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Minimum-correlation mixed quantum states
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We consider states leading to the equality sign in the uncertainty inequalities associated with correlations in
open quantum systems which have been recently derived by Ponomarenko and Wolf@Phys. Rev. A63, 062106
~2001!#. The new inequalities involve fluctuations defined in terms of the square of the density operator that
characterizes mixed states. We find the minimum-correlation states associated with the quadratures of single-
mode and two-mode electromagnetic fields in a cavity and for the angular momentum operators which can
describe atomic degrees of freedom. We show that while in the case of single-mode quadratures the functional
form of the minimum-correlation state is uniquely specified, this is not so for the other pairs of noncommuting
operators. In general, the states with the least amount of correlations are mixed and they exhibit squeezing.

DOI: 10.1103/PhysRevA.67.032103 PACS number~s!: 03.65.Ta, 42.50.Dv
or
n

by
r

e
d

u
t

ye
o-
be
th

t
,
a
o

b
ar

te
a

re
e
in

een

n-

f
li-

f

of
be-

vari-
cor-

pair
I. INTRODUCTION AND GENERALIZED UNCERTAINTY
INEQUALITIES FOR MIXED STATES

The Heisenberg uncertainty principle@1# has played an
important role in the development of modern quantum the
of measurement@2# and more recently, in research on qua
tum computation and quantum information@3#. The math-
ematical formulation of such a principle was first given
Robertson who has derived the now standard uncertainty
lation ~UR! @4# in the form @5#

^~DA!2&^~DB!2&>1/4u^@A,B#2&u2. ~1!

Here the angle brackets^•••&[Tr(r•••) denote the averag
over an ensemble of quantum systems that are prepare
the same state with the density operatorr; @ ,#2 denotes the
commutator of a pair of operators,@A,B#2[AB2BA, and
^(DA)2&5^(A2^A&)2& is the variance of the operatorA.

The states that lead to the equality sign in inequality~1!
are the minimum-uncertainty states that can be prepared
der ideal circumstances when the system is isolated from
outside world. The minimum-uncertainty states have pla
a significant role in quantum optics. In fact, all known c
herent and squeezed states in quantum optics have
shown to be solutions of a certain eigenvalue problem
arises when a state corresponding to the equality sign in
Heisenberg uncertainty relation is sought~see, for example
Ref. @6#!. It should be pointed out, however, that, in gener
any preparation of a quantum system involves interaction
the system with the environment, resulting in the system
ing prepared in a mixed state. Such a mixed state cle
cannot lead to the equality sign in inequality~1! because of
the additional noise caused by the interaction of the sys
with the environment. In this connection, we recall th
mixed states are characterized by the fact that the squa
the density operator is not equal to the density operator its
It is therefore instructive to explore possible uncertainty
equalities involving the square of the density operator.
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To date, several approaches to this problem have b
proposed@7–10#. One approach@8# consists in deriving un-
certainty inequalities associated with the following no
negative quantities:

^~DA!2&1[Tr~@DA,r#1
2 ! ~2a!

and

^~DA!2&2[2Tr~@DA,r#2
2 !, ~2b!

where@A,B#1[AB1BA is an anticommutator of a pair o
operatorsA and B. The corresponding uncertainty inequa
ties for a pair of noncommuting operatorsA and B can be
shown@8# to take the form

^~DA!2&2^~DB!2&1>uTr~@A,B#2r2!u2, ~3a!

^~DB!2&2^~DA!2&1>uTr~@A,B#2r2!u2. ~3b!

It follows at once from Eq.~2b! that in the basis of the
eigenstates ofA, Aua&5aua&, the generalized measure o
uncertainty^(DA)2&2 is given by the expression@11#

^~DA!2&25 (
a,a8

~a2a8!2u^aurua8&u2. ~4!

It is seen from Eq.~4! that such a generalized measure
uncertainty characterizes the rms width of correlations
tween pairs of eigenvalues ofA in the mixed stater. It can
also be deduced from the definitions~2! that in the case of a
pure state, the generalized uncertainties reduce to usual
ances apart from a numerical factor. The squares of the
relation widths^(DA)2&2 and ^(DB)2&2 attain their lower
bounds for any state whose density operator satisfies the
of equations@8#

@DB,r#11 il@DA,r#250, ~5a!

@DA,r#11 im@DB,r#250. ~5b!
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Herel andm are arbitrary real constants.
It should be noted that not only does the pair of inequ

ties ~3! provide the information about the structure of
mixed state@12# which is, in general,different from the in-
formation contained in the Heisenberg-Robertson inequa
but the new URs have also a different physical meani
Inequalities~3! specify lower bounds for the widths of co
relations of a pair of noncommuting operators measured
different replicas of an ensemble of the systems prepare
the same mixed state. In this connection, a natural ques
arises regarding the structure of theminimum-correlation
states, i.e., the states that satisfy Eqs.~5! for different pairs
on noncommuting operators.

In this work, we address this question by consider
minimum-correlation states for single- and two-mo
quadratures of the electromagnetic field and for the ang
momentum operators. In the case of the single-mode fiel
was shown in Ref.@8# thateitherof inequalities~3! becomes
an equality for a squeezed thermal state. In this paper,
demonstrate that a squeezed Gaussian mixed state is the
generalstate for which the correlation widths of the quadr
turessimultaneouslyattain their lower bounds. We also dem
onstrate that there is a whole family of minimum-correlati
states associated with different two-mode quadratures of
field. We then determine minimum-correlation states for
angular momentum operators, which are often encounte
in a theoretical description of the atomic squeezed st
@13#. We show that such states are, in general, also
unique and that in a certain range of parameters, they ex
nonclassical features.

II. MINIMUM-CORRELATION MIXED STATES
FOR A SINGLE-MODE ELECTROMAGNETIC FIELD

In this case, coordinatex and momentump operators of a
simple harmonic oscillator may serve as the quadrature
erators. Assuming, for simplicity, that^x&5^p&50, we can
express Eqs.~5! for coordinate and momentum operators
the form

@x,r#11 il@p,r#250, ~6a!

@p,r#11 im@x,r#250. ~6b!

On transforming to coordinate representation in Eqs.~6!, we
obtain the pair of equations

S ]

]x1
1

]

]x2
1

x11x2

l D ^x2urux1&50, ~7a!

F ]

]x1
2

]

]x2
1m~x12x2!G^x2urux1&50. ~7b!

Next, on introducing the variablesj5x12x2 and h5(x1
1x2)/2, we can transform Eqs.~7! to

S ]

]h
1

2h

l D r~h,j!50, ~8a!
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S ]

]j
1

mj

2 D r~h,j!50. ~8b!

The solution of Eq.~8a! is readily obtained in the form

r~h,j!5 f ~j!e2h2/l, ~9!

and that of Eq.~8b! takes the form

r~h,j!5g~h!e2mj2/4, ~10!

where f (j) andg(h) are arbitrary functions. On combinin
Eq. ~9! and Eq.~10!, we obtain for the density matrix of the
most general minimum-correlation state for thex,p pair the
expression

r~x1 ,x2!}expF2
~x11x2!2

4l
2m

~x12x2!2

4 G . ~11!

It follows at once from Eq.~11! that, since the density matrix
as a function ofx1 andx2 does not factorize, the state wit
the minimal correlation widths ofx and ofp must be mixed.
The Wigner functionW(x,p), of a quantum state is define
as @14#

W~x,p![E
2`

` dx8

2p
r~x2x8/2, x1x8/2! eipx8. ~12!

On substituting from Eq.~11! into Eq. ~12! and on perform-
ing the straightforward integration, we obtain for the Wign
function of the minimum-correlation state the expression

W~x,p!}expS 2
x2

4l
2

p2

m D . ~13!

It can be concluded from Eq.~13! that as long as 4lÞm and
lm>1/4, ageneral minimum-correlation state is a squeez
Gaussian state. Particular cases include squeezed vac
and squeezed thermal states. The latter states can be
duced, for example, by degenerate four-wave mixing in
cavity coupled to a thermal reservoir in order to model
laxation processes@15#.

III. MIXED STATE WITH MINIMUM CORRELATIONS
FOR A TWO-MODE FIELD

Let us introduce the two-mode quadraturesX1 andX2 of
the electromagnetic field by the expressions

X15a1b†1a†1b, ~14a!

X25~a1b†2a†2b!/ i . ~14b!

The corresponding minimum-correlation state can be fou
by solving the pair of equations

@X1 ,r#11 il@X2 ,r#250, ~15a!

@X2 ,r#11 im@X1 ,r#250, ~15b!
3-2
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where we have assumed that^X1&50 and ^X2&50. Intro-
ducing the two-mode HusimiQ function, namely,Q(a,b)
[1/p2^b,aurua,b&, and using the properties of cohere
statesua,b&, we can convert Eqs.~15! to the pair of differ-
ential equations

~12l!aQ1~11l!
]Q

]a
1~11l!bQ1~12l!

]Q

]b
1c.c.

50, ~16a!

~11m!aQ2~12m!
]Q

]a
2~12m!bQ1~11m!

]Q

]b
2c.c.

50. ~16b!

The analysis of Eqs.~16! leads to the conclusion tha
these equations have no unique solution. Any particular
lution depends on a functional form ofQ on characteris-
tics.One can then consider a Gaussian solution. It shoul
noticed, however, that although mathematically a gen
Gaussian function may satisfy Eqs.~16!, a physically accept-
able solution is restricted to the classes that can be realize
experiment. Specifically, any Gaussian solution can be
tained using an appropriate nonlinear process in the un
pleted pump approximation. Since all such processes
very sensitive to phase-matching conditions, only one
play a significant role in a particular experimental situatio
This circumstance will dictate a specific realization of
Gaussian state. We will now consider some Gaussian s
tions of this kind which can be generated experimentally

To this end, let us look for a solution to Eqs.~16! in the
form

Qa~a,b!}exp@2Auau22Bubu21Cab1c.c.#, ~17!

where ReA>0, ReB>0, andC are yet undetermined pa
rameters. On substituting from Eq.~17! into Eqs.~16!, we
obtain for theQ function after some algebra, the expressi

Qa~a,b!}exp$2~12C!@ tanh~r !uau21coth~r !ubu2#%

3exp@2C~ab1a* b* !#. ~18!

HereC is a real constant, and Eqs.~16a! and ~16b! are sat-
isfied simultaneously provided thatl52m. We have also
introduced the squeezing parameterr such thatl5e22r . The
requirement thatQ function converge for large values ofuau
and ubu gives the conditionC<1/2.

The state specified by theQ function in Eq.~18! is readily
recognized as a two-mode squeezed thermal state@16#,
which is a ‘‘noisy version’’ of the two-mode squeezed sta
introduced in Ref.@17#. Such a state can be shown to
produced in the process of nondegenerate parametric am
fication ~see Chap. 5 of Ref.@18#! in a cavity coupled to
thermal bath. The Hamiltonian describing this process
given by

Ha5\~a†a1b†b!1\g~ab1a†b†!, ~19!

whereg is a coupling constant.
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Another interesting minimum-correlation state is asso
ated with the choice of the photon number differenceY1 and
the phase differenceY2 of the two modes as new quadratur
that are defined as

Y15a†a2b†b ~20a!

and

Y25~a†b2b†a!/ i . ~20b!

Repeating the analysis similar to the one that led to Eq.~18!,
we obtain for theQ function of the minimum-correlation
state associated withY1 andY2 the expression

Qup~a,b!}exp@2A~ uau21ubu2!1A~a* b1ab* !#.
~21!

HereA>0 is an arbitrary real constant, and the state with
Q function given by Eq.~21! satisfies both equations of th
pair ~16! providing the conditionl52m561. Such a state
is known to have no nonclassical properties~see Chap. 5 of
Ref. @18#!, and it can be generated experimentally in t
process of parametric up-conversion with the Hamiltonia

Hup5\~a†a1b†b!1\k~ab†1a†b!. ~22!

Herek is a coupling constant.

IV. MINIMUM-CORRELATION MIXED STATES
FOR SYSTEMS DESCRIBED BY THE ANGULAR

MOMENTUM OPERATORS

In the case of projections,Jx andJy , @Jx ,Jy#25 iJz , say,
of the angular momentum operatorJ, Eqs. ~5! for the
minimum-correlation state take the form

@Jx ,r#11 il@Jy ,r#250, ~23a!

@Jy ,r#11 im@Jx ,r#250. ~23b!

Here we have assumed, for simplicity, that^Jx&50 and
^Jy&50. On introducing an auxiliary operatorRz by the ex-
pression

Rz5Jxcoshu2 iJysinhu, ~24!

where

coshu[
1

A12l2
and sinhu[2

l

A12l2
, ~25!

andlÞ61, we can transform Eq.~23a! to

Rz
†r1rRz50. ~26!

Let us now take a matrix element of Eq.~26! in the basis of
eigenstates ofRz . It was shown in Ref.@19# that an eigen-
state ucm& of the operatorRz with the eigenvaluem, 2 j
<m< j , such that

Rzucm&5mucm&, ~27a!
3-3
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^cmuRz
†5^cmum ~27b!

is given by the expression

ucm&5exp~uJz!exp~2 ip/2Jy!u jm&. ~28!

On substituting from Eqs.~27! into Eq.~26! and on introduc-
ing the notationrm1 ,m2

[^cm2
urucm1

&, we obtain the equa
tion

rm1 ,m2
~m11m2!50. ~29!

It readily follows from Eq.~29! that the density operator o
the state with the minimal widths of angular momentum c
relations is given by the expression

r5 (
m52 j

j

rm,2mucm&^c2mu1H.c. ~30!

Hererm,2m is an arbitrary matrix subject only to the Herm
ticity constraint, rm,2m* 5r2m,m , and the constraint̂ Jx&
5^Jy&50, which we have imposed earlier. The analysis
Eq. ~30!, together with the expressions for the first mome
of Jx and ofJy , indicates that the latter expressions are eq
to zero in the minimum-correlation state for anyrm,2m . It
can also be shown by a direct substitution that the den
operator given by Eq.~30! satisfies Eq.~23b! with m50.
Hence Eq. ~30! specifies the density operator of th
minimum-correlation state for both projectionsJx andJy of
the angular momentum.

In order to study nonclassical properties of the minimu
correlation state, we calculate the variances ofJx and ofJy ,
defined by the expressions

^DJx
2&5Tr~DJx

2r!, ~31a!

^DJy
2&5Tr~DJy

2r!. ~31b!

For this purpose, we substitute from Eq.~30! into Eqs.~31!
and use the commutation relation

@J18 ,J28 #2522Jzsinhu coshu. ~32!

We then obtain for the variances the expressions

^DJx
2&5^Jz&tanh~u!/2, ~33a!

^DJy
2&5^Jz&coth~u!/22c~ j !/sinh2u. ~33b!

Here the functionc( j ) is defined by the expression

c~ j ![

(
m52 j

j

m2rm,2m^c2mucm&1H.c.

(
m52 j

j

rm,2m^c2mucm&1H.c.

. ~34!

It is seen from Eqs.~33! that since for real values o
u tanhu<1, the x component of the angular momentum
squeezed.
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Two points are worth making in connection with Eqs.~33!
and~34!. First of all, for anyj equal to an integer number,
minimum-correlation state can be either pure or mixed.
particular, the pure state is realized forrm,2m5r00dm0,
wheredmn is the Kronecker delta. The density operator
such a state is given by the expression

r}uc0&^c0u. ~35!

In this casec( j )50, and it follows at once from the
Heisenberg-Robertson inequality~1! and from Eqs.~33! that
such a minimum-correlation pure state is a minimu
uncertainty state as well. Such a state was shown to b
steady state for the system of an even numberN of two-level
atoms interacting with a broadband squeezed bath@13#.
However, if j is equal to a half-integer, the minimum
correlation state must be mixed. We also remark that in or
for the variances ofJx and of Jy evaluated in a minimum-
correlation state to satisfy inequality~1!, the functionc( j )
has to take on values such thatc( j )/sinh2 u<0.

It should be noticed that the previous approach fails in
degenerate case corresponding tol561. In this case, Eq.
~23a! can be written as

J1r1rJ250, ~36!

whereJ65Jx6 iJy are the usual raising and lowering oper
tors. One can readily take the matrix elements of Eq.~36! in
the basis of the Wigner statesu jm& resulting in the equation

A~ j 1m2!~ j 2m211!rm1 ,m221

1A~ j 1m1!~ j 2m111!rm121,m2
50, ~37!

Let us recall the assumption

Tr~Jxr!5Tr~Jyr!50, ~38!

which we have made before. Equations~38! can be rewritten
in the basis of the Wigner states, leading to the result

(
m52 j

j

rm,m2150. ~39!

Equations~37! and ~39! specify the density operator of
minimum-correlation state in the degenerate case,l51.

Since it is difficult to obtain an explicit solution for an
value ofj, we only consider the cases ofj 51/2 andj 51. In
the first case, the solution of Eqs.~37! and ~39! is

r51/2@ I 1sztanh~b/2!#. ~40!

HereI is a unit matrix,sz is a Pauli matrix, andb is defined
by e2b5r2 /r1 , wherer1(r2) is a probability of finding
the system with the spin up~down!. Such a state does no
display any nonclassical features and it can be realized
perimentally, for instance, by placing a spin-~1/2! particle in
a magnetic field and by letting the system reach equilibri
with a thermal bath at temperatureT @20#.In the case ofj
51, the density operator of the minimum-correlation state
found to be given by the expression
3-4
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r}S p1 ia 21

2 ia 1 2 ia

21 ia p21

D . ~41!

Here a is an arbitrary real constant, andp1 and p21 are
non-negative real numbers proportional to the probabili
of finding the system in the eigenstates withJz51 and with
Jz521, respectively. The calculation of the variances ofJx
and ofJy in such a state yields

^DJx
2&5

1

2
2

1/2

11p11p21
, ~42a!

^DJy
2&5

1

2
1

3/2

11p11p21
. ~42b!

It can be shown with the help of Eqs.~42! that in this par-
ticular state,̂ DJx

2&>1/2u^Jz&u, and hence neither of the com
ponents of the angular momentum is squeezed.

V. CONCLUSIONS

We conclude by saying that we have determined the st
with the minimal widths of correlations of a pair of noncom
muting operators for the cases of single- and two-mo
quadratures of the electromagnetic field and for the cas
the angular momentum operators. Only in the single-m
case has the minimum-correlation state been found to ha
unique functional form of a squeezed Gaussian. The t
t

-

ot

B
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mode case features a variety of minimum-correlation sta
including a two-mode squeezed thermal state. The no
niqueness of minimum-correlation states in the two-mo
case is due to the fact that we have used only one se
rotated quadratures rather than two sets. The density ope
would become, of course, more and more specified as m
and more additional constraints are imposed. The structur
the minimum-correlation state associated with the angu
momentum operators has been shown to depend on the v
of the angular momentumj. For the integer values ofj, the
minimum-correlation state can be either pure or mixe
whereas for the half-integer values ofj, the minimum-
correlation state has to be mixed. In both instances, howe
the minimum-correlation state exhibits squeezing in one
the components of the angular momentum. The minimu
correlation states may be expected to be useful in studie
decoherence in open quantum systems where the intera
with the environment causes a decay of correlations that
represented by the off-diagonal elements of the density
erators of such quantum systems@21#.
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