH2(T) to `2(Z+) (explicitly this is 2π(Uf )(n) = ∫ 2π

0 dθ e−inθf (θ)). Therefore
the spectrum of1+ is [−2, 2] and is purely absolutely continuous (there are no eigenvalues).
Therefore the spectrum ofH0+ is also purely a.c. and equalsσ(1+)+ [E−, E+], with E±
as above. Hence the theorem follows.

Proof of Theorem2.6. We prove the theorem for the caseHω the proof for the caseHω+
proceeds along essentially the same lines and we give a sketch of the proof for that case.
We consider anyλ ∈ a-supp(µ), which means that we have∑

n∈kZν+1
+

µ(a−1
n (λ− ε, λ+ ε)) = ∞, ∀k ∈ Z+, k 6= 0, and all ε > 0.

We consider the distance function|n| = max|ni |, i = 1, . . . , ν on Zν . We consider the
events, withε > 0,m ∈ kZν ,

Ak,m,ε = {ω : amq
ω(m) ∈ (λ− ε, λ+ ε), |an qω(n)| < ε, ∀0< |n−m| < k − 1}
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and

Bk,m,ε = {ω : |an qω(n)| < ε, ∀0 ≤ |n−m| < k − 1},
where the indexn in the definition of the above sets varies inZν . Then each of the events
Ak,m,ε are mutually independent for fixedk andε asm varies inkZν , since the random
variable defining them live in disjoint regions inZν . Similarly Bk,m,ε is a collection of
mutually independent events for fixedk andε asm varies inkZν . Further these events have
a positive probability of occurrence, the probability having a lower bound given by

Prob(Ak,m,ε) ≥ µ(a−1
m (λ− ε, λ+ ε))(µ(−c ε, c ε))(k−1)ν+1

and

Prob(Bk,m,ε) ≥ (µ(−c ε, c ε))(k−1)ν+1
,

where we have takenc = inf n∈Zν a
−1
n > 0. The definition ofc implies that

(−c ε, c ε) ⊂ a−1
m (−ε, ε), ∀ m ∈ Zν .

Therefore the assumption thatλ ∈ a-supp(µ) implies that∀k ∈ Z+ \ {0},∑
m∈kZν

Prob(Ak,m,ε) ≥ (µ(−c ε, c ε))(k−1)ν+1 ∑
m∈kZν

µ(a−1
m (λ− ε, λ+ ε)) = ∞

and similarly∑
m∈kZν

Prob(Bk,m,ε) = ∞, ∀k ∈ Z+ \ {0}.

Then Borel–Cantelli lemma implies that for allε > 0, (settingRε = (λ − ε, λ + ε) and
Sε = (−ε, ε) and3k(m) = {n ∈ Zν : 0 ≤ |n−m| < k − 1}), the events

�(ε, k) =
⋂

m∈I⊂Zν

#I=∞

{ω : amq
ω(m) ∈ Rε, an qω(n) ∈ Sε, ∀n ∈ 3k(m) \ {m}}

have full measure. Therefore the event

�1 =
⋂

l,k∈Z+\{0}
�

(
1

l
, k

)
has full measure, being a countable intersection of sets of full measure. Similarly the sets

�2(ε, k) =
⋂

m∈I⊂Zν

#I=∞

{ω : an q
ω(n) ∈ Sε, ∀n ∈ 3k(m)}

have full measure. Therefore the events

�2 =
⋂

l,k∈Z+\{0}
�2

(
1

l
, k

)
have full measure.

We take

�0 = �1 ∩�2
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and note that it has full measure. We use this set for further analysis. We denoteH(λ) =
H0 + λP0. Then supposeE ∈ σ(H(λ)), then there is a Weyl sequenceψl of compact
support,ψl ∈ `2(Zν) such that‖ψl‖ = 1 and

‖(H(λ)− E)ψl‖ < 1

l
.

Suppose the support ofψl is contained in a cube of sider(l), centered at 0. Denote by
3k(x) a cube of sidek centered atx in Zν . We denoteV ω(n) = anq

ω(n), for ease of
writing. We then find cubes3r(l)(αl) centered at the pointsαl such that

|V ω(αl)− λ| < 1

l
, |V ω(x)| < 1

l
, ∀x ∈ 3r(l)(αl) \ {αl}.

Now considerφl(x) = ψl(x − αl). Then by the translation invariance ofH0 we have for
anyω ∈ �0,

‖(Hω − E)φl‖ ≤ ‖(H0 + V ω(· + αl))− E)ψl‖
≤ ‖(H0 + λP0 − E)ψl‖ + ‖V ω(· + αl)− λP0)φl‖
≤ 1

l
+ 1

l
. (3)

Clearly sinceφl is just a translate ofψl , ‖φl‖ = 1 for eachl. We now have to show that the
sequenceφl goes to zero weakly. This is ensured by taking successivelyαk large so that

∪k−1
j=1supp(φj ) ∩3r(k)(αk) = ∅, and supp(φk) ⊂ 3r(k)(αk).

This is always possible for eachω in �0 by its definition, thus showing that the pointE is
in the spectrum ofHω, concluding the proof of the theorem.

Proof of Theorem2.7. We first consider the part (1) of the theorem and address the proof
of (2) later. The setC below is as in Hypothesis 2.1. We consider the set

D = {φ ∈ `2(Zν) : supp(φ̂) ⊂ Tν \ C and φ̂ smooth}, (4)

where we denote bŷφ the function in`2(Tν) obtained by taking the Fourier series ofφ.
Since the setC is of measure zero, such functions form a dense subset of`2(Zν). We also
note that the setC is closed inTν , thus its complement is open (in fact it is a finite union of
open rectangles) and eachφ in D has compact support inTν \ C.

We first consider the case whenµ has compact support. The general case is addressed
at the end of the proof.

If we show that the sequenceW(t, ω) = eitH
ω
e−itH0 is strongly Cauchy for anyω, then

standard scattering theory implies thatσac(H
ω) ⊃ σac(H0) for thatω. We will show below

this Cauchy property for a setω of full measure.
To this end we consider the quantity

E{‖(W(t, ω)−W(r, ω))φ‖}, φ ∈ D (5)

and show that this quantity goes to zero ast andr go to+∞. Then the integrand being
uniformly bounded by an integrable function‖φ‖ and sinceφ comes from a dense set,
Lebesgue dominated convergence theorem implies thatW(t, ω) is strongly Cauchy for
everyω in a set of full measure�(f ) that depends onf in `2(Zν). Since`2(Zν) is
separable, we take the countable dense setD1 and consider

�3 =
⋂
f∈D1

�(f )
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which also has full measure being a countable intersection of sets of full measure. For
eachω ∈ �3, W(t, ω) is a family of isometries such thatW(t, ω)f is a strongly Cauchy
sequence for eachf ∈ D1, therefore this property also extends by density ofD1 to all of
`2(Zν) point wise in�3. Thus it is enough to show that the quantity in (5) goes to zero as
t andr go to+∞.

We have the following inequality coming out of Cauchy–Schwarz and Fubini, for an
arbitrary but fixedφ ∈ D. In the inequality below we denote, for convenience the operator
of multiplication by the sequencean asA and in the first step we write the left hand side
as the integral of the derivative to obtain the right hand side

E{‖W(t, ω)φ −W(r, ω)φ‖} ≤ E

{
‖
∫ t

r

ds eisH
ω

V ωe−isH0φ‖
}

≤
∫ t

r

ds E{‖V ωe−isH0φ‖}

≤
∫ t

r

ds ‖σAe−isH0φ‖. (6)

The required statement on the limit follows if we now show that the quantity in the integrand
of the last line is integrable ins. To do this we define the number

vφ = inf
j

inf {|h′
j (θj )| : ϑ ∈ supp̂φ}, ϑ = (θ1, . . . , θν). (7)

We note that since the support of̂φ is compact inTν \ C, hj ′, j = 1, . . . , ν (which are
continuous by assumption), have non-zero infima there, sovφ is strictly positive. Then
consider the inequalities

‖σAe−isH0φ‖ ≤ ‖σAF(|nj | > vφ s/4 ∀j )e−isH0φ‖
+ ‖σAF(|nj | ≤ vφ s/4 for some j)e−isH0φ‖

≤ σ |g(s)|‖φ‖ + σ‖A‖‖F(|nj | ≤ vφ s/4, for some j)e−isH0φ‖, (8)

where we have used the notation thatF (S) denotes the orthogonal projection (in`2(Zν))
given by the indicator function of the setS and used the functiong as in the Hypothesis
2.3(2) which is integrable ins, so the first term is integrable ins. We concentrate on the
remaining term.

‖F(|nj | ≤ vφ s/4, for some j)e−isH0φ‖. (9)

To estimate the term we go to the spectral representation ofH0 and do the computation
there as follows. Since|nj | ≤ vφ s/4 for somej , we may without loss of generality
setj = 1 and proceed with the calculation. Let us denote the setS1(s) = {n : |n1| ≤
vφs/4, nj ∈ Z, j 6= 1}. In the steps below we pass toL2(Tν) via the Fourier series,
(where the normalized measure onTν is denoted by dσ(ϑ)).

T = ‖F(|n1| ≤ vφ s/4)e
−isH0φ‖

=
 ∑
n∈S1(s)

∣∣∣〈δn, e−isH0φ〉
∣∣∣2


1/2

=
 ∑
n∈S1(s)

∣∣∣∣∫
Tν

dϑ e−in·ϑ−is∑ν
j=1 hj (θj )φ̂(ϑ)

∣∣∣∣2


1/2
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=
{ ∑
n∈Zν−1

∑
|n1|≤ vφs

4

∣∣∣∣∣
∫

Tν−1

ν∏
j=2

dσ(θj ) e−i∑ν
j=2(nj θj+shj (θj ))

∫
T

dσ(θ1)

e−i(n1θ1+sh1(θ1))φ̂(ϑ)dσ(θ1)

∣∣∣∣∣
2}1/2

. (10)

We define the functionJ (θ, s, n1) = n1θ+sh1(θ). Whenϑ is in the support of̂φ, we have
that|h′

1(θ1)| ≥ vφ , by eq. (7). This in turn implies that whenϑ = (θ1, . . . , θν) ∈ supp̂φ,∣∣∣∣ ∂∂θ J (θ1, s, n1)

∣∣∣∣ = |n1 + s h′
1(θ1)| ≥ 3vφ s/4 when n1 ≤ vφ s/4.

We use this fact and do integration by parts twice with respect to the variableθ1 to obtain

T =
{ ∑

|n1|≤ vφs

4

∑
n∈Zν−1

∣∣∣∣∣
∫

Tν−1

ν∏
j=2

dσ(θj ) e−i∑ν
j=2 nj θj+shj (θj )

∫
T

dσ(θ1)

e−i(n1θ1+sh1(θ1))

{(
∂

∂θ1

1

J ′(θ1, n1, s)

)2

φ̂(ϑ)

}
dσ(θ1)

∣∣∣∣∣
2}1/2

. (11)

We note that the quantity

I1 =
(
∂

∂θ1

1

J ′(θ1, n1, s)

)2

φ̂(ϑ)

=
(

−J (3)
(J ′)3

+ 3J (2)(J ′)2

(J ′)6

)
φ̂ + 1

(J ′)2
∂2

∂θ2
1

φ̂ + −J (2)
(J ′)3

∂

∂θ1
φ̂ (12)

is inL2(Tν).
The assumptions on the lower bound onJ ′ (when|n1| ≤ vφs/4) and the boundedness

of its higher derivatives byCs (which is straightforward to verify by the assumption onhj )
together now yield the bound

T ≤ C

s2

{
‖φ‖ + ‖ ∂̂

∂θ1
φ‖L2(Tν ) + ‖ ∂̂

2

∂θ2
1

φ‖L2(Tν )

}
which gives the required integrability.

We proved the case (1) of the theorem assuming thatµ has compact support. The case
whenµ has infinite support requires only a comment on the function e−isH0φ being in
the domain onV ω almost everywhere, whens is finite and for fixedφ ∈ D. Once this is
ensured the remaining calculations are the same. To see the stated domain condition we first
note that for each fixeds, the sequence(e−isH0φ)(n) decays faster than any polynomial, (in
|n|). The reason being that, by assumption,φ̂ is smooth and of compact support inTν \ C,
|φ(n)| ≤ |n|−N for anyN > 0, as|n| → ∞. On the other hand for|n−m| > s‖H0‖, we
have

|e−isH0(n,m)| ≤ 1

|n−m|N , for anyN > 0.

These two estimates together imply that

‖(1 + |m|)2ν+2e−isH0φ‖ < ∞, ∀φ ∈ D. (13)



190 M Krishna and K B Sinha

We now consider the events

An = {ω : |qω(n)| > |n|2ν+1}
and they satisfy the condition∑

n∈Zν

Prob(An) < ∞,

by a simple application of Cauchy–Schwarz and the finiteness of the second moment of
µ. Hence, by an application of Borel–Cantelli lemma, only finitely many eventsAn occur
with full measure. Therefore on a set of full measure all but finitely manyqω(n) satisfy,
|qω(n)| ≤ |n|2ν+1. Let the set of full measure be denoted by�1. Then for eachω ∈ �1 we
have a finite setS(ω)such that e−isH0φ is in the domain of the operatorV ω1 = V ω(I−PS(ω)),
wherePS(ω) is the orthogonal projection onto the subspace`2(S(ω)), in view of the eq.
(13). Then the proof that the a.c. spectrum of the operator

Hω
1 = H0 + V ω1 , ∀ω ∈ �1 ∩�0

goes through as before. Since for eachω ∈ �1 ∩ �0, Hω
1 differs fromHω by a finite

rank operator, its absolutely continuous spectrum is unaffected (by trace class theory of
scattering) and the theorem is proved.

The statement on the singular part of the spectrum ofHω, is a direct corollary of the
Theorem 5.2. We note firstly that since{δn, n ∈ Zν} is an orthonormal basis for̀2(Zν) it
is automatically a cyclic family forHω for everyω.

Secondly, by assumption, the subspacesHω,n andHω,m are not mutually orthogonal,
so the conditions of Theorem 5.2 are satisfied. Therefore, since the a.c. spectrum ofHω

contains the interval(E−, E+) almost everyω the result follows.
(2) We now turn to the proof of part 2 of the theorem. The essential case to consider

again as in (1) is whenµ has compact support, the general case goes through as before.
The proof is again similar to the one in (1), but we need to choose a dense setD1 in the
place ofD properly.

The operator1+ is self adjoint oǹ 2(Z+) and its restriction1+1 to `2(Z+ \ {0}) is
unitarily equivalent to multiplication by 2 cos(θ) acting on the image of̀2(Z+ \ {0}) under
the Fourier series map. We now consider the operator

H0+1 = 1+1 +H0

in the place ofH0+ and show the existence of the Wave operators

W+ = slimt→∞eitH
ω+ e−itH0+1

almost everyω.
We take the setD as in eq. (4),D2 as in Lemma 3.1 and define

D+ =
φ : φ =

∑
i,j finite

αijφi ψj , ψj ∈ D, φi ∈ D2, αij ∈ C

 . (14)

ThenD+ is dense in

H0 = {f ∈ `2(Zν+1
+ ) : f (0, n) = 0}.

We then define the minimal velocities forφ ∈ D+ with wφ1 defined as in Lemma 3.1 for
φ1 ∈ D2.
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w1,φ = inf
k
wφk

w2,φ = inf
l

inf
j

inf {|h′
j (θj )| : ϑ ∈ supp̂ψl}

vφ = min{w1,φ, w2,φ}. (15)

Calculating the limits, as in eq. (5)

‖(eitHω+
e−itH0+1 − eirH

ω+
e−irH0+1)φ‖

=
∫ t

r

ds ‖(eisHω+
(V ω − P01+ + −1+P0 + P01+P0)e

−itH0+1φ‖, (16)

whereP0 is the operatorp0 ⊗ I , with p0 being the orthogonal projection onto the one
dimensional subspace spanned by the vectorδ0 in `2(Z+). We note that by the definition
of1+, the termP01+P0 is zero. The estimates proceed as in the proof of (1), after taking
averages over the randomness and takingφ ∈ D+. As in that proof it is sufficient to show
the integrability ins of the functions

‖σAe−isH0+1φ‖, ‖|δ1 〉〈 δ0| ⊗ Ie−isH0+1φ‖, ‖|δ0 〉〈 δ1| ⊗ Ie−isH0+1φ‖,
respectively. By the definition ofD+, anyφ there is a finite sum of terms of the form
φj (θ1)ψj (θ2, . . . , θν+1), so it is enough to show the integrability whenφ is just one such
product, sayφ = φ1ψ1. Therefore we show the integrability ins of the functions

‖σAe−isH0+1φ‖, ‖|δ1 〉〈 δ0| ⊗ Ie−isH0+1φ‖, ‖|δ0 〉〈 δ1| ⊗ Ie−isH0+1φ‖,
for s large we are done. We have

F(|n1| > vφs/4)δi = 0, i = 0, 1 and ‖σAF(|nj | > vφs/4, ∀j)‖ ∈ L1(1,∞),

by the Hypothesis 2.3(2′) on the sequencean. Therefore it is enough to show the integra-
bility of the norms

‖F(|nj | < vφs/4)e
−is10+1φ1ψ1‖, ∀φ1 ∈ D2, ψ1 ∈ D,

for eachj = 1, . . . , ν+1. Whenj = 2, . . . , ν+1, the proof is as in the previous theorem,
while for j = 1, the proof is given in the Lemma 3.1 below.

The statement on the absence of singular part of the spectrum ofHω+ in (E− −2, E+ +
2), is as before a direct corollary of the Theorem 5.2, since the set of vectors{δn, n =
(0, m),m ∈ Zν} is a cyclic family forHω+ , for almost allω andHω,n andHω,m are not
mutually orthogonal for almost allω whenm, n are in{(0, n) : n ∈ Zν}, and the fact that
the a.c. spectrum ofHω contains the interval(−2 + E−, 2 + E+) almost everyω.

The lemma below is as in Jaksic–Last [13](Lemma 3.11) and the enlarging of the space
in the proof is necessary since there are no non-trivial functions in`2(Z+) whose Fourier
series has compact support in (0, 2π ) (all of them being boundary values of functions
analytic in the disk).

Lemma3.1. Consider the operator1+1 on`2(Z+). Then there is a setD2 dense iǹ 2(Z+)
and a numberwφ such that fors ≥ 1,

‖F(|n| < wφs/4)e
−is11+φ‖ ≤ C|s|−2, ∀φ ∈ D2.

with the constant C independent of s.
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Proof. We first consider the unitary mapW from H0 to a subspaceS of {f ∈ `2(Z) :
f (0) = 0}, given by

(Wf )(n) =
{ 1√

2
f (n), n > 0

− 1√
2
f (−n), n < 0.

(17)

Then the range ofW is a closed subspace of`2(Z) and consists of functions

S = {f ∈ `2(Z) : f (n) = −f (−n)}.
Under the Fourier series map this subspace goes to

Ŝ = {φ ∈ L2(T) : φ(θ) = −φ(−θ)}
so that the functions here have mean zero. Then under the map from`2(Z+ \ {0}) to Ŝ ob-
tained by composingW and the Fourier series map, the operator11+ goes to multiplication
by 2 cos(θ). We now choose a set

D1 = {φ ∈ Ŝ : supp(φ) ⊂ T \ {0, π}},
and define the number

wφ = inf {|2 sin(θ)| : θ ∈ supp(φ)},
for eachφ ∈ D1. We denote byD2 all those functions whose images under the composition
of W and the Fourier series lies inD1. The density ofD2 in `2(Z+ \ {0}) is then clear. We
shall simply denote byfφ elements inD2 whose images inD1 is φ. Given aφ ∈ D1 and a
wφ we see that

‖F(|n| ≤ wφs/4)e
−is11+fφ‖2 =

∑
|n|<wφs/4

∣∣∣∣∫
T

dσ(θ)e−inθ−i2s cos(θ)φ(θ)

∣∣∣∣2 ≤ C|s|−4,

by a simple integration by parts, done twice, using the condition that||n| + 2s sin(θ)| >
wφs/4 in the support ofφ.

Proof of Theorem2.8. The proof of this theorem is based on a technique of Aizenman
[1]. We break up the proof into a few lemmas. First we show that the free operatorsH0
andH0+ have resolvent kernels with some summability properties, for energies in their
resolvent set.

Lemma3.2. Consider a function h satisfying the Hypothesis2.1and consider the associated
operatorsH0 or H0+. Then for alls ≥ ν/(3ν + 3),

sup
n∈Zν

∑
n∈Zν

| 〈 δn, (H0 − E)−1δm 〉 |s < C(E),

andC(E) → 0, |E| → ∞. Similarly we also have for alls > ν/(3ν + 3),

sup
n∈Zν+1

+

∑
n∈Zν

| 〈 δn, (H0s − E)−1δm 〉 |s < C(E).

Proof. We will prove the statement forH0, the proof forH0+ is similar. We write the
expression for the resolvent kernel in the Fourier transformed representation (we write
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the Fourier series of aǹ2(Zν) function aŝu(ϑ) = ∑
n∈Zν ein·ϑu(n)), use the Hypothesis

2.1(1), and integrate by parts 3ν + 3 times with respect to the variableθj (recall that
ϑ = (θ1, . . . , θν)), to get the inequalities

〈 δn, (H0 − E)−1δm 〉 =
∫

Tν
dσ(ϑ) ei(m−n)·ϑ (h(ϑ)− E)−1 = (i)3ν+3

((m− n)j )3ν+3

×
∫

Tν
dσ(ϑ) ei(m−n)·ϑ ∂3ν+3

∂θ3ν+3
j

(h(ϑ)− E)−1, (18)

where we have chosen the indexj such that|(m − n)j | ≥ |m − n|/ν and assumed that
m 6= n (whenm = n the quantity is just bounded). Let us set

C0(E) = max

{
sup
ϑ∈Tν

∣∣∣∣ ∂3ν+3

∂θ3ν+3
j

(h(ϑ)− E)−1
∣∣∣∣, |(h(ϑ)− E)−1|

}
.

It is easy to see that since the functionh is of compact range and all its 3ν + 3 partial
derivatives are bounded, by hypothesisC0(E) goes to zero as|E| goes to∞. We then get
the bound for anys > ν/(3ν + 3),

| 〈 δn, (H0 − E)−1δm 〉 | ≤ ν3ν+3

|m− n|3ν+3
C0(E).

Given this estimate we have

sup
n∈Zν

∑
n∈Zν

| 〈 δn, (H0 − E)−1δm 〉 |s ≤ C0(E)
s

 sup
n∈Zν

1 +
∑
n∈Zν

m6=n

∣∣∣∣∣ νs(3ν+3)

|m− n|s(3ν+3)

∣∣∣∣∣



≤ C0(E)
s

1 +
∑

n∈Zν ,m 6=0

∣∣∣∣∣ νs(3ν+3)

|m|s(3ν+3)

∣∣∣∣∣
 ,

≤ C0(E)
sC(s), (19)

whereC(s) is finite since|m|−s(3ν+3|), m 6= 0 is a summable function inZν whens(3ν +
3) > ν.

Proof of Corollary2.9. We prove the theorem only for the caseHω the proof of the other
case is similar.

By the Hypothesis 2.3(2) on the finiteness of the second moment ofµ we see that∫
dµ(x) |x| < ∞, so that we can setτ = 1 in the Lemma 5.1. Since the assumption in the

theorem ensures the boundedness of the density ofµ we can also setq = ∞ in the Lemma
5.1 with thenQ1/1+q = ‖dµ/dx‖∞. Then in the Lemma 5.1 the constantC is given by

C

(
Q,

κ

1 − 2κ
,∞

)
= 1 + 2κQ

1 − κ
.

The condition on the constantκ becomes

κ < 1/3.

Below we choose as satisfying ν
(3ν+3) < s < 1/3, and consider the expression

G(ω, z, n,m) = 〈 δn, (Hω − z)−1δm 〉, G(0, z, n,m) = 〈 δn, (H0 − z)−1δm 〉,
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where we takez = E + iε with ε > 0. Then by the resolvent equation we have

G(ω, z, n,m) = G(0, z, n,m)−
∑
l∈Znu

G(ω, z, n, l)V ω(l)G(0, z, l, m). (20)

We denote by

Gl(ω, z, n,m) = 〈 δn, (Hω − V ω(l)Pl − z)−1δm 〉,
wherePl is the orthogonal projection onto the subspace generated byδl . Then using the
rank one formula

G(ω, z, n, l) =
Gl(ω,z,n,l)
Gl(ω,z,l,l)

V ω(l)+Gl(ω, z, l, l)−1

whose proof is again by resolvent equation, we see that eq. (20) can be rewritten as

G(ω, z, n,m) = G(0, z, n,m)

+
∑
l∈Zν

(
Gl(ω,z,n,l)
Gl(ω,z,l,l)

V ω(l)+Gl(ω, z, l, l)−1

)
V ω(l)G(0, z, l, m).

(21)

Raising both the sides to powers (noting thats < 1 so the inequalities are valid), we get

|G(ω, z, n,m)|s = |G(0, z, n,m)|s

+
∑
l∈Zν

∣∣∣∣∣
(

Gl(ω,z,n,l)
Gl(ω,z,l,l)

V ω(l)+ (Gl(ω, z, l, l)−1

)∣∣∣∣∣
s

|V ω(l)|s |G(0, z, l, m)|s .

(22)

Now observing thatGl is independent of the random variableV ω(l), we see that

E(|G(ω, z, n,m)|s) = |G(0, z, n,m)|s

+
∑
l∈Zν

E

∣∣∣∣∣
(

Gl(ω,z,n,l)
Gl(ω,z,l,l)

V ω(l)+ (Gl(ω, z, l, l)−1

)∣∣∣∣∣
s

|V ω(l)|s
 |G(0, z, l, m)|s . (23)

This then becomes, integrating with respect to the variableqω(l), remembering thatV ω(l) =
alq

ω(l),

E(|G(ω, z, n,m)|s) = |G(0, z, n,m)|s

+
∑
l∈Zν

E

(∣∣∣∣Gl(ω, z, n, l)Gl(ω, z, l, l)

∣∣∣∣s)

×
∫ (

dµ(x)
|x|s

|x + a−1
l Gl(ω, z, l, l)−1|s

)
|G(0, z, l, m)|s

(24)

which when estimated using the Lemma 5.1 yields
E(|G(ω, z, n,m)|s) ≤ |G(0, z, n,m)|s

+
∑
l∈Zν

KsE

(∣∣∣∣G(ω, z, n, l)Gl(ω, z, l, l)

∣∣∣∣s)

×
∫ (

dµ(x)
1

|x + a−1
l Gl(ω, z, l, l)−1|s

)
|G(0, z, l, m)|s ,

(25)
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whereKs is the constant appearing in Lemma 5.1 withκ set equal tos. We takeK =
(supn |an|s)Ks , and rewrite the above equation to obtain

E(|G(ω, z, n,m)|s) = |G(0, z, n,m)|s +
∑
l∈Zν

KE(|(G(ω, z, n, l)|s |G(0, z, l, m)|s . (26)

We now sum both the sides overm, set

I =
∑
m∈Zν

E(|G(ω, z, n,m)|s)

and obtain the inequality

I ≤
∑
m∈Zν

|G(0, z, n,m)|s + sup
l∈Zν

∑
m∈Zν

KI |G(0, z, l, m)|s .

Therefore when there is an interval (a, b) in which

K sup
l∈Zν

∑
m∈Znu

|G(0, z, l, m)|s < 1, E ∈ (a, b), (27)

we obtain that∫ b

a

dE
∑
m∈Zν

E(|G(ω,E + i0, n,m)|s) < ∞,

by an application of Fatou’s lemma implying that for almost allE ∈ (a, b) and almost all
ω, we have the finiteness of∑

m∈Zν

|G(ω,E + i0, n,m)|2 < ∞,

satisfying the Simon–Wolff [19] criterion. This shows that (the proof follows as in Theo-
rems II.5, II.6 [18]) the measures

νωn (·) = 〈 δn, EHω(·)δn 〉
are pure point in (a, b) almost everyω. This happens for alln, hence the total spectral
measure ofHω itself is pure point in (a, b) for almost allω.

There are two different ways to fix the critical energyE(µ) now. Firstly ifK is large,
then in view of the Lemma 3.2 (by whichC0(E) → 0, |E| → ∞) and the fact thatK is
finite (by Lemma 5.1)

K sup
l∈Zν

∑
m∈Znu

|G(0, z, l, m)|s ≤ KC0(E)
sC(s) < 1, |E| → ∞. (28)

Therefore there is a large enoughE(µ) such that for all intervals(a, b) in (−∞,−E(µ))∪
(E(µ),∞), the condition in eq. (25) is satisfied.

On the other hand if the momentB = ∫ |x| dµ(x) is very small, then we can choose
E(µ) by the condition,

KC0(E)Cs < 1,

even whenC0(E) > 1, since it is finite forE in the resolvent set ofH0 by Lemma 3.2.
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4. Examples

In this section we present some examples of the operatorsH0 considered in the theorems.
We only give the functionsh stated in the Hypothesis 2.1.

• Examples of operatorsH0

1. h(ϑ) = ∑ν
i=1 2 cos(θi), corresponds to the usual discrete Schrödinger operator and

it is obvious that the Hypothesis 2.1 are satisfied. The Jaksic–Last condition 5.2 on
mutual non-orthogonality of the subspaces generated byH0 andδn for differentn in
Zν are also satisfied, by an elementary calculation taking powers ofH0 depending
upon a pair of vectorsδn andδm, since the operatorH0 is given byT + T −1, with T
being the bilateral shift oǹ2(Z).

2. h(ϑ) = ∑ν
i=1 hi(θi), hi(θi) = ∑N(i)

k=1 cos(kθi), N(i) < ∞. Clearly eachhi is a
smooth function inRν and eachhi and all its derivatives are 2π periodic. Hence the
Hypothesis 2.3 is satisfied. Further each ofhi is a trigonometric polynomial, and its
derivative is also a trigonometric polynomial and hence has only finitely many zeros
on the circle.

The condition in Jaksic–Last condition Theorem 5.2 on mutual non-orthogonality
is again elementary to verify in this case.

3. Consider the functions

hi(θi) = θ3ν+4
i (2π − θi)

3ν+4, 0 ≤ θi ≤ 2π, i = 1, . . . , ν

and takeh = ∑ν
i=1 hi(θ) extended to the whole ofRν periodically. Clearly these are

in C3ν+3(Tν), by construction.

• Examples of pairs(an, µ)

We give next some examples of sequencesan satisfying the Hypothesis 2.2 such that

supp(µ) = a-supp(µ).

We considerν ≥ 2 and the sequencean = (1 + |n1|)α, α < −1. Then we have that

kZν ∩ {(0, n) : n ∈ Zν−1} = {(0, n) : n ∈ kZν−1}

anda−1
(0,n)(a, b) = (a, b) for any interval (a, b) and anyn ∈ Zν−1. Therefore for any

positive integer k, we have∑
m∈kZν

µ(a−1
m (a, b)) ≥

∑
m∈kZν−1

µ((a, b)) = ∞

wheneverµ((a, b)) > 0.

• Examples of measuresµ with small moment

We next give an example of an absolutely continuous measure of compact support such
that the Aizenman condition (in Lemma 5.1 is satisfied. We use the notation used in that
lemma for the example.

We consider numbers 0< ε, δ < 1,R and letµ be given by
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dµ(x)/dx =


1−ε
δ
, 0 ≤ x ≤ δ,

ε
R−δ , δ < x ≤ R,

0, otherwise.

(29)

Thenµ is an absolutely continuous probability measure and

Q ≤ 1

δ
+ 1

R − δ
.

We takeτ = 1, then the momentB is bounded by

B ≤ (1 − ε)δ + (R + δ)ε/2.

Now if we fix R large and chooseε = 1/R3 andδ = 1/R2, we obtain an estimate

Bκ ≤ 2κ

R2κ
and BκQ1−2κ ≤ 8R2−6κ .

Takingκ = s in the lemma and noting thats < 1/3 implies 2− 6s < 0 so that both the
terms above go to zero asR goes to∞. We see that by takingµ with large support but
small moment, we can make the constantK in the Lemma 5.1 as small as we want. This
in particular means that in the Theorem 2.8. given a energyE0 outside the spectrum of
H0 we can find a measureµ which is absolutely continuous of small moment such that
K is smaller thanC0(E0)

sCs in the proof of Theorem 2.8. and henceE(µ) < |E0|. We
can use such measures to give examples of operators with compact spectrum with both
a.c. spectrum and pure point spectrum present but in disjoint regions.

• Example when Jaksic–Last condition is violated

We finally give examples where Jaksic–Last condition is violated and yet the conclusion
of their theorem is valid.

Considerν = 1, for simplicity, and leth(θ) = 2 cos(2θ). Then the associatedH0 has
purely a.c. spectrum in [-2, 2] and we see that the operatorH0 = T 2 + T −2 if T is the
bilateral shift acting oǹ2(Z). Then if we consider the operatorsHω = H0 + V ω, and
the cyclic subspacesHω,1,Hω,2 generated by theHω and the vectorsδ1, δ2 respectively,
such an operator satisfies

Hω,1 ⊂ `2({1} + 2Z), Hω,2 ⊂ `2({1 + 1} + 2Z), almost everyω.

We then have

Hω,1 ⊂ `2({2n+ 1, n ∈ Z}), Hω,2 ⊂ `2(2Z), almost everyω.

The subspaces̀2({n : n odd}) and`2(2Z) are generated by the families{δk, k odd} and
{δk, k even} respectively. (We could have taken any odd integerk in the place of 1 to do
the above)

These two are invariant subspaces ofHω which are mutually orthogonal, a.e.ω.
Therefore the Jaksic–Last theorem is not directly valid. However, by considering the
restrictions ofHω to these two subspaces, one can go through their proof in these
subspaces to again obtain the purity of a.c. spectrum for such operators when they exist.

We consider two examples to illustrate the point, for which we letqω(n) denote a
collection of i.i.d. random variables with an absolutely continuous distributionµ of
compact support inR, its support containing 0.
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1. If V ω(n) = anq
ω(n), with 0< an < (1 + |n|)−α, α > 0, we see that there is pure

a.c. spectrum in [–2, 2], a.e.ω by applying trace class theory of scattering.

2. On the other hand if, with 0< an < (1 + |n|)−α, α > 1,

V ω(n) =
{
anq

ω(n), n odd
qω(n), n even,

then there is dense pure point spectrum embedded in the a.c. spectrum in [–2, 2].

We can give similar, but non trivial, examples in higher dimensions but we leave it to the
reader.

5. Appendix

In this appendix we collect two theorems we use in this paper. One is a lemma of Aizenman
[1] and another a theorem of Jaksic–Last [14].

The first lemma and its proof are those of Aizenman [1](Lemma A.1) which reproduce
below (with some modifications in the form we need), with a slight change in notation (we
in particular call the numbers in Aizenman’s lemma asκ),

Lemma5.1 (Aizenman). Let µ be an absolutely continuous probability measure whose
densityf satisfies

∫
R

dx|f (x)|1+q = Q < ∞ for someq > 0. Let0< τ ≤ 1 and suppose
B ≡ ∫

R
dµ(x) |x|τ < ∞. Then for any

κ <

[
1 + 2

τ
+ 1

q

]−1

we have ∫
R

dµ(x)
|x|κ

|x − α|κ < Kκ

∫
R

dµ(x)
1

|x − α|κ , for all α ∈ C,

withKκ given by

Kκ = B
κ
τ (21+2κ + 4)

[
B1− κ

τ + B
κ
τ C(Q,

κ

1 − 2κ
τ

, q)
τ−2κ
τ

]
< ∞.

Remark. We see from the explicit form of the constantKκ that the momentB can be
made sufficiently small by the choice ofµ even when its support is large. This will ensure
that in some models of random operators, the region where the Simon–Wolff criterion is
valid extends to the region in the spectrum. This is the reason for our writingKκ in this
form.

Proof. The strategy employed in proving the lemma is to consider the ratio∫
R

dµ(x) |x|κ
|x−α|κ∫

R
dµ(x) 1

|x−α|κ

and obtain upper bounds for the numerator and lower bounds for the denominator.
Note first thatB finite andκ < τ implies that|x − α|κ is integrable even ifα is purely

real and we have∫ b

a

f (x)dx ≤ Q
1

1+q |b − a| q
1+q (30)
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by Hölder inequality. Hence∫
dµ(x)

1

|x − α|κ ≤ 1 +
∫ ∞

1
dt µ({x :

1

|x − α|κ ≥ t})

≤ 1 + κ(2qQ)
1

1+q
q

1+q − κ

≡ C(Q, κ, q), (31)

where the integral is estimated using the estimate in eq. (30).

Consider the region|α| > (2B)
1
τ : We then estimate for fixedα the contributions from the

regions|x| ≤ |α|/2 and|x| > |α|/2 to obtain∫
dµ(x)

|x|κ
|x − α|κ ≤ 2κ

|α|κ
(∫

dµ(x) |x|κ +
∫

dµ(x)
|x|2κ

|x − α|κ
)

≤ 2κ

|α|κ (B + B
2κ
τ C

(
Q,

κ

1 − 2κ/τ
, q)

τ−2κ
τ

)
, (32)

with κ chosen so thatκ/(1 − 2κ/τ) < q/(1 + q). (Here we have explicitly calculated
thep occurring in the lemma of Aizenman in terms ofκ andτ ). For a fixedτ andq this
condition is satisfied wheneverκ satisfies the inequality stated in the lemma.

The lower bounds on
∫

dµ(x) 1/|x−α|κ is obtained first by noting thatB < ∞ implies

µ({x : |x|τ > (2B)}) ≤ 1

2
.

Since|α| > (2B)
1
τ , we have the trivial estimate∫

dµ(x)
1

|x − α|κ ≥
∫

|x|>(2B) 1
τ

dµ(x)
1

|x − α|κ +
∫

|x|≤(2B) 1
τ

dµ(x)
1

|x − α|κ

≥
∫

|x|≤(2B) 1
τ

dµ(x)
1

|x − α|κ

≥ 1

2(|α| + (2B)
1
τ )κ

. (33)

Putting the inequalities in (32) and (33) together we obtain, (remembering that|α| >
(2B)

1
τ ), ∫

R
dµ(x) |x|κ

|x−α|κ∫
R

dµ(x) 1
|x−α|κ

≤ 21+2κB
κ
τ

[
B1− κ

τ + B
κ
τ C(Q,

κ

1 − 2κ
τ

, q)
τ−2κ
τ

]
. (34)

We now consider the region|α| < (2B)
1
τ : Estimating as in eq. (32) but now splitting

the region as|x| ≤ (2B)
1
τ and |x| > (2B)

1
τ , we obtain the analogue of the estimate in

eq. (32), in this region ofα as∫
dµ(x)

|x|κ
|x − α|κ ≤ 1

(2B)
1
τ

(∫
dµ(x) |x|κ +

∫
dµ(x)

|x|2κ
|x − α|κ

)

≤ 1

(2B)
1
τ

(
B + B

2κ
τ C

(
Q,

κ

1 − 2κ/τ
, q

) τ−2κ
τ

)
. (35)
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Similarly the estimate for the denominator term is done as in eq. (33),∫
dµ(x)

1

|x − α|κ ≥
∫

|x|>(2B) 1
τ

dµ(x)
1

|x − α|κ +
∫

|x|≤(2B) 1
τ

dµ(x)
1

|x − α|κ

≥
∫

|x|≤(2B) 1
τ

dµ(x)
1

|x − α|κ

≥ 1

2((2B)
1
τ + (2B)

1
τ )

= 1

4(2B)
1
τ

. (36)

Using the above two inequalities we obtain the estimate,∫
R

dµ(x) |x|κ
|x−α|κ∫

R
dµ(x) 1

|x−α|κ
≤ 4

[
B1− κ

τ + B
κ
τ C(Q,

κ

1 − 2κ
τ

, q)
τ−2κ
τ

]
, (37)

when|α| ≤ (2B)
1
τ . Using the inequalities (34) and (36) obtained for these two regions of

values ofα we finally get∫
R

dµ(x) |x|κ
|x−α|κ∫

R
dµ(x) 1

|x−α|κ
≤ B

κ
τ (21+2κ + 4)

[
B1− κ

τ + B
κ
τ C(Q,

κ

1 − 2κ
τ

, q)
τ−2κ
τ

]
, (38)

for anyα ∈ R.
We next state a theorem (Corollary 1.1.3) of Jaksic–Last [14] without proof, its proof is

as in Corollary 1.1.3 of Jaksic–Last [14]. We state it in the form we use in this paper.

Theorem 5.2[Jaksic–Last]. SupposeH is a separable Hilbert space and A a bounded
self adjoint operator. Suppose{φn} are normalized vectors and letPn denote the orthog-
onal projection on to the one dimensional subspace generated by eachφn. Let qω(n) be
independent random variables with absolutely continuous distributionsµn. Consider

Aω = A+
∑
n

qω(n)Pn, almost everyω.

Suppose that the following conditions are valid

1. The family{φn} is a cyclic family forAω a.e.ω.

2. LetHω,n denote the cyclic subspace generated byAω andφn. Then the cyclic subspaces
Hω,n andHω,m, are not orthogonal.

Then whenever there is an interval(a, b) in the absolutely continuous spectrum ofAω =
A+∑

n q
ω(n)Pn, almost allω, we have

σs(A
ω) ∩ (a, b) = ∅, almost everyω.
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