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Abstract: A time dependent coupled cluster approach to the calculation of Resonance 
Raman excitation profiles on general anharmonic surfaces is presented.  The vibrational 
wave functions on the ground electronic surface are obtained by the coupled cluster method 
(CCM).  It is shown that the propagation of the vibrational ground state on the upper surface 
is equivalent to propagation of the vacuum state by an effective hamiltonian generated by 
the similarity transformation of the vibrational hamiltonian of that surface by the CCM 
wave operator of the lower surface up to a normalization constant. This time propagation is 
carried out by the time-dependent coupled cluster method in a time dependent frame.  
Numerical studies are presented to asses the validity of the approach. 
Keywords: Time dependent coupled cluster method; resonance Raman excitation profiles. 

 

Introduction 
 

In this paper, we develop a coupled cluster method (CCM) based approach to the calculation of 

resonance Raman excitation profiles for polyatomic molecues with general anharmonic potential 

surfaces. Calculations on molecules with several degrees of freedom, with arbitrary displacements, 

Duischinsky rotation and higher order terms in the potential become possible by this method. 

The standard method for the calculation of Raman excitation profiles invokes the Kramers-

Heisenberg-Dirac sum over states expression for the polarizability tensor [1]. Such summation-over-

states form becomes rapidly prohibitive with increasing size of the system because the basis set 

required to converge the eigenfunctions increases exponentially with the number of degrees of 

freedom in the system. Consequently the vibrational eigenstates are extremely difficult to calculate 
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when anharmonicities are present. Even in the harmonic limit, the Franck-Condon overlaps have to be 

calculated, a formidable task in itself when large displacements and Duchinsky rotations are present in 

the excited surface. These difficulties have prompted several authors to develop alternative 

formulations to the calculation of the polarizability tensor [2-8]. All these approaches are based on the 

time-dependent picture of Raman scattering, and evaluate the polarizability tensor as the half-Fourier 

transformation of the Raman kernel. For harmonic surfaces (even in the presence of coordinate 

rotation in the excited surface), these approaches lead to closed set of equations. Tanner and Heller [3] 

have presented a detailed study of this situation, and discussed the advantages of the time dependent 

approach over the summation of states method. The doorway state in the time-dependent approach 

(being the vibrational ground surface) is a gaussian in this case. The advantages of the time-dependent 

approach stem from the fact, that the time evolved wave packet remains a gaussian for all times when 

propagated over harmonic surfaces when the initial state is a gaussian, and thus can be parameterized 

and propagated efficiently by the Gaussian wave packet propagation method [9]. The situation 

becomes complicated in the presence of anharomonicities on either surface. Neither is the doorway 

state strictly a gaussian in such a situation, nor does it follow the classical trajectory during its 

evolution. It becomes necessary then to either expand the wave packet in a suitable basis [8] or use 

some other algorithm to evolve the wave packet [6]. The computational effort once again scales 

exponentially with the number of degrees of freedom. The coupled cluster method [10-14] has come 

into prominence in recent years as a method of choice for describing many-body dynamics both in 

terms of the accuracy it can provide, and in the economy of effort. In addition, it has the desirable 

property of being size consistent. While most of the applications to date have been to the electronic 

structure problem, a few attempts have been made to apply it to the molecular vibrational problems as 

well [15, 16]. The time dependent version of the coupled cluster method has been applied to the 

calculation of Franck-Condon spectra on harmonic [17] and coupled surfaces [18] with considerable 

success. In the present work we develop the CCM approach to the calculation of resonance Raman 

excitation profiles from general anharmonic surfaces. Section II presents the basic steps in the 

approach. Representative numerical studies are presented in section III along with a discussion on the 

advantages of the present approach. 

 

Theory 
 

Preliminary remarks: 

The expression for the resonance Raman excitation profile in the time dependent picture is given by 

the half-Fourier integral of the Raman kernel [2] 

 

Ifi (ωL) =     | ∫o
∞  <φf | exp (-iHet) | φi >. exp (itωL) dt | 2                        (1) 
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Here, ωL is the incident radiation frequency, φf,  φi  are the final and initial vibrational states of the 

molecule, and He is the vibrational hamiltonian on the upper surface. The scattered light frequency is 

determined by the conservation of energy.  Condon approximation is invoked in deriving Eq.1, and the 

counter resonant term for the polarizability tensor  has been dropped.  Thus the calculation of the 

resonance Raman excitation profiles by the time dependent approach consists of three parts:  (a) 

Calculation of the vibrational eigenstates φf  and φi ; (b) Propagation of φi on the upper surface and 

evaluation of its overlap with φf ; (c) Evaluation of the half-Fourier integral and the intensity.  We now 

address these issues. 

 

Vibrational states of the ground surface: 

Ignoring the Coriolis interaction, the vibrational hamiltonian of the ground surface for a molecule of 

N vibrational modes can be written as  

 

          Hg = Σ pi
2/2   +   Vg (q).                         (2) 

 

Here, qi are the mass weighted normal coordinates, and pi are the associated momenta.  We assume 

that the potential energy Vg can be approximated by a quartic polynomial in the normal coordinates. 

 

       Vg (q) =  Σ fg
ii qi

2 + Σfg
ijk qiqjqk + Σ fg

ijkl qiqjqkql                 (3) 

 

The coupled cluster approach to molecular vibrational energy levels  consists of three steps [15].  In 

the first step a reference gaussian function is constructed variationally for the ground state: 

 

         | 0 >  = Ng.exp [Σ ωi (qi - qi
o)2 ] .                                 (4) 

 

The harmonic oscillator ladder operators ai and ai
+ are now defined with respect to this optimized 

vacuum state.   

 

         ai   =  √ωi/2 (qi - qi
o + d/dωiqi),                       (5a) 

         ai
+ =  √ωi/2 (qi - qi

o - d/dωiqi),                         (5b) 

 

and the hamiltonian is expanded in terms of these operators.  By definition, the vacuum state of eq.(4) 

satisfies 

           ai | 0 > = 0 .                           (6) 

In the second step, the correlated vibrational ground state is posited as 
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           | Ψo > = Ug | 0 > ,                       (7a) 

Ug  =  exp (Sg).exp (Dg)                                      (7b) 

 

The cluster operators Sg  and Dg are expanded as 

 

     Sg  =   Σsi ai
+ + Σ sij ai

+aj
+ + Σ sijk ai

+aj
+ak 

+      + Σ sijkl ai
+aj

+ak
+al

+   + ......     (8a) 

     Dg  =  Σdi ai + Σ dij aiaj    + Σ dijk aiajak 
        +  Σ dijkl aiajakal

       + ......   (8b) 

 

Note that in the traditional coupled cluster approach,  the deexcitation operators Dg are not included.  

However we prefer to include them for providing stability to the dynamical calculations in the second 

step. From the Schrödinger equation for the ground state 

 

           H |Ψo> = Eo |Ψo> ,   

 

one obtains in the usual fashion 

              0 >  =  Eo ,                          (9a) 

           < n1n2....| Heff | 0 > = 0 ,                 (9b) 

< 0| Heff | n1n2.... > = 0 ,                (9c) 

where, 

            Heff = Ug
-1.Hg.Ug .                 (10) 

 

Eq.(9b) is an infinite set of coupled non-linear equations which on solution yield the cluster matrix 

elements {si}and {di} of eq (8).  The exact vibrational ground state energy Eo is obtained directly from 

eq (9a) once si are known.   

In the final step, the excited states and their energies are obtained by using what is variously termed 

as the equations of motion coupled cluster theory or the coupled cluster linear response theory [21].   

In this approach, one formally writes the excited states as the result of the action of an excitation 

operator on the exact ground state.  The excitation operator is expanded in a complete set of operators. 

The coefficients in the linear expansion and the transition energies are then obtained by invoking the 

equation of motion for the excitation operator.  In practice, this involves diagonalizing Heff in the  

nb (= Σni) ≠ 0 boson state manifold [15]. Since Heff is just a similarity transform of the original 

hamiltonian (via eq.(10)), its eigenvalues are identical to those of the original hamiltonian.  Note that 

the general response function (or the excitation operator) consists of both excitation and deexcitation  

 

operators. However the equations of motion for the two sets are decoupled by virtue of eq.9, yielding 
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positive and negative excitation energies respectively. 

We next turn to the calculation of matrix element of the time evolution operator exp(-itHe) between 

the two states φf and φi.  While the eigenvalues of Hg and Heff are identical, their eigenvectors are not.  

However, they are related through the same similarity transformation used to construct the effective 

hamiltonian Heff.[19]  Since Heff is not manifestly hermitian, its right and left eigenvectors  

 

           Heff | Ri > = Ei | Ri > ,                 (11a) 

           < Li | Heff = Ei < Li | ,                 (11b) 

 

are not identical. They are related to the eigenvectors of the original hamiltonian via the relations 

 

           | φi > = Ug | Ri >. Nr
i
 ,                (12a) 

           <φi | = Nl
i .< Li | Ug

-1  ,                (12b) 

 

up to some normalization constants Nr and Nl. Consequently, the matrix element of any arbitrary 

operator X is given by [19] 

 

< φi | X | φj > =  < Li | Xeff | Rj >. Nr
j .Nl

i ,                  

 (13a) 

Xeff  =     Ug
-1  . X. Ug  .              (13b) 

 

Thus the Raman kernel of eq.(1) is given by 

       <φf | exp (-iHet) | φi >   =   <Lf | exp (-i.Heff
e.t) | Ri >.N,          (14) 

 

upto an (irrelevant) scaling constant N = Nr
i .Nl

f.  Here,  

 

Heff
e   = Ug

-1.He.Ug ,                (15) 

 

is the similarity transformed upper surface hamiltonian.  Thus the time propagation of the eigenstate of 

the lower surface on the surface reduces to the propagation of the right eigenstate of the transformed 

hamiltonian Heff  on the upper surface but with the modified effective hamiltonian Heff
e.   

 

Time propagation : 

We now turn to the propagation of the doorway state φi.  As a consequence of the coupled cluster 

equations (9), the right eigenvector corresponding to the vibrational ground state is the vacuum state 

itself. 
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            |Ri>   =   |0> .                          (16) 

 

Thus we need to propagate only the vacuum state, though by the effective hamiltonian (15).  This is 

the major gain by using the effective hamiltonian route. The time-dependent coupled cluster approach 

(TDCCM) [20] provides a particularly convenient ansatz for the propagation of such states in the form 

of 

            | t >  =   U |0>,            (17a) 

            U = exp (Se) ,               (17b) 

 

where the time dependent cluster operator Se contains only excitation operators. 

 

    Se  =   s0
e + Σsi

e ai
+ + Σ sij

e ai
+aj

+ + Σ sijk
e ai

+aj
+ak 

+      + Σ sijkl
e ai

+aj
+ak

+al
+   + ......   (18) 

 

Here s0 is a time-dependent scalar that contains the normalization and the overall phase information of 

the wave packet.  Substitution of ansatz (17) into the time dependent Schrödinger equation 

 

           i ∂ | t >/∂t  = Heff
e | t >            (19) 

 

provides the working equations for the cluster amplitudes.  It has been noted in earlier studies [18] that 

the working equations by the TDCCM approach often become singular for long propagation times.  

One reason for this is due to the loss of the hermiticity of the hamiltonian implicit in the approximation 

calculations. Moreover, in the present context, the similarity transformed hamiltonian Heff
e itself is 

manifestly non-hermitian.  When it is approximated, it may develop complex eigenvalues [22].  Such 

complex eigenvalues could also lead to norm violations.  It is to reduce the effect of such hermiticity 

violating terms in the effective hamiltonian, we use the double exponential ansatz 7. Second,  the 

overlap between the exact wave packet and reference state becomes progressively smaller as the 

propagation time increases.  As a consequence, the cluster amplitudes (which are linearly related to the 

ratioes of the coefficients of the appropriate states to the coefficient of the reference state) increase, 

and in some pathological cases even become infinite.  This renders the working equations to be stiff 

and nonintegrable. As a consequence, the simple ansatz (17) is unlikely to provide reliable results. To 

avoid this potential pitfall, we define the TDCCM evolution operator with respect to a time-dependent 

vacuum state | 0t > such that | 0t > has significantly large overlap with the exact wave packet 

throughout the period of time evolution that we are interested in. The two vacua are related through the 

auxiliary operator U0 

  | 0t >  =  U0(t) | 0 > .              (20) 

The ladder operators at associated with | 0t > are related to the original set via the transformation 
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           at   = U0(t).a. U0(t)-1    .           (21) 

 

We now posit the TDCCM ansatz with respect to the time-dependent vacuum  | 0t > . 

 

            | t >  =   Ut | 0t >,                        (22a) 

            Ut = exp (Se
t),            (22b) 

 

as before.  The cluster operator Se
t is defined as in eq(18), the only difference being the time-dependent 

operators at
+ would appear in the expansion.  Combining eq (20-22), it can be shown the final form of 

the time evolved wave packet in this time dependent reference frame is 

 

            | t >  =  U0.U | 0 >,          (23) 

 

where U0 and U have the meaning as defined in eq (20) and (17) respectively.  Since the primary 

motion of the wave packet in the initial stages of evolution is to slide down the potential surface, we 

chose the following ansatz for  U0: 

 

            U0  =  exp (T),             (24a) 

           T  =   Σ (ti ai
+  -  ti

* ai ) .            (24b) 

 

Note that we have chosen U0 to be unitary. Thus this transformation would preserve the norm of the 

wave packet.  Second, it involves the annihilation operators as well which provide a degree of balance 

to the working equations.  Third, since the one boson operators are included in the definition of U0, 

these are not included in the definition of U in eq (18).  The working equations for the amplitudes ti 

and si are obtained by substituting the ansatz (23) into the Schrödinger equation (19), premultiplying 

by (U0U)-1 , and projecting on to the various states of the Fock space [20].  We present the some 

numerical studies in the next section based on this formalism. 

 

Results and discussion 

 

We have applied the methodology developed in the previous section to the calculation of the 

resonance Raman excitation profiles on a model 1-d system.  The potential surfaces characterising the 

system are given by  

 

Vg  =   0.5q2  - 0.021q3  + 0.00096q4 

Ve  =   2.3q  +  0.66q2  -  0.026q3  +  0.0008q4 
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Based on our earlier studies [15, 16]  we have restricted the cluster operator Sg, Dg and Se to contain 

at most four creation operators through out these calculations.  The non-linear equations of eq.(9) were 

solved by quasi-linearization. The expansion for the excited states was also limited such that states 

containing more than four bosons were not included in it.  In addition, all terms in Heff that contain 

more than four ladder operators were neglected.  The dynamical equations were integrated by fourth 

order Runge-Kutta method. 

The modulus of Raman kernel for the fundamental transition is presented in Fig. 1.  Two features of 

the correlation function are noteworthy. First, it is oscillatory representing the return of the wave 

packet to the Franck-Condon zone. Second, on a slower time scale, the correlation function decays. 

This  is  due  to  the  dephasing of the wave packet by the  anharmonicity  of  the potential surface.  

The  
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Fig.1:  Modulus of the Raman kernel for the fundamental transition. (Continous line – converged basis 

set calculation; dash-dotted line - coupled cluster calculation.) 

coupled cluster method is able to reproduce the oscillatory nature of the correlation function correctly.  
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However, it underestimates the dephasing part, particularly at longer times.  This would imply that the 

spectral line widths would be underestimated by the TDCCM approach. 

The Raman excitation profiles for the fundamental and the first overtone are presented in Fig.2 and 

3 respectively. The overall agreement between the coupled cluster calculation and the converged basis 

set calculation is good. In particular, the bimodal distribution of intensity is reproduced quite well by 

the TDCCM approach in both cases.  Among the discrepancies, two features are worth noting. First, 

the TDCCM approach overestimates the intensity of the higher overtones.  This is particularly 

noticeable in Fig. 3, where the intensities of the v = 0 and v = 1 transitions are underestimated, while 

the intensities of the rest of the transitions are overestimated.  It appears that the TDCCM approach 

overestimates the role of the higher excited states during the propagation at the cost of the lower 

energy 
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Fig.2:  Raman excitation profile for the fundamental transition. (Figure conventions are the same as 

above.) 
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states. Second, the TDCCM calculation underestimates the energies of the higher overtones.  This is 

understandable in view of the approximations that we have made.  Since we restricted the Se operator 

to contain no more than four boson operators, the implicit effective hamiltonian does not have terms 

beyond n2 in terms of the quantum number n of the states concerned.  Since the overall hamiltonian is 

quartic, the energy level spacing increases beyond a threshold, and the present approximation is unable 

to describe it correctly. 

To summarize, we have presented a method to calculate the resonance Raman excitation profiles 

from anharmonic potential surfaces by the time dependent coupled cluster method.  In this approach, 

the vibrational states of the lower surface are obtained by the stationary state coupled cluster method.  

It is shown that the propagation of the vibrational ground state on the upper surface can be replaced 

with propagation of the vacuum state by an effective hamiltonian.  This can be done efficiently by the 

closed shell version of the TDCCM approach.  The advantages of the TDCCM approach appear at two  
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Fig.3:  Raman excitation profile for the first overtone transition. (Figure conventions are the same as 

above.) 
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levels. At the formal level, the TDCCM approach is size consistent.  Size consistency in the present 

context implies not only the additive separability of energy, but also the multiplicative separability of 

the intensities of overtone and combination bands in the non-interacting limit.  In addition, in the 

context of molecular vibrations, the basic motif of energy levels is the harmonic oscillator.  Hence the 

energy levels are proportional to the number of quanta present in the system to the leading order even 

for a single mode. Finite basis expansions do not satisfy this requirement even for a simple displaced 

harmonic oscillator.  The CCM ansatz avoids this problem due to its exponential structure. 

The second advantage of the TDCCM approach is from the computational perspective.  Note that the 

harmonic ladder operators of eq.5 are defined for each mode.  Consequently, the number of cluster 

matrix elements scales in terms of the number of modes N as against the number of basis functions bN 

in a basis set calculation. Obviously, this is a great saving from the computational point of view, 

particularly for large systems. 
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