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Abstract. - We study the transient response of a colloidal bead which is released from different
heights and allowed to relax in the potential well of an optical trap. Depending on the initial
potential energy, the system’s time evolution shows dramatically different behaviors. Starting
from the short-time reversible to long-time irreversible transition, a stationary reversible state
with zero net dissipation can be achieved as the release point energy is decreased. If the system
starts with even lower energy, it progressively extracts useful work from thermal noise and exhibits
an anomalous irreversibility. In addition, we have verified the Transient Fluctuation Theorem and
the Integrated Transient Fluctuation Theorem even for the non-ergodic descriptions of our system.

Since the origin of the second law of thermodynamics
which defined a direction of time, a question is often asked:
how the irreversible property emerges from the reversible
dynamics at microscopic scales [1]. A detailed examina-
tion of the problem reveals that the mystery lies in its
spontaneous energy dispersal as dissipation. It makes us
curious about the time evolution of small stochastic sys-
tems where the thermal fluctuations become comparable
to the dissipative loss. It is only in the last decade that
this interesting issue has been addressed in terms of the
Fluctuation Theorems [2–5]. Evans and Searles Fluctua-
tion Theorem (FT) [2] gave a quantitative description of
irreversibility, providing an analytical expression for the
probability of the system trajectories that are associated
with a negative dissipative flux. As expected, those ‘anti-
trajectories’ become visible only for short time scales in
microscopic systems. Laboratory experiments with bio-
molecules manipulated mechanically [6,7] or colloidal par-
ticles in optical trap [8–14] have been reported subse-
quently corroborating the theorem(s).

In this Letter we address this important issue of re-
versibility with a closer focus on its main controlling fac-
tor, the initial potential energy of the system. We show
experimentally how a system’s initial energy in compari-
son to the background thermal noise, entirely dictates its
time evolution. Starting with very low energy, the sys-
tem can even continue to convert the heat fluctuations
into useful work as it evolves in time. In particular, we

have studied the transient response and the reversible be-
havior of a colloidal bead in a harmonic potential well -
created by a very weak optical trap. As the bead is re-
leased from different points in the potential well landscape
with varying initial energy and allowed to equilibrate, the
time evolution and the reversibility of the system show a
dramatic change in their behavior. If particle starts with
a potential energy higher than the average thermal energy
of the bath, its mean motion is downhill but the underly-
ing reversibility of the dynamics generates occasional up-
hill motions. However, with the release point going down
the potential well, the reversibility i.e. the probability
of performing along the backward direction increases ac-
companied by a diminished dissipation. At some point,
it becomes completely reversible when the forward and
backward motions occur with equal probability. If the
bead is released from a point which is further down the
potential well, the heat flux starts flowing along the op-
posite direction prevailing the dissipative loss and pushes
the system to a higher energy state making the system
irreversible again, in the converse direction. These ex-
ceptional energy-gaining motions are ultimately a conse-
quence of the micro-reversibility of the system. The results
presented in this Letter demonstrate experimentally the
competition between micro-reversibility and irreversible
dissipation in governing the long-time reversibility of a
system.

In our study, we have evaluated the dissipation function,
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Ωt, as a measure of reversibility [15]. Let P (r0, rt) be the
probability of finding a set of system trajectories {r0, rt}
(forward trajectories) evolving spontaneously from r0 to
rt over a time t, dissipating positive energy to the sur-
rounding. P (rt, r0) represents the probability of occur-
rence of the corresponding backward trajectories or ‘anti-
trajectories’ {rt, r0} of the same time duration t, where
the thermal noise does useful work and the system gains
energy. The measure of reversibility, Ωt, is defined as
Ωt(r0, rt) = ln [P (r0, rt)/P (rt, r0)], where Ωt = 0 corre-
sponds to perfect reversibility. For a thermostatted dis-
sipative system which is allowed to relax from an initial
equilibrium state, the distribution and the time evolution
of the dissipation function, Ωt, follows two forms of FTs
[9, 15] - the Transient Fluctuation Theorem (TFT):

P (Ωt = A)

P (Ωt = −A)
= exp(A) (1)

and the integrated form, namely the Integrated Transient
Fluctuation Theorem (ITFT):

P (Ωt < 0)

P (Ωt > 0)
= 〈exp(−Ωt)〉Ωt>0

(2)

In this work, we show the distribution and the time evo-
lution of the dissipation function, Ωt, as a quantitative
description of the transient response of the released bead.
Until the release at t = 0, the bead is held in equilibrium
(by an additional very strong optical trap) at the release
point. Depending on the release point energy, the time
responses of Ωt show three distinct possible behaviors.
Either it becomes more positive with time as expected,
or anomalously decays down to the negative side for a
very low energy release thereby undergoing a reversible-
to-irreversible transition in both the cases although along
the opposite directions. In an intermediate case, the sys-
tem continues to remain reversible.
Using a dual optical trap setup, a silica bead has been

released from a set of points ai(i = 1 : 4), with correspond-
ing potential energies Ui(i = 1 : 4), in a harmonic poten-
tial well landscape (Fig. 1b). An infrared (1064 nm) laser
beam has been split into two polarization components by
using a λ/2 plate and a polarizing beam splitter to create
two independently controllable traps at the focal plane of
a 100×, 1.4NA objective fitted to an inverted microscope.
The ratio of the two polarizations was set to an extreme
value to make one of them a very weak trap (stiffness:
k = 0.1 pN/µm, standard deviation (SD) = σ). A very
dilute aqueous suspension of 1.61 µm diameter (d) silica
beads, loaded in a sample cell with 125 µm spacer, was
used for all of the experiments. A high speed CCD camera
attached to the microscope captured the bead’s dynamics
in the trap and then a Matlab based particle tracking pro-
gram [16] was utilized to track the center of the bead from
the recorded image sequences. The normalized position
distribution of a trapped bead, (Fig. 1a) provides the stiff-
ness of the trap (along x) as k = kBT/

〈

x2
〉

= kBT/σ
2.

Fig. 1: (Color online) (a) The normalized position distribution
of a trapped bead for both the traps are shown for compari-
son. (b) The potential well created by the weak optical trap.
The release points ai(i = 1 : 4) and the corresponding en-
ergies Ui(i = 1 : 4) are shown on the potential well graph.
The potential well is constructed from the normalized posi-
tion distribution of a trapped bead (shown in (a)), following
U(x) = −ln[P (x)] and U(0) = 0.

To release a colloidal bead from different points, the sec-
ond trap (very strong; stiffness: ks = 41.42 pN/µm, SD:
σs = σ/20), movable along the x axis, was utilized. The
values of the relaxation time of the bead in the traps, given
by τ = 3πηd/k where η is the viscosity of water, are 0.15s
and 0.37ms for the weak and the strong trap respectively.
Both the traps were placed precisely at the same Z plane,
well above (∼ 20 µm) the bottom plate. The strong trap
was centered at the release point (x = a, y = 0) (Fig.
1a) to hold the particle in equilibrium until the beam is
chopped to release the bead. As the bead was released
at t = 0, from x = ai(i = 1 : 4) (potential energy Ui),
its transient trajectories were recorded at 500 frames per
second. To re-initiate the trajectories automatically with
the same initial phase point, the strong trap-beam was
chopped at 3 Hz. Only those trajectories were considered
as valid trajectories where the distance between the trap
centers (i.e. the value of a) was not changed by more than
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10% from the set value because of slight drift of the laser
beams during the experiment. Over 3000 such trajectories
were captured for each of the release points.
The equipartition method which has been used in this

study to calculate the trap stiffness gives accurate values
only when the viscous relaxation time of the bead in the
trap is much longer than the exposure time (0.5 ms for
our experiments) of the camera [17]. In case of the weak
trap potential this condition is well satisfied and there is
no motion blur to affect the value of k. Though there
would be a small correction factor (∼ 7%) for ks because
of the motion blur, it is not a matter of concern as all our
results are independent of the accurate evaluation of the
strong trap stiffness.

Fig. 2: (Color online) A movable strong trap can perform a
scanning motion along the X axis and release the particle from
each and every x value with equal probability. This protocol is
statistically equivalent to the protocol where the initial (t < 0)
potential is flat which is changed to the weak harmonic poten-
tial at t = 0. In both the cases the particle could be released
from any initial x with equal probability.

It would be important to mention that this experiment,
for theoretical considerations, can be treated as a practical
realization of the scenario where an absolutely flat poten-
tial (a harmonic potential well with stiffness k0 → 0) at
t < 0 is abruptly changed to a harmonic potential well
with stiffness k at t = 0, as depicted in Fig. 2. In the flat
potential the particle resides at any x with equal probabil-
ity (at t < 0) and as it is changed to the weak trap poten-
tial at t = 0, the starting point of the particle’s trajectory
(r0) takes any x value with equal likeliness. However, our
aim in this experimental study is to investigate the time
evolution of only those trajectories that start from some
specific initial points, x = ai (i = 1 : 4). Toward a practi-
cal realization of this protocol, the flat potential can effec-
tively be created with a movable strong trap. One way of
doing it would be making the strong trap scan along the
X-axis at a very high speed so that the colloidal bead feels
an averaged out flat potential. It can also be achieved in a
more organized way, as has been done in our experiment.
A strong trap (stiffness ks) can be placed at a point, e.g.
x1 as shown in Fig. 2, holding the particle (at t < 0) until

it is released to the weak potential (stiffness k) at t = 0 to
construct a system trajectory with r0 = x1. The strong
trap is then moved to a neighboring point (x1− δx) at the
left side in a repeat experiment (using a nano-tilt mirror
mount, a δx of as small as 5 nm can be achieved in our
setup) to release the particle from r0 = (x1 − δx). This
process can be repeated a large number of times so that
the strong trap scans through the X-axis several thousand
times. In this way system trajectories with r0 having all
possible x values with equal probabilities and their cor-
responding rt(t) can be acquired. Since the focus of our
study is on the system trajectories with the starting points
(r0) being {x = a, y = 0} (a = ai; i = 1 : 4), we have
discussed here only those cases when the strong trap is
positioned at the four respective points.
The time-dependent probability of a colloidal bead

trapped in a harmonic potential is known analytically by
solving the Langevin equation [18, 19]. Following this, we
can construct the probability distribution P (r0, rt) and in
turn the dissipation function, Ωt, in terms of our measured
variables. Knowing a bead’s initial position r0 in an op-
tical trap of stiffness k, the probability of finding it at rt
after time t can be given by [18, 19],

P (rt; r0, k, t) =

(

k

2πkBT [1− exp(−2t/τ)]

)

×exp

(

−
k[rt − r0exp(−t/τ)]2

2kBT [1− exp(−2t/τ)]

)

, (3)

where τ = 3πηd/k is the characteristic relaxation time in
the trap potential, η being the viscosity of the medium.
Just before the release, the colloidal bead resides in the
strong trap (centered at x = a) in equilibrium, and, there-
fore, the position distribution of the bead in the strong
trap can be given by the time-independent Boltzmann
distribution, PB(x, ks) [15, 19]. As the stiffness value of
the strong trap is very large compared to the other pa-
rameters, the distribution can practically be treated as
a delta function [20] at x = a. Therefore, P (r0, rt)
becomes equal to P (xt; a, k, t). Similarly, the probabil-
ity of the corresponding backward trajectories would be
P (rt, r0) = P (a;xt, k, t). With these two probabilities in
hand, the analytical form for the dissipation function be-
comes:

Ωt(a,xt) =
k

2kBT

(

a2 − x2

t

)

(4)

Though the explicit time dependence, as seen in Eq. 3,
gets canceled in this expression, Ωt has a strong time de-
pendence through xt, which is the instantaneous position
of the particle at time t. It would be pertinent to note that
the dissipation function as defined above, is actually the
energy dissipated; in general the heat lost (−∆Q) over a
trajectory (initiated at x0 = a) of time duration t divided
by the reservoir temperature.
The dissipation function, Ωt, for this study does not

depend on the strong trap stiffness (ks) unlike the cases
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Fig. 3: (Color online) (a) The distributions of the dissipation function, P (Ωt), are shown for all the release points ai(i = 1 : 4)
at four subsequent time slices. The horizontal and vertical scales are same for all the four panels in a column, as indicated at
the bottom of each column. (b) The ratios of number of backward trajectories (NΩt<0) to the number of forward trajectories
(NΩt>0) have been plotted with t for different release points. The dashed horizontal line indicates ideal reversibility (c) The
time evolutions of the ensemble averages of Ωt are plotted. The negative side is shown in a magnified scale (at the right side)
for better clarity. The legends are same as those in (b). Here too, the horizontal dashed line corresponds to ideal reversible
behavior.

of some other seemingly similar experiments [9, 14]. Our
goal here is to investigate the transient trajectories of a
colloidal particle subjected to the restoring force of a weak
optical trap (stiffness k). The weak optical trap sets up
a potential energy landscape that perturbs the trajecto-
ries of an otherwise free particle. The system’s response
to that perturbation, more specifically the reversibility in
its time evolution has been quantified through the dissi-
pation function here. The expression for Ωt , as defined in
Eq. 4, is complete and unambiguous for this purpose. The
strong trap is utilized only to re-initiate the particle tra-
jectories from a predefined specific point (x0 = a at t = 0)
in the weak trap potential landscape. This mechanism en-
ables us to record a large number of system trajectories
characterized by the definite initial potential energies (U ,
corresponding to each a) and to study their time evolu-
tions. In contrast, the dissipation functions as defined in
the other reported experiments [9,14] describe the system
response to an external perturbation that is created by a
small discontinuous change of the trap stiffness and there-
fore comprise of both the trap stiffnesses, before and after
the change.

We have analyzed the dissipation function, Ωt, for four
subsets of the system trajectories characterized by their
starting points (x0 = ai; i = 1 : 4), which uniquely define
the initial potential energies. The distributions of Ωt for
these four groups of trajectories are shown in Fig. 3a. Ir-
respective of the release points, the distributions at very

short time (2 ms) are symmetric about zero indicating the
reversible nature of the system at this time scale. As time
increases, the distributions no longer remain symmetric.
For release points a1 and a2, not only the peaks but the
whole distributions shift to the positive side with time.
In these cases, where the system starts with a higher en-
ergy, the time evolutions are overwhelmingly dominated
by the trajectories along which the system dissipates its
energy and eventually goes to a lower energy state - sliding
down the potential well irreversibly. For the trajectories
that originate at a3, the distribution of the dissipation
function does not evolve much after a very short transient
time (20 ms). Though the distribution at a later time is
peaked at a small positive value, a compensating long tail
in the negative side nearly equals the probability of Ωt be-
ing positive or negative. The system, in this case, starts
with a low energy state and performs reversibly as the for-
ward and backward trajectories become equally probable.
When the bead is released from a4, with potential energy
very close to its minimum value, the peak at the positive
side decreases with time and the negative side becomes
increasingly populated with the tail growing longer. Here
the backward trajectories prevail as the system continues
to convert the heat fluctuations into useful work progres-
sively and thereby climbs to higher energy states - making
the time evolution irreversible again, along the opposite
direction.

For a better quantitative description of the system’s
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time evolution, the two important quantities - the relative
probability of observing backward trajectories (Ωt < 0)
in comparison to the forward trajectories (Ωt > 0), given
by the ratio: NΩt<0/NΩt>0 (Fig. 3b), and the ensemble
averages of the dissipation function, 〈Ωt〉 (Fig. 3c), are
plotted against time, t. While the relative probability is
a direct indication of the system’s reversibility, the other
quantity, 〈Ωt〉, stands for the average dissipative loss of
the system. As the system starts with varying potential
energies, the time evolution of these two quantities change
dramatically. For higher initial energies (a1 and a2), the
system behaves reversibly only for a very short time and
then turns completely irreversible with a large dissipative
loss. With decreasing initial energy (a1 to a3) the sys-
tem becomes increasingly reversible as the heat loss due to
dissipation diminishes. Finally, starting from a3, the sys-
tem exhibits perfect reversibility, accompanied by a very
small intake of heat from the bath. If the system’s initial
energy goes even lower (at a4), the backward trajectories
start dominating with time making the system irreversible
again. In this case, the system extracts useful work from
the thermal fluctuations and performs increasingly along
the reverse direction.
It is noteworthy that the system’s time evolution un-

dergoes an interesting transition at a3. When the system
starts from a point which is above a3, it evolves predom-
inantly along the forward trajectories which signify min-
imization of energy, along with spontaneous production
of entropy. As the starting point goes below a3, the sys-
tem can no longer minimize its energy simultaneously with
generation of entropy. Therefore, the system performs in-
creasingly along the backward trajectories to maximize
the entropy at the cost of gaining potential energy. This
demonstrates a very fundamental and intriguing fact of
statistical mechanics. Starting from an initial phase point,
an isolated system always tries to expand its probability
distribution by exploring the phase space accessible to it
and thereby producing entropy. Usually, in this process,
the system goes to lower energy phase points and dissipate
energy to the surroundings. However, if a system starts
from near the bottom of a potential landscape, most of
the accessible phase points are at higher energies and the
system explores those higher energy phase points to maxi-
mize its entropy. In this process of spreading its probabil-
ity density, the system extracts energy from the heat bath
and performs positive work on an external system to go
to the higher energy states.
It is also worth mentioning that here the long-time-

average of Ωt(x0 = ai; i = 1 : 4) does not comply with
the average entropy production, as we have considered
only the specific subsets of system trajectories to evaluate
Ωt. If all the system trajectories starting from all possible
phase points are taken into account, the ensemble average,
< Ωt >, would always be positive, in accordance with the
average entropy production.
Even though the dissipation functions Ωt(x0 = ai; i =

1 : 4) evaluated in our study do not comprise all the sys-

Fig. 4: (Color online) (a) Logarithm of the ratio of the proba-
bility to find trajectories with Ωt = A to those with Ωt = −A

has been plotted against the value Ωt = A, for a few different
cases. The end points deviates a bit from the prediction of
TFT due to the poor statistics at the tail of the distribution.
(b) The LHS of the ITFT (same as Fig. 3b) has been super-
imposed on the RHS of the ITFT, 〈exp(−Ωt)〉Ωt>0

, for release
points a1 and a3.

tem trajectories, rater contain only a specific small subset
(defined by x0 = a) at a time, and thereby fail to satisfy
the requirement of being ergodic description of the system,
nonetheless they satisfy the TFT and the ITFT separately
for the subsets. To verify the TFT (Eq. 1), the logarithm
of the ratio of the number of trajectories with a particular
value of Ωt, say A, to those with the value of −A, has been
plotted with the Ωt value, i.e. A. Wherever the distribu-
tion of Ωt has a wide spread about zero, the slope of the
straight line fit to the plot takes a value within 1 ± 0.06,
showing very good agreement with the TFT prediction.
Some of those plots have been shown in Fig. 4a, super-
imposing with the TFT dictated straight line of slope 1.
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For the cases where the distributions are narrow or signif-
icantly skewed, the statistics are not sufficient to compare
and comment conclusively on the agreement or disagree-
ment of the experimental results with the TFT prediction.
To verify the integrated form, the ITFT (Eq. 2), the LHS
(same as Fig. 3b) has been compared with the RHS for
the release points a1 and a3 in Fig. 4b and as displayed,
they match excellently. The verification of the TFT and
the ITFT for these non-ergodic system descriptions is in-
triguing as by definition the theorems demand ergodicity
i.e. the dissipation function needs to be calculated over
all the possible system trajectories in order to satisfy the
theorems.

In summary, we have investigated the transient response
of a colloidal bead that is released from different energies
in the potential well landscape created by an optical trap
and is allowed to relax. In addition to the verification
of TFT and ITFT even for non-ergodic descriptions of
this system, we have shown that the reversibility of the
bead’s response is entirely determined by its initial poten-
tial energy. At short time, the system behaves reversibly
irrespective of the release points. As time increases, the
system undergoes an expected reversible-irreversible tran-
sition for a higher energy release. However, when released
from a specific lower energy, the system remains perfectly
reversible for exceptionally long time, with almost zero net
dissipative flux. For a release with even lower initial free
energy which is very close to its lowest value, the thermal
fluctuations start providing useful work thereby forcing
the system to perform increasingly along the reverse di-
rection, which leads to an anomalistic irreversible state as
the system evolves in time.
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