View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Publications of the IAS Fellows

PHYSICAL REVIEW A 67, 032103 (2003
Minimum-correlation mixed quantum states

G. S. Agarwal
Physics Research Laboratory, Navrangpura, Ahmedabad 380009, India

S. A. Ponomarenko
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 21 October 2002; published 13 March 2003

We consider states leading to the equality sign in the uncertainty inequalities associated with correlations in
open quantum systems which have been recently derived by Ponomarenko ahehyslfRev. 263, 062106
(2001)]. The new inequalities involve fluctuations defined in terms of the square of the density operator that
characterizes mixed states. We find the minimum-correlation states associated with the quadratures of single-
mode and two-mode electromagnetic fields in a cavity and for the angular momentum operators which can
describe atomic degrees of freedom. We show that while in the case of single-mode quadratures the functional
form of the minimum-correlation state is uniquely specified, this is not so for the other pairs of noncommuting
operators. In general, the states with the least amount of correlations are mixed and they exhibit squeezing.
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I. INTRODUCTION AND GENERALIZED UNCERTAINTY To date, several approaches to this problem have been
INEQUALITIES FOR MIXED STATES proposed 7—-10]. One approachi8] consists in deriving un-

certainty inequalities associated with the following non-
The Heisenberg uncertainty principlé] has played an negative quantities:
important role in the development of modern quantum theory
of measuremer|2] and more recently, in research on quan- (AA)?)  =Tr([AA,p]?) (29
tum computation and quantum informati¢8]. The math-
ematical formulation of such a principle was first given by and

Robertson who has derived the now standard uncertainty re- o 2
lation (UR) [4] in the form[5] ((AA)%) _=—Tr([AA,p]2), (2b)

where[A,B], =AB+BA is an anticommutator of a pair of
((AA)?{(AB)?)=1/4([A,B]_)|% (1)  operatorsA and B. The corresponding uncertainty inequali-
ties for a pair of noncommuting operatofsand B can be

h 8] to take the f
Here the angle bracke{s--)=Tr(p- - -) denote the average shown[8] to take the form

over an ensemble of quantum systems that are prepared in ((AA)?)_((AB)?),=|Tr([A,B]_p?)|?, (33
the same state with the density operaiof,] - denotes the
commutator of a pair of operatorsA,B]_=AB—BA, and ((AB)?)_((AA)?) . =|Tr([A,B]_pd)|% (3b)
((AA)?)=((A—(A))?) is the variance of the operaté«

The states that lead to the equality sign in inequalily It follows at once from Eq(2b) that in the basis of the

are the minimum-uncertainty states that can be prepared ueigenstates oA, A|la)=ala), the generalized measure of
der ideal circumstances when the system is isolated from thencertainty((AA)2)_ is given by the expressidiii]

outside world. The minimum-uncertainty states have played

a significant role in quantum optics. In fact, all known co- n 2 N2

herent and squeezed states in quantum optics have been ((AA) >—_g, (a—a’)*l(alpla’)]* (4)
shown to be solutions of a certain eigenvalue problem that ’

arises when a state corresponding to the equality sign in thg is seen from Eq(4) that such a generalized measure of
Heisenberg uncertainty relation is sougbee, for example, uncertainty characterizes the rms width of correlations be-
Ref.[6]). It should be pointed out, however, that, in general,tween pairs of eigenvalues @fin the mixed statg. It can

any preparation of a quantum system involves interaction o&lso be deduced from the definitio(® that in the case of a
the system with the environment, resulting in the system bepure state, the generalized uncertainties reduce to usual vari-
ing prepared in a mixed state. Such a mixed state clearlgnces apart from a numerical factor. The squares of the cor-
cannot lead to the equality sign in inequaliy) because of relation widths((AA)?)_ and((AB)?)_ attain their lower

the additional noise caused by the interaction of the systerfounds for any state whose density operator satisfies the pair
with the environment. In this connection, we recall thatof equationg8]

mixed states are characterized by the fact that the square of

the density operator is not equal to the density operator itself. [AB,p]++iN[AA,p]_=0, (53
It is therefore instructive to explore possible uncertainty in-
equalities involving the square of the density operator. [AA,p],+iu[AB,p]_=0. (5b)
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Here\ and u are arbitrary real constants. d  ué

It should be noted that not only does the pair of inequali- (ﬁ—§+ 7)!)(7],%):0- (8b)
ties (3) provide the information about the structure of a
mixed statg 12] which is, in generaldifferentfrom the in- The solution of Eq(84) is readily obtained in the form
formation contained in the Heisenberg-Robertson inequality,
but the new URs have also a different physical meaning. p(7,6)=f(&)e 1,2/>\, (9)

Inequalities(3) specify lower bounds for the widths of cor-
relations of a pair of noncommuting operators measured 0B that of Eq(8b) takes the form
different replicas of an ensemble of the systems prepared in
the same mixed state. In this connection, a natural question _ —pélla

. ) . ' )= e , 10
arises regarding the structure of tingnimum-correlation p(m.6)=9(n) 0

on noncommuting operators. Eq. (9) and Eq.(10), we obtain for the density matrix of the

In this work, we address this question by consideringmost general minimum-correlation state for ta@ pair the
minimum-correlation states for single- and tWO'mOdeexpression

guadratures of the electromagnetic field and for the angular
momentum operators. In the case of the single-mode field, it
was shown in Ref(8] thateither of inequalities(3) becomes P(X11X2)“GXF{ -
an equality for a squeezed thermal state. In this paper, we

demonstrate that a squeezed Gaussian mixed state is the mashiows at once from Eq(11) that, since the density matrix
generalstate for which the correlation widths of the quadra- ;4 5 function of, andx, does not factorize, the state with

turessimultaneouslyttain their lower bounds. We also dem- i« minimal correlation widths of and ofp must be mixed.

onstrate that.there i; a V\_/hole family of minimum-correlationy,o Wigner functiolW(x,p), of a quantum state is defined
states associated with different two-mode quadratures of th s[14]

field. We then determine minimum-correlation states for the

angular momentum operators, which are often encountered % dx’ -
in a theoretical description of the atomic squeezed states W(x,p)zf 2—p(x—x’/2,x+x’/2) eP*. (12
[13]. We show that such states are, in general, also not —eem

unique and that in a certain range of parameters, they exhibj - .
nonclassical features. 5n substituting from Eq(11) into Eq.(12) and on perform-

ing the straightforward integration, we obtain for the Wigner
function of the minimum-correlation state the expression

(X1 +X)? B (X1—X)?

aN '}

(11)

II. MINIMUM-CORRELATION MIXED STATES

FOR A SINGLE-MODE ELECTROMAGNETIC FIELD X2 p2
W(X,p)cexp — ———|.
(*,p) an g

: . (13
In this case, coordinateand momentunp operators of a
simple harmonic oscillator may serve as the quadrature op-
erators. Assuming, for simplicity, thdk)=(p)=0, we can |t can be concluded from EL3) that as long as ¥+ w and

express Eqs(5) for coordinate and momentum operators in A #=1/4, ageneral minimum-correlation state is a squeezed
the form Gaussian state. Particular cases include squeezed vacuum

and squeezed thermal states. The latter states can be pro-
[X,p].+iN[p,p]_=0 (6a) duced, for example, by degenerate four-wave mixing in a
cavity coupled to a thermal reservoir in order to model re-

[p.pl.+iu[x.p]_=0. (6b) laxation processed 5.

On transforming to coordinate representation in Egs.we IIl. MIXED STATE WITH MINIMUM CORRELATIONS
obtain the pair of equations FOR A TWO-MODE FIELD

Let us introduce the two-mode quadratubgsand X, of

( g 9 XX (7a  the electromagnetic field by the expressions

gt T )<X2|P|X1>:0:
X;=a+b'+a'+b, (14a
J

d
— = —t+tu(X—X
IX; 9%, H(X1—X2)

(X2|p|x1)=0. (7h) X,=(a+b'—al—b)/i. (14b)

The corresponding minimum-correlation state can be found
by solving the pair of equations

[X1.p]+ +iN[Xz,p]-=0, (153

Next, on introducing the variable§=x;—X, and n=(X;
+X5,)/2, we can transform Eq$7) to

—_ 4 —

dn A\

J 2
( T} o(7,6)=0, (8a)

[Xz2,p]4 +iu[Xq,p]-=0, (15b)
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where we have assumed thaf;)=0 and(X,)=0. Intro- Another interesting minimum-correlation state is associ-
ducing the two-mode Husim® function, namely,Q(«,B) ated with the choice of the photon number differeiYgeand
=1n%B,a|p|a,B), and using the properties of coherent the phase differencé, of the two modes as new quadratures
states «,8), we can convert Eqg15) to the pair of differ-  that are defined as
ential equations
Y,=a'a—b'b (203
Q Q
(1-N)aQ+(1+N) —+(1+N)BQ+(1—\) — +c.c. and
da aB
—0, (163 Y,=(a'b—bra)/i. (20b)

Repeating the analysis similar to the one that led to(E8),

(1+M)aQ_(1_IU/)i_Q_(l_M)BQ+(1+M)§_Q_C'C' we obtain for theQ function of the minimum-correlation
@ B state associated withi; andY, the expression
-0 (16 Quol )X~ Al 8% +Ae" B apt)].
21

The analysis of Eqs(16) leads to the conclusion that

these equations have no unique solution. Any particular Sorere A=0 is an arbitrary real constant, and the state with the
lution depends on a functional form & on characteris-  function given by Eq(21) satisfies both equations of the
tics.One can then consider a Gaussian solution. It should B,y (16) providing the conditiol. = — =+ 1. Such a state
noticed, however, that although mathematically a generg known to have no nonclassical propertisse Chap. 5 of
Gaussian function may satisfy Eq46), a physically accept- Ref. [18]), and it can be generated experimentally in the

able solution is restricted to the classes that can be realized B}ocess of parametric up-conversion with the Hamiltonian
experiment. Specifically, any Gaussian solution can be ob-

tained using an appropriate nonlinear process in the unde- Hup:ﬁ(a’fa+ b'b)+7%«(ab'+a'b). (22
pleted pump approximation. Since all such processes are

very sensitive to phase-matching conditions, only one cailere « is a coupling constant.

play a significant role in a particular experimental situation.

This circumstance will dictate a specific realization of a IV. MINIMUM-CORRELATION MIXED STATES
Gaussian state. We will now consider some Gaussian solu- FOR SYSTEMS DESCRIBED BY THE ANGULAR
tions of this kind which can be generated experimentally. MOMENTUM OPERATORS
To this end, let us look for a solution to Eq4.6) in the o )
form In the case of projections, andJ,, [Jy,Jy] =iJ,, say,

of the angular momentum operatd; Egs. (5) for the
Qa(a,B)xexd —A|a|>—B|B|>*+CaB+c.c], (17 minimum-correlation state take the form

where RA=0, ReB=0, andC are yet undetermined pa- [Jx.p]+ +iN[Jy,p]-=0, (2339
rameters. On substituting from E¢L7) into Eqgs.(16), we ]
obtain for theQ function after some algebra, the expression [y.pls +iulIc,p]-=0. (230)
Q.(a, B)<exp — (1—C)[tanhr)| a|2+ coth(r)| 8|2} Here we have assumed, for simplicity, thal,)=0 and
(Jy)=0. On introducing an auxiliary operat&; by the ex-
xexg —C(aB+a*p*)]. (18 pression
HereC is a real constant, and Eqg4.6a and (16b) are sat- R,=Jycosh—iJsinhe, (29

isfied simultaneously provided that= — . We have also
introduced the squeezing paramatsuch thah =e~%". The =~ Where
requirement tha@ function converge for large values [of]| L \
and|B| gives the conditiorC<1/2. _ o
The state specified by th@ function in Eq.(18) is readily coshy= JI—A2 and - sinhy= N (25
recognized as a two-mode squeezed thermal dSthtd
which is a “noisy version” of the two-mode squeezed stateand\ # =1, we can transform Eq233 to
introduced in Ref[17]. Such a state can be shown to be
produced in the process of nondegenerate parametric ampli- Rlp+pR,=0. (26)
fication (see Chap. 5 of Ref.18]) in a cavity coupled to
thermal bath. The Hamiltonian describing this process id-€t us now take a matrix element of EQ6) in the basis of

given by eigenstates oR,. It was shown in Ref[19] that an eigen-
state| ¢, of the operatorR, with the eigenvaluem, —j
H,=#(a'a+b'b)+%g(ab+a'b"), (19 <ms=j, such that
whereg is a coupling constant. Ry my=m| ), (27a
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(W RE= (M (27b)
is given by the expression
[ thm) =exp( 6d)exp(—im/2],)|jm). (28

On substituting from Eqg27) into Eq.(26) and on introduc-
ing the notationpm, m,=(¥m,|p|¥m,), we obtain the equa-

tion

Pml,mz(m1+m2):0- (29

PHYSICAL REVIEW A67, 032103 (2003

Two points are worth making in connection with E(33)
and (34). First of all, for anyj equal to an integer number, a
minimum-correlation state can be either pure or mixed. In
particular, the pure state is realized fpg, —m=poodmos
where &, is the Kronecker delta. The density operator of
such a state is given by the expression

P | o) (tol.

In this casec(j)=0, and it follows at once from the
Heisenberg-Robertson inequality) and from Eqgs(33) that
such a minimum-correlation pure state is a minimum-

(39

It readily follows from Eq.(29) that the density operator of uncertainty state as well. Such a state was shown to be a
the state with the minimal widths of angular momentum cor-steady state for the system of an even nunibef two-level

relations is given by the expression

j
p:m:E—j pm,fm|¢m><¢7m|+H-C- (30

atoms interacting with a broadband squeezed Hat].
However, if j is equal to a half-integer, the minimum-
correlation state must be mixed. We also remark that in order
for the variances ofl, and ofJ, evaluated in a minimum-
correlation state to satisfy inequalityt), the functionc(j)

Herepy, _m is an arbitrary matrix subject only to the Hermi- has to take on values such the§ )/sint? 6<0.

ticity constraint, pjy, -, =p_mm, and the constrain{J,)

=(J,)=0, which we have imposed earlier. The analysis of
Eq. (30), together with the expressions for the first moments
of J, and ofJy, indicates that the latter expressions are equal

to zero in the minimum-correlation state for apy, _p,. It

It should be noticed that the previous approach fails in the
degenerate case corresponding\te =1. In this case, Eq.
233 can be written as

J.p+pl_=0, (36)

can also be shown by a direct substitution that the denSity\/hereJt:ini\]y are the usual raising and lowering opera-

operator given by Eq(30) satisfies Eq.(23b with u=0.

tors. One can readily take the matrix elements of B6) in

Hence Eq. (30 specifies the density operator of the the basis of the Wigner statéjsn) resulting in the equation

minimum-correlation state for both projectiodg andJ, of
the angular momentum.

In order to study nonclassical properties of the minimum-

correlation state, we calculate the variances,oand ofJ, ,

defined by the expressions
(AJ)=Tr(AXp), (313

(AJZ)=Tr(AI;p). (31b

For this purpose, we substitute from EGO) into Egs.(31)
and use the commutation relation

[J.,3.]_=—2J,sinh6é coshd. (32

We then obtain for the variances the expressions
(AJY)=(I)Htanh )12, (333
(AJ3)y=(J,)coth(6)/2—c(j)/sintPo. (33b)

Here the functiorc(j) is defined by the expression

]
mzz_j mzpm,—m< d/—m| l/fm>+ H.c.

c(j)=—5 (34)

m;l pm,—m<(,[f_m| (//m>+ H.c.

\/(] + mz)(j _m2+1)pm1,m2—l

+V(+my)(j—my+ Dpm,-1m,=0, (37
Let us recall the assumption
Tr(Jxp) =Tr(Jyp) =0, (39

which we have made before. EquatidB8) can be rewritten
in the basis of the Wigner states, leading to the result

j
E ) Pm,mflzo- (39

m=—j

Equations(37) and (39) specify the density operator of a
minimum-correlation state in the degenerate case]l.

Since it is difficult to obtain an explicit solution for any
value ofj, we only consider the cases jp£ 1/2 andj=1. In
the first case, the solution of Eq87) and(39) is

p=1/ 1+ o tank( B/2)].

Herel is a unit matrix,o, is a Pauli matrix, angB is defined

by e A=p_Ip., wherep,(p_) is a probability of finding

the system with the spin ufdown). Such a state does not
display any nonclassical features and it can be realized ex-
perimentally, for instance, by placing a sgib/2) particle in

a magnetic field and by letting the system reach equilibrium

(40)

It is seen from Eqgs.(33) that since for real values of with a thermal bath at temperatufie[20].In the case of]
0 tanh#<1, the x component of the angular momentum is =1, the density operator of the minimum-correlation state is

squeezed.

found to be given by the expression
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p, ia -1 mode case features a variety of minimum-correlation states,
. . including a two-mode squeezed thermal state. The nonu-
pr| —la 1 —ia . (4D niqgueness of minimum-correlation states in the two-mode

-1 ia p_; case is due to the fact that we have used only one set of

} ) rotated quadratures rather than two sets. The density operator

Here a is an arbitrary real constant, ami and p_, are  \ould become, of course, more and more specified as more
non-negative real numbers proportional to the probabilitieng more additional constraints are imposed. The structure of
of finding the system in the eigenstates with=1 and with  the minimum-correlation state associated with the angular

J,=—1, respectively. The calculation of the varianceslof  momentum operators has been shown to depend on the value

and ofJy in such a state yields of the angular momenturjp For the integer values gf the

minimum-correlation state can be either pure or mixed,

(AJ%)= 1o i (429  Whereas for the half-integer values ¢f the minimum-
2 1+pitpg correlation state has to be mixed. In both instances, however,
the minimum-correlation state exhibits squeezing in one of
<AJ2)= EJF 312 . (42b) the components of the angular momentum. The minimum-
Yoo 2 1+pitpg correlation states may be expected to be useful in studies of

] ] . decoherence in open quantum systems where the interaction
It can be shown with the help of Eq#t2) that in this par-  jth the environment causes a decay of correlations that are
ticular state{AJZ)=1/2(J,)|, and hence neither of the com- represented by the off-diagonal elements of the density op-
ponents of the angular momentum is squeezed. erators of such quantum systef24].
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