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Atomic coherent-state representation of the spectrum of scattered light from a cooperative
system and numerical results
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The problem of light scattering from an atomic system under cooperative conditions is analyzed. The
atomic correlation function is constructed using the atomic coherent-state representation in a form that is
ideally suited for numerical computations. Explicit results are reported for a system of five atoms and the
question of the existence of additional side bands is analyzed,

I. INTRODUCTION

The influence of cooperative atomic effects on
the statistical and spectral properties of resonance
fluorescence has been the subject of considerable
recent interest. ' '

The properties of the scattered light by a coop-
erative system are conveniently studied by solving
the master equation for the reduced density opera-
tor of the atomic system. The master-equation
approach treats the interaction with the coherent
driving field to all. orders in the perturbation.
The approach is fully quantum-mechanical and
takes into account various quantum-mechanical
correlations properly. However, an analytical
solution of this master equation has been provided
only for the one-' and two-atom case. ' The two-
and three-atom problems were studied by Agarwal
e) gl. ' numerically, using the master equation in
the usual representation in terms of the angular
momentum operator eigenstates. However, as
the number of atoms increases, the representa-
tion based on the angular momentum eigenstates
becomes too cumbersome even for numerical com-
putations. It is clear that alternative methods
have to be developed to handle larger numbers of
atoms.

In an early discussion of this problem, Senitzky'
proposed that a large number of externally driven
two-level systems would behave in an essentially
classical way" provided that the atoms are initial-
ly removed from a state of complete inversion
and that the external driving field is sufficiently
strong.

To be sure, there are drastic qualitative differ-

ences between the solution of the classical and
quantum equations of motion. For example, under
the action of a strong external field, the atomic
population difference undergoes damped oscilla-
tions until a nonequilibrium steady state is reached
with nearly zero population difference between ex-
cited and ground atomic states. ' '" The classical
equations, " on the contrary, predict undamped
periodic (but not sinusoidal) oscillations in the
same strong-field limit, If one allows for the pos-
sibility of stochastic amplitude and phase

fluctuat-

ionss in an ensemble of classical solutions, the
average population difference will also exhibit a
damped character, presumably in good qualitative
agreement with the quantum behavior.

Another consequence of this point of view is the
appearance of additional sidebands, in the spec-
trum of resonance fluorescence' beside the well-
known pair which have been predicted" and ac-
curately analyzed" with low-density atomic sys-
tems, . Qualitatively, it is easy to see how the
spectrum of a strongly driven collection of atoms
should display more than the usual pair of side-
bands in this classical limit. If the collective
atomic polarization oscillates as a classical peri-
odic but not sinusoidal function, the radiated field
is bound to contain an infinite number of harmonic
components. If, in addition, the classica1. oscilla-
tion is damped, the spectral components will be
broadened and slightly shifted. The exact nurneri-
cal analysis' of the spectrum and intensity correla-
tion function of resonance fluorescence for two-
and three-atom systems shows that in the high-
field limit, only the usual single-atom pair of side-
bands appears in the spectrum. Agarwal ef. g)."
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also pointed out that, while this result was mathe-
matically surprising, it was not a consequence of
numer ical round-off errors.

More recently, the two-atom resonance fluo-
resence spectrum has also been investigated ana-
lytically in the strong-field limit. 3'4 In particular,
in Ref. 3, the collective behavior has been analyzed
as a, function of the atomic separation. In Ref. 7,
the master equation has also been solved analytical-
ly for the two-atom problem. Thus, little has been
done to explore exactly the quantum-mechanical
resonance fluorescence problem for large samples.

The behavior of the expectation values of collec-
tive atomic operators, on the other hand, has been
studied successfully for fairly large numbers of
atoms" using a method based on the atomic co-
herent-state representation. " In this paper we
extend this procedure to calculate the spectrum of
resonance fluorescence from a collection of atoms
driven by an external field of arbitrary strength.

The calculation of the spectrum in the atomic
coherent-state representation is reduced to the
solution of a set of linear equations. The method
of calculation represents a significant improve-
ment with respect to the scheme discussed in Ref.
2 and can easily be used to study larger systems,
given sufficient computer time.

In Sec. II we review the model and compare it
with the one discussed in Ref. 1. In Sec. III we

develop a formula for the atomic correlation
function of interest and for the fluorescence spec-
trum using the atomic coherent-state representa-
tion. We demonstrate the use of our atomic coher-
ent-state representation for the spectrum by cal-
culating it for a system of five atoms. Even though
we handle- a system consisting of a small number
of atoms, we believe that our results strongly sug-
gest that no more than two-shifted sidebands will
be produced by a sufficiently strong external field.

II. DESCRIPTION OF MODEL

We consider an ensemble of Pf identical two-level
atoms driven by a resonant external field which

couples the ground and excited states into a co-
herent superposition. The model emphasizes only
the coorperative decay mechanism so that compe-
tition between the collective and single-atom decay
modes is not present.

The time evolution of the system is described by
the reduced atomic density operator W, solution
of the master equation

aw/st = -in, [s'+s ,w]-
+2y(s WS+ —~WS'S —~s'S W) . (2.1)

The parameters Q~ and 2y represent the Rabi fre-
quency of the external field and the single-atom

decay rate, respectively. The operators $'
=Q,s,' are the collective dipole operators. Toget.—

her with the atomic energy operator S, =P,s„, they
close under the usual angular momentum commuta-
tion rules

[S', S ] =2S, , [S„S] =+S ()i =1) . (2.2)

The atoms are initially in the ground state prior to
turning on the external field. This circumstance,
together with the conserved nature of the total an-
gular momentum S' =S', + —,'(S'S +S S'), implies
that the atoms. will evolve in the manifold of collec-
tive states of maximum cooperation number. "
The density operator W is then a (2S+1)x (2S+1)
matrix with 2$ =&, where Ã is the number of atoms.

In the analysis of Ref. 1, the starting point was
a system comprised of N two-level atoms (des-
cribed, as usual, in the framework of the angular
momentum algebra), an infinite denumerable num-

ber of field modes for the vacuum field, and a
c-number external field. After adiabatic elimina-
tion of the quantum field variables, the resulting
Heisenberg equations of motion for the expecta-
tion values of the atomic collective operators are
formally identical to the equations of motion for
(S') and (S,) and the the quantum-mechanical Lang-
evin equations" which follow directly from the
master equation (2.1).

In the high-field limit (Ai»N/2), the. Heisen-
berg equations have been reduced to the following
second-order differential equation for the atomic
population difference:

&—(S)+By& (S,)+40)(S)—3y ', S})=0, (2.3)
d' d, dS,

where the brackets {] indicate the equal-time
anticommutator. Equation (2.3) is not a closed
differential equation. If one approximates the
term ((S„S,]) by 2(S,) (S,), a numerical solution
can be obtained in a straightforward way.

This approximation does not appear to be too
drastic for large values of N (and correspondingly
large value of Qi). Still, it is clear that certain
quantum fluctuations are neglected; the effect of
the error on the spectrum of atomic fluctuations
is not easy to assess.

In Fig. 1 we show a comparison between the
numerical solution of Eq. (2.3) after factorization
and the corresponding exact solution for (S,)
derived with the method of Ref. 11 for the same
choice of parameters. It is worth pointing out
that, while the agreement between the exact and

approximate solutions improves for increasing
values of N, we have no convincing evidence that
the atomic fluctuations are described with suf-
ficient accuracy by the above factorization scheme.



AGARWAL, FENG, NARDUCt:I, GILMORE, AND TUFT 20

0,5

0.25

JS,c~)/~) BP 8 . — 8—= —2Qi —(si nyP ) +—(cot8 cos(p P)
Bt I 88 By

8 N . 1 —cosO
+2y ——sxn8 + . — P

8 6 2 2s in|9

8' 1 —cosO - 8' .1 cos49

-0.2 5

O. l 0.2 O.3

FIG. 1. Time evolution of the atomic population dif-
nce per atom @z}jNfor N=1 and QI/y =1 ~ Solid

line represents the exact solution from the master equa-
tion (2.1). Dots represent the solution of the nonlinear
differential equation (2.3) after factorization.

r

(3.2)

The advantage of the mapping technique, of course,
is that this diffusion equation can be treated by
standard methods of Fourier analysis on the Bloch
sphere surface and by exact numerical techniques.

Once the c-number representative P(Q, t) is
known, the expectation values of arbitrary atomic
operators can be calculated directly by simple
quadratures. " For example, the collective atomic
polarization and population inversion are given by

HI. ATOMIC CORRELATIONS AND SPECTRUM

OF FLUCTUATIONS

(S') =
Jl (—,'Nsin9e"")P(Q, t)dQ,

(3.3)

W= dO'„f2 Pn t '",
dQ = s ln9 d 19 dye . (3.1)

The quasi-probability distribution P(Q, t)
=—sinHP(Q, t) is found to satisfy the Fokker-Planck
equation"

A very convenient way to analyze the master
equation (2.1) is by means of its c-number rep-
resentative in the atomic coherent-state represen-
tation. It was pointed out in Ref. 11 that if PJ')
is an atomic coherent state in the subspace of
maximum cooperation number S=N/2, a. c-number
representative function P(Q, t) can be associated
to the atomic density operator W as follows:

(S,) =-
J [-,'Ncose]P(Q, t)dQ.

P(Q, t) =Q Q i™p,(t)Y) (Q),
r =-o Imt

(3.4)

the Fokker-Planck equation (3.2) reduces to the
linear set of coupled equations

As it turns out, the Fourier-expansion method
developed below leads to the atomic expectation
values much more directly, and without the need
for evaluating the integrals over the quasi-prob-
ability distribution function.

It was stated in Ref. 11 that, if one expands the
function. P(Q, t) in terms of spherical harmonics
on the surface of the Bloch sphere

—P,.(~)=-, , l(N —l)P„, — —' [(l+m)(l- m+1)]'"P. . .

—[l(l+1) —m']p, + —i [(I—m)(i+m+1)]" p, „+ 2 I 2
(l+1)(N+l+1)p.Qq (l —m)(l+m)

(3.5)

where 7 =t&.
While an infinite. set of coefficients Pr is 1 e-

(

quired for a complete specification of the density
function P(Q, t), we have shown in Ref. 11 that
only the first (N+ 1)' coefficients for 0 &l &N and
~m I& l are required for an exact description of the
time-dependent atomic expectation values. The
initial conditions for the expansion amplitudes
p, in Eq. (3.4) are

(m(-) )d:d, ., (0)=f P()), 0)(i Y,"()))) d)), -

~m(& l: p, .(O) =O,

I»:P, (0) =arbitrary.

(3.6)

In particular, if the atomic system is initially in
its ground state, the relevant expansion amplitudes
at t = 0 are given by
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2~+ 1 1/2

iml =l~Ã: p . (0) = (3.'l)

It is also easy to verify that as a result of the
orthogonality properties of the spherical harmonics
on the unit sphere, the expectation values of the
collective atomic operators can all be expressed
in terms of the expansion amplitudes. For ex-
ample, we have

(S'(~)/pr) =*,'i (&-7(/3)'~'p, ,(r),
(S,(v)/&) = ——'(4v/3)' 'p, ,(z) . (3.&)

&(~) = »m (S'(f +~)S-(f)), (3.9)

to within a frequency independent scale factor.
A convenient way to calculate the atomic corre-

lation function X(v) has been proposed in Ref. I&

using the atomic coherent-state representation
and certain differential rules of mapping (D

operator calculus). " For the sake of brevity, we

refer to the reader to Ref. 18 for details. Here
we only need to point out that if P,(n, ) and P(n& ~n, )
represent the steady-state solution of the Fokker-

This of course eliminates the need for calculating
the integrals (3.3) or the corresponding generaliza-
tions for arbitrary operators.

%e now turn our attention to the main purpose
of this paper, the calculation of the incoherent part
of the spectrum of resonance fluorescence. As
a result of the linear dependence of the source-
field operators and the atomic polarization, the
spectrum of the fluorescence light is given by
the Fourier transform of the steady-state correla-
tion function

Planck equation (3.2) and its Green's function,
respectively, then the required atomic correlation
function is given by

x( )=f«.«p. (().)xx. -(xx, )()'(xx, x)l(),)1(()IS'Ixx).

(3.10)

In Eq. (3.10) the differential operator K),-, which
acts only on the angular variables H„y0 of the
Green's function; is given by

N 2 ~O ~ S 6)0
g-(n, ) =e '~o —sin8, —sin' —' ——tan —'

2 2 8~0 2 2 8+0

(3.11)

and the diagonal matrix element of 5' has the form

(n ~S+~n) = 2~e'('sin8 = —~A'(&v/3)'~2Y", (n) . (3.12)

The integration in Eq. (3.10) is to be carried out
twice independently over the surface of the unit

sphere. In practice, the calculation of y(7 ) is
simplified considerably by the Fourier decompo-
sition of the density functions P,(n, ) and P(Q7 ~no).

The steady-state solution of the Fokker-Planck
equation is given by Eqs. (3.4) and (3.5) in the
limit y-~. The Green's function, instead, is
expanded in the biorthogonal series

p(n~ ~n,.) = P g i""p', .(~)I', , *(n,)r;(n) .
r, m l , m'

x

(3.13)
x

After substitution of both Fourier expansions (3.4)
and (3.13) in Eq. (3.10), the required atomic cor-
relation function takes the form

Xb') =2 3 Q (-1) pi;-i(~) --'[(1-m)(i+m+1))'"p, , „(")+z(N+1+I) —
2 1 2

I p, , „( )
~ 8& '"

m r m

(l+ m)(l +m + 2)
2(f } (2l + 1)(2 l + 3) P) 1,m++1( "} (3.14)

p', '„'(0)=5. ..5,(-i) ' (3.15)

Some details of the lengthy calculation leading to
Eq. (3.14) are summarized in Appendix B.

Equation (3.14) is our final expression for the
atomic correlation function in terms of the atomic
coherent-state representation. %e only need, to
know the coefficients P', ~(v) and P, («} which can

The time-dependent coefficients P,
'

(w) for fixed
l m' satisfy the same set of differential equations
(3.5) as the expansion coefficients P, (q:) (Appendix

A). Of course, the initial conditions are different:

be obtained from the solution of Eq. (3.5). The
spectrum of the scattered light is related to y(r)
by

S(~)=Re f d X(x)x '". (3.16)

IV. NUMERICAL RESULTS

The spectrum of resonance fluorescence has
been constructed in three steps: First, we have
solved the set of Eqs. (3.5) for the (M+1)' coef-
ficients p, „(r}[l&N, ~m~& l) and w-«. As a second
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Thus, at least as far as the integrated spectrum is
concerned, Amin and Cordes' speculation is well
substantiated.

1/2

x(~)=Z ~"*"' 'd,'",'(~)d.( d Z n, ( )

x dQo Yr Qo s- Oo Yr' ~o B6

APPENDIX A: EQUATIONS OF MOTION OF
EXPANSION COEFFICIENTS &I (r)

The biorthogonal expansion of the Green's func-
tion I'(Q, v~nn) can be cast into the form

The problem is now reduced to the calculation of
the integral

Ir = dAYr O, -A Yr 0

p(n, ~ ~n, )=g ™2p, (T, n, )y, (n),

where

pi (~ Qn) = +2™p')''(r)&p'*(n, )
r'm'

(A1)

(A2)

where

A= — dQF, Q e '@sinH Y,. Q,

(B7)

(B8)

By definition, the coefficients p, (7, Q, ) satisfy the
set of equations (S.5) which we can write in the
symbolic form

B== dn 1' (Q)e ' (1 —cos9)—1
2 r 8g

—p,.(~, n, ) =g z',.p„(~,n, ). (As)

COSO 8

mrna,

+i -- —Y jgjsin8 s (p

After multiplication of Eq. (AS) by 1'„'(Qn) and inte-
gration over Q„one finds

(B9)

The p contribution can be calculated trivially from
the identity

for every pair of indices r, s.

APPENDIX 8: DERIVATION OF EQ. (3.14)

(A4) (l'+m +1)(l'+m'+2)
~

"2
(2l'+1)(2l'+ S)

i(1' —m')(l' —m' —1) &'I'

(21' -1)(2l +1)

(B10)
The starting point of our analysis is the correla-

tion function

1(r)=I dn dnp, (n ) n (n) p(( nv' (n)](n-(d'[n),

(B1)

where

(Bs)

The result is

N (l' +m'+1)(l'+m' +2)
(2 l + 1)(21 +S) i, i'+1 m, m'+1

(l' - m')(l' - m' —1) ' '
(2 l 1)(21 + 1) 1.1'-1 m'+1m

(B11)

The B contribution is a bit more involved and it
appears to require explicit consideration of the
properties of the associated Legendre functions.
lf we let

I'(n, r ~n, ) = p Z 2""p,"„"(~)1',".'(Q, )y';(n),
rm l m'

ym(n) ~ ei m Cpm(g)

( )
2l+1 (l —m)!

47' (l +m)!

(B12)

a) -(Q ) =e )) —sin9 —sin—2 ~02'280 0

and carry out the P integration, we are left with

1 —z
7i&) m&)' m'~m'm 1. d &P, ) -(&) (1 2)1/2-1

i 80 8——tan —'
2 2 8(t)n/

After substituting Eqs. (B2)-(B5) in Eq. (B1) and
carrying out the Q integration, we arrive at

& —z —Pr + m —]. Pr

where we have set z =cosa.
The successive use of the identities

(Bis)
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(1 —z') —p„"=(1 —z2)'I' p"„"—y, zp„",

(1-z')'"p~ '=2 1(p,",-p,"„),
p g+$ p+p

~V 2 +j ~V+1 2 +g~V-1~

(B14)

(B15)

(B16)

The result is

&=»i~&i~'~~, ~-Ji~s -2l 1 ~i ~,i-i

l+2 & 2 (l+m)!
2l+3 ' '"]~ 2l+1 (l —m)!

'

(B17)
leads to a linear combination of integrals that can
be solved immediately from the orthogonality
relation of the associated Legendre functions.

The remaining steps leading to Eq. (3.14) involve
only trivial algebraic manipulations.
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