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Structure of electromagnetic fields in spatially dispersive media of arbitrary geometry*
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The nature of the electromagnetic field in a spatially dispersive medium, occupying an arbitrary
domain V is investigated, under conditions when spatial dispersion effects arise from the presence of an
isolated exciton transition band. It is shown that the electric field at frequency co close to the exciton
transition frequency may, in general, be expressed in the form f(r, cu) =E~&II(F;cc)+EPI(r,cu)+ f(r,&u),
vvhere E)ii(f, tu) (/=1, 2) are transverse fields and E,(f~) is a longitudinal field; and that each of these
three fields satisfies a Helmholtz equation. The wave numbers occurring in the three Helmholtz
equations are the roots of the dispersion relations appropriate to the medium. It is further shown that
the three fields are coupled by a linear relation, which is shown to imply a recently derived nonlocal
boundary condition on the nonlocal polarization, expressed in the form of an extinction theorem.
These results are generalizations of certain results obtained not long ago by Sein, Birman and Sein,
Agarwal, Pattanayak, and Wolf, and Maradudin and Mills.

I. INTRODUCTION

We have recently discussed the structure of the
electromagnetic field in a spatially dispersive
model medium forming a plane-parallel slab. ' ~' "~

The medium was characterized by a dielectric re-
sponse function appropriate to the neighborhood of
an isolated exciton transition frequency, viz. ,

Xc:(k, tu) = a, +-,4' —p, 'jr' j '

X = 4II Crm*, u, /tl, p.a(e) = (rII*,/tICu, ) (tua —tu,'+itui') .

Here eo is a background dielectric constant which
takes into account all the transitions except those
due to an exciton band at frequency cu = +„m,~ is
the effective exciton mass (assumed to be non-
negative), o.'is essentially the oscillator strength,
and I" characterizes the lifetime of the excited
states of the atoms. We applied the results to the
problem of refraction and reflection on a spatially
dispersive half space and showed that our analysis
leads to a resolution of a long-standing controversy
about the nature of the so-called additional bounda-
ry conditions needed in solving problems of this
kind.

In this payer we will present a generalization of
some of our results to monochromatic electro-
magnetic fields in spatially dispersive dielectric
media characterized by the dielectric response
function (l, l), occupying a finite volume V of ar-
bitrary geometry. We show that the electric field

'

in the medium may, in general, be expressed as
the sum of two transverse and one longitudinal

field. Each of these partial fields satisfies a
Helmholtz equation, whose wave numbers are the
roots of the dispersion relations appropriate to
a plane wave that can be propagated in a medium
with the dielectric response given by (1.1), occupy-
ing the whole space. The three partial fields are
found to be coupled by a linear relation that is a
generalization of certain relations found by
Seln, BII'IIIRII Rnd Seln, AgRI'WR1, pattana-
yak, and Wolf, i ' ". and Maradudjn and Mj]]s.
This relation is found to imply a nonlocal boundary
condition on the nonlocal polarization, which is
identical with the recently derived extinction theo-
rem for the nonlocal polarization. ' '

The main results derived in this paper are sum-
Inarized in a theorem given in Sec. VI and are il-
lustrated by determining the mode expansion of the
electric field in a medium characterized by the di-
ej.egtric response function of the form given by Eq.
(1.1), occupying a half space. The results agree
with those obtained for this special case in Ref.
1(a) by a different method.

II BASIC EQUATIONS

Consider an electromagnetic field in a dielectric
medium occupying a volume V, bounded by a closed
surface S. I et E(r, t) and D(r, t) represent the
electric field and the electric displacement vector
and let H(r, t) and B(r, t) represent the magnetic
field and the magnetic induction vector, respec-
tively, at a point r, at time t. We assume that the
medium is nonmagnetic, so that, in the Gaussian
system of units (used throughout this paper),
B(r, t) = H(r, t). We denote by E(r, &u) the Fourier
time transform of E(r, t) defined as
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»'(r, w) = f E(r, &)e d'&', (2.1)

with similar definitions for the Fourier time
transforms of the other fields. Maxwell's equa-
tions in the medium, written in frequency space,
are

V x H(r, &v) + ikoE(r, v) = -4mikoP(r, &u),

V x E(r, &u) —ik, H(r, &u) = 0,
V E(r, co) = -4wV P(r, &u),

V H(r, ur) =0,
where

k&&
= &d/C

&

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.3)

c being the vacuum speed of light, and P(r, cu) is
the polarization vector,

P(r, (u) = (1/4w) [D(r, (u) —E(r, (u)] . (2.4)

Pt (r, cu) = — ' E(r, w), (2.6a)

Let us now assume that the dielectric response
function of the medium is given by Eq. (1.1). Then,
as shown in Eq. (2.6) of Ref. 1(a), the polarization
field is the sum of two terms,

P(r, (d) = PL (r, (d) + PNL (r, (0), (2.5)

PL depending locally on E and PN, depending on
E in a nonlocal manner. More specifically, '

G„r -r' E r', u d'x'. (2.12)

This equation mas taken as the starting point of
the investigation of Ref. 1(a) [Eq. (2.10) of that
reference]. However, for the purpose of the main
part of the present investigation it is advantageous
to deal instead with the two coupled differential
equations (2.9) and (2.10), together with the sub-
sidiary relation (2.11). We note in passing that
(2.11) follows trivially from Eq. (2.9) and also
from the pair of equations (2.12) and (2.6b), pro-
vided that k, &0.

Vx[Vx E(r, ~)] —e,k,'E(r, &u) =4~k2p (r ~)
(2.9)

Next we apply the operator (V'+ p. ') to both sides
of (2.6b) and use (2.8). We then obtain the equa-
tion

(V +0 )P „(r (o) =-(X/4&)E(r, (o) . (2.10)

Finally on substituting from (2.5) into (2.2c) and
on making use of (2.6a) we deduce that

eoV E(r, u&) = -4mV PN~(r, &u) . (2.11)

If we substitute into Eq. (2.9) for PNL(r, ~) the
expression (2.6b) [which implies Eq. (2.10)], we
obtain the following integro-differential equation
for the electric field E(r, &u) inside the volume V:

V x [V x E(r, (d)] — keo~EO(r& (d)

where

G&(/r —r'j)=e'" ' ' /]r-r'/.

(2.6t )

(2.7a')

In (2.7) p, is the root of the second expression in
(1.2), for which

Imp. &0, (2.7b)

consistent with our Fourier kernel e' ' in (2.1).
We note for the purpose of later discussion, that
G„satisfies the equation

III. SEPARATION OF THE ELECTRIC FIELD INTO
TRANSVERSE AND LONGITUDINAL PARTS

We will now show that Eqs. (2.9) and (2.10) lead
to a certain decomposition of the electric field into
a sum of a transverse and a longitudinal part. For
this purpose we first make use of the vector iden-
tity

V2F =—V(V F) V x (V x F) (3.1)

that applies to any mell-behaved vector field F.
In particular, taking F to be the nonlocal polariza-
tion field P„„, Eq. (2.10) may be expressed in the
form

PN, (r, ~) =—,E(r, ~)
(V'+ p, ')G„(~r —r' ~) = -4v6(r —r'), (2.8)

where 6 is the three-dimensional Dirac 5 function.
We now have all the information necessary to de-

rive the basic equations from mhich the general
structure of the electromagnetic field in the spa-
tially dispersive medium may readily be deter-
mined. We obtain these equations as folloms:
First we eliminate the magnetic field H between
Eqs. (2.2a) and (2.2b) and make use of Eqs. (2.5)
and (2.6a). We then find that

——,V[V p (r ~)]+—,Vx[Vx PN, (r, &u)].

(3.2)

Next we substitute from (3.2) into the right-hand
side of Eq. (2.9) and obtain the relation

Vx[V x E(r, &u)] —e,k,'E(r, &u)

k 4mk'= —";E(r, (o) —,' V[V P„„(r,(u)]
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4mk2

,' V x [V x PN„(r, &u)] . (3.3)

(3.4)

This relation may be rewritten in the form

E(r, cu) = E,(r, &u) + E, (r, (d),

where

we obtain the equation

k,'F0[V' +(O' —X/e, )]E,(r, u)

= —[(V'+ e,k,')(V'+ p, ') —Xk,']E,(r, &u) .

We will rewrite (4.3) in the form

k()&0(V'+k,')E, (r, (u)

[V +(k ) ][V +(k(»)2]E (r ~)

(4.3)

(4.4)

and

X+X PX 4m'
(r, (u) —,' PN„(r, (u)

(.".4a)

where

k, = )). —X/E'0

and (k,' )' and (k~»)' are defined by the equation

[V +(k ) ][V +(k ) ]= (V + & y2)(V2+)), 2)

(4.5)

E, (r, +) =
~ V[V P~( (r, u))].

COP,
(3.4b) (4.5)

In view of the vector identities V ~ (V x F) =0 and
Vx(Vf) =0, where F is an arbitrary vector field and
f ts an arbitrary scalar field, it follows that

V E,(r, (d) =0 (3.5a)

and

VxE, (r, cu) =0, (3.5b)

so that the vector field E,(r, (d) defined by (3.4a) is
transverse and the vector field E, (r, (d) defined by
(3.4b) is longitudinal. Thus Eq. (3.4) expresses the
electric field E(r, ~) in our spatially dispersive
medium as the sum of a transverse part and a
longitudinal par t.

IV. PARTIAL DIFFERENTIAL EQUATIONS
SATISFIED BY THE TRANSVERSE AND THE

LONGITUDINAL PARTS OF THE ELECTRIC FIELD

We will now derive differential equations satis-
fied by the transverse part E, and the longitudinal
part E, of the electric field in our spatially dis-
persive medium.

We substitute from Eq. (3.4) into Eq. (2.9) and
make use of the relation (3.5b), viz. , V x E, =0.
We then obtain the equation '

V x [V x E,(r, ~)] —E,k,'E, (r, &u) —e,koE, (r, ~)

=4)(k,'P (r, (u) . (4.1)

Next we use again the vector identity (3.1), with
F = E„and also the transversality condition (3.5a),
viz. , V E, =0. Equation (4.1) then becomes

(V'+ e,ko) E,(r, (t)) + e,k,'E, (r, e)
= -4vk,'PN~ (r, (u) . (4.2)

Next we apply to both sides of (4.2) the operator
(V'+ p, '). We eliminate the term (V +y, ')P~„be-
tween the resulting equation and Eq. (2.10) and
make use of Eq. (3.4). After rearranging the terms

It can readily be seen from (4.5) and (1.1) that k
satisfies the equation

e(k„&u) =0, (4.7)

e(k,', &u) = (k", )/k )' (4.3)

Equation (4.4) may be simplified by making use
of an additional result that follows from our basic
relations. To derive it we eliminate the term
V PNL between Eqs. (2.11) and (3.4b) and use the
relation (4.5). We then find that E, = -(1/k,')
xV[V E(r, ~)], which, if Eqs. (3.4) and (3.5a) are
used, implies that the longitudinal part of the
electric field obeys the Helmholtz equation

(V'+k', )E, (r, (d) =0. (4.9)

Moreover, on using (4.9) in (4.4), we see that the
transverse part of the electric field obeys the
equation

[V2+ (k(l))3][V2+ (k(2))2]E (r +) 0 (4.10)

Now according to a recently established theorem, '
a solution of the differential equation (4.10) [with
(k(,'))' & (k,'))'], in a three-dimensional domain V,
subject to appropriate boundary conditions speci-
fied on the surface S bounding the volume V, may
be expressed in the form

E,(r, (u) = E(')(r, (u) + E(,')(r, (u),

where E,' and E,' are solutions of the Helmholtz
equations

(4.11)

[V'+(k" )']E" (r &u) =0 (j=1,2) . (4.12)

which is nothing but the longitudinal dispersion re-
lation appropriate for the propagation of plane
monochromatic waves in a spatially dispersive
medium of dielectric response function e(k, (d)
given by Eqs. (1.1), occupying the whole space.
Furthermore as we show in Appendix B, the roots
k',"and k,' satisfy the corresponding transverse
disPersion relation
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We note that since each of the operators [V'
+(k,'~)'] and the operator V commute,

[V + (k '
) ]V ' E ' (r (d)) = 0,

[V +(k») ]V ~ E&»(r ~) =0

(4.13a)

(4.13b)

On adding these two equations and using (3.5a) and

(4.11) we readily deduce that

[(k~,' )' —(k, ) ]V' E~d (r, e) =0 (j =1, 2). (4.14)

Hence, provided that (k(('~)'&(k,»)', i.e. , provided
that the transverse dispersion relation (4.8) has
four distinct roots and not two double roots, as
in general will be the case, we must necessarily
have

V. COUPLING BETVfEEN THE LONGITUDINAL

AND TRANSVERSE PARTS OF THE ELECTRIC
FIELD, AND THE EXTINCTION THEOREM

FOR NONLOCAL POLARIZATION

We have now expressed the electric field, which
satisfies the coupled pair of differential equations
(2.9) and (2.10), in the form

V E", ~(r, ~) =0 (j =1, 2); (4.15)

i.e. , the partial fields E,' and E,' are transverse.
We have thus shown that the longitudinal part

E, of the electric field in our spatially dispersive
medium satisfies the Helmholtz equation (4.9) and
that in general the transverse part E, is expres-
sible as the sum of two transverse fields E,' and

E,'~ each also satisfying a Helmholtz equation. The
squares of the (generally complex) wave numbers
appearing in these three Helmholtz equations are
precisely the squares of the wave vectors obeying
the dispersion relations for propagation of plane
waves in a spatially dispersive medium of dielec-
tric response function e(k, w), given by Eqs. (1.1),
occupying the whole space.

g (V x [V x E, (r, (())] —eokoE,'~(r, &u)j —eoko2E, (r, (())
j= 1

)(k,
'

~2 Gq(~r —r' ))E,' (r', (d))

2

+ ' G&()r —r' ))E,(r', u)d'r'. (5.3)

The three integrals appearing on the right-hand
side of (5.3) may readily be simplified. Consider,
for example, the integral involving E, . We have,
according to (4.9),

(V'+k2() E, (r, (d)) =0 . (5 4)

Moreover, according to (2.8), the Green's func-
tion G

&
satisfies the equation

(V'+ p, ')G„(~r r' ~) = -47)i5(r —r') . (5.5)

On multiplying Eq. (5.4) by G„and Eq. (5.5) by E„
subtracting the resulting equations, and on inte-
grating over the volume V, we find that for any
point r in V,

4m
2 E((r ~) --2

k) —P

x C„r -r' V' E, r', (u

must be imposed on the three partial fields appear-
ing on the right-hand side of Eq. (5.1) in order that
(5.1) is a solution of Eq. (5.2). To determine these
constraints we only need to substitute from (5.1)
into (5.2) and determine the conditions under which
the resulting equation will be satisfied.

On substituting from (5.1) into (5.2) and on using
the fact that Vx(Vx E,) =0 we obtain the relation

E(r, v) = E,'~(r, &u) + E,»(r, w) + E, (r, &u) . (5 1) —E, (r', (d))V'G&(~r —r' ~)]d'r', (5.6)

Now in the process of deriving (5.1), we applied
to equation (2.9) the operator (V'+ p. '). Moreover,
in deriving (2.10) we have applied to (2.6b) this
operator also. Hence we raised the order of the
differential expressions that appear in the original
equations and we must, therefore, expect that (5.1)
represents a broader class of fields than the class
of solutions of the basic integro-differential equa-
tion (2.12), viz. ,

Vx [Vx E(r, ~)] —e,ko2E(r, ~)

G& r —r' E r', w d r' . 5.2
V

We will now examine the additional constraints
(apart from those noted in Secs. III and IV) that

or on using Green's theorem,

G„(~r —r' ~)E, (r', w)d'r'
V

, E, (r, (u)+ 2 25((r, ~), (5.P)~k2 ~2 f ) k2 ~2 l

where

sG. (I r —r' I)
b, (r, &v) = E, (r', &u)

S

—('„(Ir —r' I) ~ ) dS. (5.8)

The integration on the right-hand side of Eq. (5.8)
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extends over the surface 8 bounding the volume V

occupied by our spatially dispersive medium and
&/Bn denotes differentiation along the outward nor-
mal. In a strictly similar manner we obtain, if
we use in place of (5.4) the corresponding equa-
tions (4.12), the following expressions for the two
other integrals appearing on the right-hand side of
Eq. (5.3), valid with j =1 and j =2:

r G&(ir —r' i)E",)(r', (»))d r'

471 ~( ) ~ 1 g( )
(»))2 2 E» (r) ~)+ (»)ro

(k» i —)L»

(5.9)
where

gQ) |)(»
)
8Go(lr r I)

S

-or(ir-r'I) ' " '")Oo. (O. »O)

(V'+ p, ')S»(r, (()) =0, (5.11b)

at each point r, inside V.
We now substitute the expressions (5.7) and (5.9)

for the three volume integrals in (5.3) and obtain
the relation

We note in passing that since the r dependence of
the expressions (5.10) and (5.8) comes entirely
from the argument of the Green's function
G&(ir —r'i) under the integral signs, and since r'
is confined to the boundary S of the volume V, the
integrals 8»' and 5» satisfy, in view of (2.8), the
Helmholtz equation with the wave number p. , i.e.,

(V'+](» ') S»»)(r, (o) = 0, (5.11a)

rrO,* -, , O, (r, tr)r —», (r, )),0 k2 ~2 l P 4p
(5.12)

where LI» and 5» are defined by Eqs. (5.10) and

(5.8), respectively. Now if we make use of the
vector identity V x(Vx E~») ) = V(V ~ E,' ) —V'E", and
use the transversality conditions (4.15), we may
rewrite the Helmholtz equations (4.12) as

V x [V x E,' (r, »o)] = (k,' )'E", (r, »o), (5.13)

2
c'&)E~&) r, (o +c,E, r, ~

X&,' ~ 1 g(, )-(r»o)

where

1+, , S, (r, tr)),k)-p,
(5.14)

l2
c(d) (f ) 2

» (» ) o o ) (J]i2
)

x&o
0~0

k)

(5.15a)

(5.15b)

Now if we recall the definition (1.1) of the di-
electric response function e(k, oo), it follows at
once that, since g~ satisfies the transverse dis-
persion relation (4.8),

c,' =0, (j =1,2), (5.16a)

so that the relation (5.12) may be expressed in the
for Q1

and since k', satisfies the longitudinal dispersion
relation (4.7),

c, =—0.
Hence (5.14) reduces to

(5.16b)

1 (2)
(k» )-(»))» (r )+ -( )) S» (r, (o)

(k» )

f Go(i r —r'i )E(r', (»))»I''r'.

(5.18)

I
+ -. ~ &» (r, ~) =0,

kr P
(5.17)

where, we recall once again, S I'), RIo),

are defined by Eqs. (5.10) and (5.8). Equation
(5.17), which must be satisfied at every point r
inside V, is the required constraint we have been
seeking, and it ensures that the field (5.1) (with
E('), E,'), and E, satisfying also the constraints
derived in Secs. III and IV), is a solution of the
integro-differential equation (5.2). In Sec. VI
we will summarize all the constraints and will
present a general expression for the full electro-
magnetic field inside a spatially dispersive
medium.

Before doing so we will show that the relation
(5.17) which couples the three partial fields E(»'),

E, , and E, imposes an interesting constraint on
the nonlocal polarization P& „, defined by Eq.
(2.6b), viz. ,

&NL(» ~) =
(4,).



STRUCTURE OF ELECTROMAGNETIC FIELDS IN SPATIALLY. . .

To see this we express the E field on the right-hand
side of (5.18}as a sum of the three partial fields,
in accordance with (5.1), and make use of the ex-
pressions (5.V) and (5.9) for the three volume
integrals. If next we use the constraint (5.1V),
we find at once that

e (k( i ) ())) (k ( j )/y )2.

(ii} E, is a longitudinal field, i.e. ,

~&&E, (r, ~) =0,

(4.8)

(8.5b)

distinct, of the transverse dispersion equation

obeying the Helmholtz equation

(&'+ k')E, (r, ~) =0, (4.9)

Next we rewrite (5.1V) by substituting for 5, ~

and S, the explicit expressions (5.10) and (5.8)
and interchange the orders of summation and
integrations. If in the resulting equation we make
use of (5.1&}, we find that the nonlocal polariza-
tion must be such that the following relation holds
at every point r in V:

e(k, , ~) =0.
(iii) The partial fields E, ', E('), and E, are
coupled by the relation

(4.V)

where

+, 5, (r, ~}=0,k)-p.
(5.1V)

with k', being the root of the longitudinal dispersion
equation

—G (Ir-Fl) "' ' )dS=OSn (5.20)

Equation (5.20) expresses a nonlocal boundary
condition on the nonlocal polarization P„L. It is
precisely the extinction theorem fo~ the eonlocaL
Polarization P«(r, &) [Ref. 1(a), Eq. (5.1V)], whose
importance for the theory of electrodynamics of
spatially dispersive media occupying an arbitrary
volume has recently become recognized [cf. Ref.
3 and Ref. 1(a), Sec. V].

and

(» ) (») ~) G()(l r r I )
8'pl

(5.10)

~ E"'(r ~)=0 (4.15)

obeying the Helxnholtz equations

[V2+(k( J ))2]E(J ) (r, &) =0,
with (k(, ' ))' being the two roots, assumed to be

(4.12)

VI. SUMMARY, DISCUSSION, AND AN EXAMPLE

The main results derived in this paper may be
summarized in the following theorem.

Theorem: The monochromatic electric field
inside a spatia1. ly dispersive medium occupying
a volume V bounded by a. closed surface 8, whose
dielectric response function, is of the form

x
~(k, ~) =e, + k' —g'(j

may be expressed within the accuracy of the
present theory' in the form

E (r, (()) = E ',
"(r, &) +E',"(r, &o) + E, (r, (()),

where

(i) E, , (2 =1,2), are transverse fields, i.e.,

with G„being the Green's function, defined by
Eqs. (2.V).

We have also shown that the relation (5.1V)
implies that the nonlocal polarization P„L(r, &),
established in the medium and defined by Eq.
(2.6b), must obey certain nonlocal boundary con-
ditions, expressed in the form of the extinction
theorem

(5.20)

that is valid at every point r inside the medium.
In connection with the above theorem we wish to

mention that Sein' and Birman and Sein' gave,
not long ago, on the basis of a different analysis,
a somewhat similar representation of the field
inside the spatially dispersive medium. They
assumed that the partial fields (corresponding
to our waves E,', E,', and E, }can each be ex-
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2

VxE(
0

(6.1)

pressed as a superposition of plane waves. How-
ever, this assumption cannot be justified except
in the special case when the volume V occupied
by the spatially dispersive dielectric is a plane-
parallel slab or a half space. In the case when
the volume V is a sphere, ' for example, the ap-
propriate expansion of the three partial fields
is in terms of vector spherical harmonics rather
than in terms of plane waves.

For the sake of completeness we also present
expressions for the magnetic field H(r, (d), the
magnetic induction field B(r, (v), and the electric
displacement vector 5(r, (v) inside the volume V.
%e readily find from Maxwell's equations, if for
E(r, &u) we substitute the representation (5.1), re-
call that the medium was assumed to be nonmag-
netic, and use also Eqs. (4.15), (3.5b), and

(4.12) that

H(r, (v)=-B(r, (d)

~e' ""'"'' ~' dudv (6.4)

where

(6.5)

where

f(ft~+""+filS ) dQ fV =0 (6.6)

k,' ) = (u, v, u ~ ) . (6.7)

Next, setting z =0 in (6.6) and taking the Fourier
inverse, it follows that

u) =[(k'')'-u'-v']' ' {Imu) &0)

and A, ' is an arbitrary vector function of the
parameters u and v. In Eq. (6.5), (k~~~ l)' is, of
course, a root of the transverse dispersion rela-
tion (4.8). According to Eq. (4.15), the partial
fields E(') are transverse. Hence it follows from
(6.4) on taking the divergence and formally inter-
changing the orders of integration and of the "div"
operation, that

(5) 2

D(r, ~)= Q ~', E,'"'(r, &) .
0

(6.2) k"'A,''(u, v;(d) =0 (6.8)

We note that only the transverse partial fields
E,' and E,' contribute to the magnetic field H,
the magnetic induction field 8, and the dielectric
displacement field D; or, to put it differently, the
longitudinal partial field E, only contributes to
the total electric field E.

We will now illustrate our main results by
determining the mode expansion for the electric
field in a spatially dispersive medium occupying
a half -space, assuming again, of course, that
the dielectric response function of the medium
is given by Eq. (1.1). We will see that the results
are in agreement with those obtained not long
ago by a different method. ' '

According to Eq. (5.1), the electric field in the
medium, assumed now to occupy the half-space
z «0, may be expressed in the form

E(r (v) =E ' (r &)+Ep (r) ~)+Eg(r) ~) (6.3)

subject to the properties of the three partial fields
summarized in the theorem given at the beginning
of this section.

Consider the partial fields E~(') (j =1, 2). Each
of them obeys the Heimholtz equation (4.12). Now
it is well known that the general solution in the
half-space z &0 with kI') being complex (as is the
case in the present problem) may be expressed
in the form of an angular spectrum of plane
waves, ' i.e.,

i.e., all the plane waves in the angular spectrum
representation (6.4) are transverse.

In a strictly similar manner we may also repre-
sent the partial field E, (r, &) as an angular spec-
trum of plane waves, viz. ,

E, (r te) = ff A, (v vv)e" "*""'"' dvdv,

(6.9)

where

u), =(k, '-u'-v')'~' (Imu), &0), (6.10)

k', being the root of the longitudinal dispersion
relation (4.7) and A, being an arbitrary vector
function of the parameters u and v. Moreover, it
follows from (6.9) and the longitudinality condition
(3.5b), by an argument similar to that leading to
(6.8), that

k, && A, (u, v; ~) = 0,
where

k( =— (u, v, u)) ) .

(6.11)

(6.12)

Equation {6.11) implies that all the plane waves
forming the angular spectrum (6.9)are Longitudinal

The two transverse fields (6.4) and the longitudi-
nal field (6.9) are coupled by the relation (5.17).
This relation involves three surface integrals, de-
fined by Eqs. (5.8) and (5.10), which extend over
the closed boundary of the medium. In the present
case, when the medium occupies the half space z =0
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a portion of the closed boundary is the plane z=0.
We may take as the rest of the boundary a hemi-
sphere in the half space z &0, of limitingly large
radius R -~, centered at the origin. Now, as
noted in footnote 8, the angular spectrum repre-
sentations (6.4} and (6.9) contain only plane waves
that are propagated into the half space z &0 and
which decay exponentially with increasing values
of z. Under these circumstances the contributions
from the hemisphere may readily be shown to
vanish, so that the three integrals 5,'), 5'»2), and

5, defined by (5.10}and (5.8) now extend only over,
the plane z =0:

E(s)( )
sG (I r r I)

Bz

Hence, for points r in the half space z&0,

Z

z' =p 277

i[u (» -» ') +v (v -w') +u I z I ]e du av,

(6.17a)

Z =P

ei[u (» -»') +v ( y -y') +u) Iz []
p au av.

(6.1Vb)

On substituting from (6.14a), (6.14b), (6.17a),
(6.17b) into (6.13) and interchanging the orders of
integration we obtain

S(i )
27

du'dv' A(' )(u', v', u)}

Sr=
'" - (-, )

s&.(lr-r'I)
Bz'

(6.13) I I '))

e»(»»X +V»» +»»»)»2)

u»
)» (u» v )

g~&dy~ ei[»'(u-u') +y (v -v ') ]

Now from (6.4), we have

Bz
Z I

(6.14)

(6.18)

The last integral has the value (2m)26(u-u')5(v-v'),
where 6 is the Dirac 5 function. Hence (6.18)
simplifies to

E (») (r» &»))

Z =P
A,"'(u, v, ~)

sE(J ) (r» (»))

Bz
Z =P

~et(u» + vg }d 7 (6.14a)

(ue,.) A»(~) (u, v, ao)

&&e' "" '"' dudv. (6.14b)

x e' ""'"' ' p' 1+ ' Qu Qv.
ZU~

In a strictly similar way we find that

A, (u, v, u»)

(6.19)

Now the Green's function G„(l r —r'I) that appears
in (6.13) and (6.14) admits the angular spectrum
representation [Ref. 1(a,), E(ls. (3.3) and (3.4)j

ef(u» +vQ+u)pz ) d~d~
ZV

~
(6.20)

Next we substitute from (6.19) and (6.20) into
the relation (5.17) and find that

x ek[u(» -»') +v(w -y ') +u) lz -z' l]

(6.15)
where

(6.21)

where

()12 —u2 —V2)1» 2 (6.16a) (6.22)
with

Re&~ & 0
y Im~p & 0 . (6.16b)

If we let 2-0 in (6.21) and take then the Fourier
inverse we find at once that Q(u, v) =0, i.e.,
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for all values of the pair of parameters u and v.
Now from Eq. (6.5) and (6.16a) it follows that

(k (l))2 p2 g) 2 gg 2 (6.24)

AI~ ~(u, v; ~) A, (u, v; &u )-- +
K~ —K %) -K~ (6.26}

Thus we conclude that the general mode expan-
sion for the electric field in the spatially dispersive
medium occupying the half space z & 0 is given by
the sum of the three partial fields E,', E,', and
E, , where E,' and E,' are superpositions of
transverse plane waves [Eq. (6.4) and (6.8)], and

E, is a superposition of longitudinal plane waves
[Eq. (6.9) and (6.11)]. The wave vectors of the
transverse waves obey the transverse dispersion
relation (4.6) and of the longitudinal waves obey the
longitudinal dispersion relation (4.7). The ampli-
tudes A',"(u, v; ~), A,'~(u, v; &d), and A, (u, v; (d) of the
three plane waves forming a typical (u, v; (v) mode
are coupled by the linear relation (6.26). This
mode representation is identical with the repre-
sentation derived for this problem in Ref. 1(a) by a
different method.
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APPENDIX A: ALTERNATIVE PROCEDURE

Some authors take Eq. (2.10) rather than our
Eq. (2.6b) as expressing the nonlocal polarization
in terms of the electric field. If we adopt this
alternative standpoint, we have, in place of (2.6b),

and from (6.10}and (6.16a) it follows that

k, 2 —g2 =go, ~ -so „ (6.25)

With the help of Eqs. (6.24) and (6.25), Eq. (6.23)
is readily simplified and we then obtain the relation

(A3)

where A((d) is some function of v. If we choose
as the Green's function G„ in (A1) that solution of
(A2) which satisfies the same boundary conditions
as PNL, i.e.,

(A4)

at each point r of S, Eq. (A1) may readily be
shown to reduce to

XPN, (r, (v) =
(4 ), G„(r,r')

&& E (r', ()dd'r' (A5)

Equation (A5) is seen to be of the same form as
our Eq. (2.6b), the only difference being that the
Green's function G„(~ r —r'~) has been replaced by
the Green's function G„(r, r' ).

It may readily be verified that if Eq. (2.10)
together with Eq. (A3) were employed in place
of our Eq. (2.6b), all results of the present
paper (except those derived in connection with a
specific problem treated in Sec. VI) remain valid,
provided that G& is replaced everywhere by G„.
However, it should be borne in mind that it is
not possible to determine on the basis of the
macroscopic Maxwell theory whether or not the
choice of boundary conditions of the form (A3)
is appropriate and if it is, what is the value of the
parameter A (&).

APPENDIX B: PROOF THAT EQ. (4.6) IMPLIES
THAT (%, ) ARE ROOTS OF THE TRANSVERSE

DISPERSION RELATION (4.8)

Of course, neither Eq. (2.10) nor Eq. (A1) specify
PN, uniquely in terms of E, without the knowledge
of boundary conditions. Suppose that one assumes
that the nonlocal polarization satisfies linear
homogeneous boundary conditions, i.e., one as-
sumes that for each point r of the boundary surface
S

X
pN L(ry } (4+)2

1

4m

where

G&(r, r')E(r', (d) d'r'

p (- M)
BG (r r')

O'Pl

') dS
nfl

(A1)

Equation (4.6) may be rewritten

~ +[(k )'+(k )]~ +(k ) (k'")'

=V'+(e,k', +p, ')V'+k,'(e,g' y).
Clearly (Bl) can only be true if

(k ' )'+ (k )2 =6 fP+ p2 (S2)

(&'+ u, ')G„(r, r') = —4m5(r —r' ) (A2)

and S/Sn denotes differentiation along the outward
normal to the surface S bounding the volume V.

(a3)(k(~ ~)2(k(»)2 y2(g pa y)

Elimination of either (kI'~)~ or (k", ~)' between equa-
tions (B2) and (B3) gives



STRUCTURE OF ELECTROMAGNETIC FIELDS IN SPATIALLY. . . 1351

(j =1, 2). (B4)

Equation (B4}may be rewritten in the form

(k(y ))2[ (k(s ))a &mj e y2[(k& & &)~ P2]+X/2,

0+ k(f) 2

But according to Eq. (1.1}, the right-hand side
of (85) is precisely e(k,"',&). Hence

(k(J )/Q )2 e (k(J ) ~) (j 1 2)

showing that (k~t~ ~)' are roots of the transverse
dispersion relation (4.8).
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