On Trace Zero M atrices

V S Sunder is at the Institute of M athematical Sciences, Chennai.
${ }^{1}$ This result is known - see [1] as the Toeplitz-Hausdorff theorem; in the statement of the theorem, we use standard set-theoretical notation, whereby $x \in S$ means that x is an element of the set S.

Keywords

Inner product, commutator, convex set, Hilbert space, bounded linear operator, numerical range.

V S Sunder

In this note, we shall try to present an elem entary proof of a couple of closely related results which have both proved quite useful, and also indicate possible generalisations. T he results we have in m ind are the follow ing facts:
(a) A complex $n £ n \mathrm{~m}$ atrix A has trace 0 if and only if it is expressible in the form $A=P Q ; Q P$ for som e $P ; Q$.
(b) T he num erical range of a bounded linear operator T on a com plex H ilbert space H, which is de- ned by

$$
\text { W }(T)=\text { fhT x;xi:x } 2 \mathrm{H} ; \dot{J} \dot{\mathrm{~J}} \dot{\mathrm{j}}=1 \mathrm{~g} ;
$$

is a convex set ${ }^{1}$.
W e shall attem pt to m ake the treatm ent easypaced and self-contained. (In particular, all the term s in 'facts (a) and (b)' above w ill be described in detail.) So we shall begin with an introductory section pertaining to m atrices and inner product spaces. This introductory section m ay be safely skipped by those readers w ho may be already acquainted w ith these topics; it is intended for those readers w ho have been den ied the pleasure of these acquaintances.

M atrices and Inner-product Spaces
An m $£ \mathrm{~nm}$ atrix is a rectangular array of num bers of the form

W e shall som etim es sim ply w rite $A=\left(\left(a_{i j}\right)\right)$ as shorthand for the above equation and refer to $a_{i j}$ as the entry in the i-th row and j th column of the m atrix A. T he m atrix A is said to be a complex $m £ n m$ atrix if (as in (1)) A is a matrix w ith m row s and n colum $n s$ all of w hose entries a_{ij} are com plex num bers. In sym bols, we shall express the last sentence as

$$
\text { A } 2 M_{m £ n}(C), a_{i j} 2 C \text { forall } 1 \cdot i ; j \cdot n:
$$

(C learly, we m ay sim ilarly talk about the sets $M_{m £ n}(R)$ and $M_{m} £_{n}(Z)$ ofm $£ n$ realor integralm atrices, respectively; ${ }^{2}$ but we shall restrict ourselves henceforth to com plex m atrices.)

The collection $M_{m} £_{n}(C)$ has a natural stnucture of a com plex vector space in the sense that if $A=\left(\left(a_{i j}\right)\right) ; B=$ $\left(\left(b_{i j}\right)\right) 2 M_{m £ n}(C)$ and, $2 C$, we m ay de-ne the linear combination, $A+B 2 M_{m \neq n}(C)$ to be the m atrix w ith $(i ; j)$-th entry given by , $a_{i j}+b_{i j}$. (The 'zero' of this vector space is the $m £ n \mathrm{~m}$ atrix all of w hose entries are 0 ; this `zero m atrix ' w ill be denoted sim ply by 0 .)

G iven two m atrioes whose `sizes are suitably com patible', they m ay be multiplied. T he product AB of two m atrices A and B is de ${ }^{-}$ned only if there are integers $\mathrm{m} ; \mathrm{n} ; \mathrm{p}$ such that $\mathrm{A}=\left(\left(\mathrm{a}_{\mathrm{ik}}\right)\right) 2 \mathrm{M}_{\mathrm{m} £ \mathrm{n}}, B=\left(\left(\mathrm{b}_{\mathrm{kj}}\right)\right) 2$ $M_{n £ p}$; in that case AB $2 M_{m £ p}$ is de- ned as the m atrix ($\left.\left(C_{i j}\right)\right)$ gíven by

$$
\begin{equation*}
\mathrm{c}_{\mathrm{ij}}=\mathrm{X}_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}} \mathrm{~b}_{\mathrm{kj}}: \tag{2}
\end{equation*}
$$

U nlike the case of usual num bers, m atrix m ultiplication is not `com m utative'. For instance, if we set
then it m ay be seen that $A B \in B A$.
${ }^{2}$ M ore generally, for any ring R, we may talk of the set $M_{m} \times n(R)$ of all $m \times n$ matrices with entries coming from R. This is also a ring with respect to addition and multiplication as defined above, provided $m=n$.

Thew ay to think aboutm atrices and understand m atrixm ultiplication is geom etrically. W hen viewed properly, the reason for the validity of the exam ple of the previous paragraph is this: if T_{A} denotes the operation of 'counterclockw ise rotation of the plane by 90° ', and if T_{B} denotes ¡projection onto the x-axis', then $\mathrm{T}_{\mathrm{A}} \pm \mathrm{T}_{\mathrm{B}}$, the result ofdoing $T_{B}{ }^{-}$rst and then T_{A}, is not the sam e as $T_{B} \pm T_{A}$, the result ofdoing $\mathrm{T}_{\mathrm{A}}{ }^{-}$rst and then T_{B}. (For instance, if $\mathrm{x}=(1 ; 0)$, then $\mathrm{T}_{\mathrm{B}}(\mathrm{x})=\mathrm{x} ; \mathrm{T}_{\mathrm{A}}(\mathrm{x})=\mathrm{T}_{\mathrm{A}} \pm \mathrm{T}_{\mathrm{B}}(\mathrm{x})=(0 ; 1)$ while $\left.T_{B} \pm T_{A}(x)=(0 ; 0).\right)$

Let us see how this 'algebra-geom etry' nexus goes. T he correspondence

$$
\begin{aligned}
& Z_{n}
\end{aligned}
$$

setsup an identi- cation betw een C^{n} and $\mathrm{M}_{\mathrm{nf} 1}$ (C) , which is an 'isom onphism of com plex vector spaces' \{ in the sense that

$$
, z+z^{0}=, \hat{z}+\hat{z}^{0}
$$

N ow, iff $2 \mathrm{Mm}_{\mathrm{m}} \mathrm{n}$ (C), consider the m apping $\mathrm{T}_{\mathrm{A}}: \mathrm{C}^{\mathrm{n}}$! C^{m} which is de-ned by the requirem ent that if $\mathrm{z} 2 \mathrm{C}^{\mathrm{n}}$, then

$$
\begin{equation*}
\mathrm{T}_{\mathrm{A}}(\mathrm{z})=\mathrm{A} \hat{z} \tag{5}
\end{equation*}
$$

w here $A \mathcal{z}$ denotes them atrix product ofthem $£ \mathrm{~nm}$ atrix A and then $£ 1 \mathrm{~m}$ atrix \hat{Z}. It is then not hard to see that T_{A} is a linear transform ation from C^{n} to C^{m} : i.e., T_{A} satis ${ }^{-}$es the algebraic requirem ent ${ }^{3}$ that

$$
T_{A}(, x+y)=, T_{A}(x)+T_{A}(y) \text { for all } x ; y 2 C^{n}:
$$

The im portance ofm atriges stem sfrom the fact that the converse statem ent is true; i.e., if T is a linear transform ation from C^{n} to C^{m}, then there is a unique m atrix

A $2 \mathrm{Mm}_{\mathrm{m}}^{\mathrm{n}} \mathrm{C}(\mathrm{C})$ such that $\mathrm{T}=\mathrm{T}_{\mathrm{A}}$. To see this, consider the collection $f e_{1}^{(n)} ; e_{2}^{(n)} ; \dot{\bar{c}} \dot{\xi} ; e_{n}^{(n)} g$ of vectors in C^{n} de-- ned by the requirem ent that $e_{j}^{(n)}$ has j-th coordinate equalto 1 and allother coordinates zero. T he collection $f e_{1}^{(n)} ; e_{2}^{(n)} ; \dot{\xi} \dot{ } ; e_{n}^{(n)} g$ is usually referred to as the standard basis for C^{n} : note that

$$
z=X_{i=1}^{X^{n}}, i e_{i}^{(n)}, \quad z=(, 1 ;, 2 ; \dot{\text { ¢ }} ; ;, n):
$$

Since $\mathrm{fe}_{\mathrm{i}}^{(\mathrm{m})}: 1$ • i•mg is the standard basis, we see that the linear transform ation T uniquely determ ines num bers $\mathrm{a}_{\mathrm{ij}} 2 \mathrm{C}$ such that

$$
\begin{equation*}
T e_{j}^{(n)}=X_{i=1}^{X^{m}} a_{i j} e_{i}^{(m)} \text { for all } 1 \cdot j \cdot n: \tag{6}
\end{equation*}
$$

If we put $A=\left(\left(a_{i j}\right)\right)$, then the de ${ }^{-}$nition of T_{A} show s that also

$$
T_{A} e_{j}^{(n)}=X_{i=1}^{X^{m}} a_{i j} e_{i}^{(m)} \text { for all } 1 \cdot j \cdot n ;
$$

and hence, for any $z=(, 1 ;, 2$; $\ddagger \xi \xi ;$ n $) 2 C n$, we deduce from linearity that

$$
\begin{aligned}
& \operatorname{Tz}=T\left(X_{j=1}^{X^{n}}, j e_{j}^{(n)}\right)=X_{j=1}^{X^{n}}, j\left(T e_{j}^{(n)}\right)=X_{j=1}^{X^{n}}{ }_{j}^{X^{n}} a_{i=1} e_{i}^{(m)} \\
& =X_{j=1}^{X^{n}}, j\left(T_{A} e_{j}^{(n)}\right)=T_{A}\left(X_{j=1}^{X^{n}}, j e_{j}^{(n)}\right)=T_{A} z:
\end{aligned}
$$

Thus, we do indeed have a bijective correspondence between $M_{m £ n}(C)$ and the collection $L\left(C^{n} ; C^{m}\right)$ of linear transform ations from C^{n} to C^{m}. N ote that the m atrix corresponding to the linear transform ation T is obtained by taking the j th colum n as the (m atrix of coet cients of the) im age under T of the j-th standard basis vector. Thus, the transform ation of C^{2} corresponding to

The inner product allows us to 'algebraically' describe distances and angles.
'counter-clockw ise rotation by 90° ' is seen to m ap $e_{1}^{(2)}$ to $e_{2}^{(2)}$, and $e_{2}^{(2)}$ to $i e_{1}^{(2)}$, and the associated m atrix is the m atrix A of (3). (T he reader is urged to check sim ilarly that the m atrix B of (3) does indeed correspond to 'perpendicular projection onto the x-axis'.)

Finally, if $A=\left(\left(a_{i k}\right)\right) 2 M_{m £ n}(C)$ and $B=\left(\left(b_{k j}\right)\right) 2$ $M_{n £ p}(C)$, then we have $T_{A}: C^{n}!C^{m}$ and $T_{B}: C{ }^{p}$! $\mathrm{C}{ }^{\mathrm{n}}$, and consequently `com position ' yields the map $\mathrm{T}_{\mathrm{A}} \pm$ $T_{B}: C^{p}!C^{m}$. A m om ent's re ${ }^{\circ}$ ection on the prescription (contained in the second sentence of the previous paragraph) for obtaining the m atrix corresponding to the com posite m ap $T_{A} \pm T_{B}$ show sthe follow ing: m ultiplication of m atrices is de-ned the way it is, precisely because we have:

$$
\mathrm{T}_{\mathrm{AB}}=\mathrm{T}_{\mathrm{A}} \pm \mathrm{T}_{\mathrm{B}}:
$$

(This justi- es our rem arks in the paragraph follow ing (3).)

In addition to being a com plex vector space, the space C^{n} has another structure, nam ely that given by its `inner product'. The inner product of two vectors in C^{n} is the com plex num ber de- ned by

T he rationale for consideration of this "inner product' stem s from the observation \{ which relies on basic facts
 R^{2}, and if one writes $O ; X$ and Y for the points in the plane w ith C artesian 00 -ordinates $(0 ; 0) ;\left(2 \eta_{1} ; \varkappa_{2}\right)$ and (${ }_{1} ;{ }^{\prime}{ }_{2}$) respectively, then one has the identity
hx;yi= jox jo Y jcos (angleX OY):

The point is that the inner product allow s us to 'algebraically' describe distances and angles.

If $x 2 \mathrm{C}^{n}$, it is custom ary to de^{-}ne

$$
\begin{equation*}
\ddot{j} x \ddot{j}=(h x ; x i)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

and to refer to $\bar{J} x \mathfrak{j} j$ as the norm of x. (In the notation of the previous exam ple, we have $\bar{j} x \ddot{j}=j 0 x j$ j.)

O ne - nds m ore generally (see [1], for instance) that the follow ing relations hold for all x;y $2 \mathrm{C}^{\mathrm{n}}$ and, 2 C :

2 j̈x $\dot{j}, ~ 0$, and $\mathfrak{j} \dot{x} \dot{j}=0, x=0$
2 并 $x \ddot{j}=j_{\Delta} j \dot{j} \dot{j} \dot{j}$
2 (C auchy\{Schwarz inequality)

M ore abstractly, one has the follow ing de-nition:
DEFINITION 1. A com plex inner product space is a complex vector space, say V, which is equipped with an 'inner product'; i.e., for any two vectors xiy 2 V , there is assigned a com plex num ber $\{$ denoted by hx;yi and called the inner product of x and y; and this inner product is required to satisfy the follow ing requirem ents,

$P_{2}\left(\right.$ a) (sesquilinearity) $h^{P}{ }_{i=1}, i X_{i} ;^{P}{ }_{j=1}{ }^{1}{ }_{j} Y_{j} i=$ ${\underset{i}{i} j=1}_{2} i^{T_{j}}{ }_{j} \mathrm{hx}_{\mathrm{i}} ; \mathrm{Y}_{\mathrm{j}} \mathrm{i}$
(b) (Hem 五ian sym m etry) hx;yi $=\overline{h y ; x i}$
(c) (P ositive de-niteness) hx;yi , 0, and hx;xi=0, $\mathrm{x}=0$.

The statem ent ${ }^{\wedge}{ }^{n}$ is the prototypical n-dim ensional com plex inner product space' is a crisper, albeit less precise version of the follow ing fact (which m ay be found in basic texts such as [1], for instance):

PROPOSITION 2. If V_{1} and V_{2} are n-dim ensional vector spaces equipped with an inner product denoted by h ${ }^{\prime} ; \mathrm{c}_{\mathrm{V}_{1}}$ and $\mathrm{h} \boldsymbol{c}_{;} \mathrm{ci}_{\mathrm{V}_{2}}$, then there exists a m apping $\mathrm{U}: \mathrm{V}_{1}$! V_{2} satisfying:
(a) U is a linearm ap (i.e., $U(, x+y)=, U x+U y$ for all $x ; y 2 V_{1}$); and
(b) $h \mathrm{Xx} ; \mathrm{U} y i_{\mathrm{V}_{2}}=h x ; y i_{\mathrm{V}_{1}}$ for all $x ; y 2 \mathrm{~V}_{1}$.
M oreover, a such a m apping U is necessarily a $1-1 \mathrm{~m}$ ap of V_{1} onto V_{2}, and the inverse m apping $U^{i}{ }^{1}$ is necessarily also an inner product preserving linear m apping. A mapping such as U above is called a unitary operator from V_{1} to V_{2}.

In particular, we m ay apply the above proposition w ith $V_{1}=C^{n}$ and any n-dim ensional inner product space $V=V_{2}$. The follow ing lem m a and de- nition are fiundam ental. (W e om it the proof which is not di+ alt and m ay be found in [1], for instance. The reader is urged to try and w rite down the proof of the im plications (i), (ii).)

LEMMA 3. Let V be an n-dim ensional inner product
 of vectors in V are equivalent:
(i) there exists a unitary operator $U: C^{n}$! V such that $V_{i}=U e_{i}^{(n)}$ for all i.
(ii) $h_{v_{i}} ; v_{j} i= \pm_{i j}=\quad \begin{aligned} & 1 \\ & \text { if } i=j \\ & 0 \\ & \text { if } i \notin j\end{aligned}$.
 sis for V if it satis es the above conditions.
 m albasis for V, then it is easy to see that

N ow if $\mathrm{T}: \mathrm{V}$! V is a linear transform ation on V , the action of $\mathrm{T} m$ ay be encoded, w th respect to the basis $\mathrm{fv}_{\mathrm{i}} \mathrm{g}$, by the m atrix $A 2 \mathrm{M}_{\mathrm{nf}} \mathrm{n}(\mathrm{C}) \mathrm{de}^{-}$ned by

$$
a_{i j}=h T v_{j} ; v_{i} i:
$$

W e shall call A the m atrix representing T in the basis

It is naturalto callan $n £ n \mathrm{~m}$ atrix unitary ifit represents a unitary operator $\mathrm{U}: \mathrm{V}$! V in some orthonorm al basis; and it is not too di+ cult to show that a m atrix is unitary if and only if its colum ns form an orthonorm al basis for C^{n}.

M ore or less.by de ${ }^{-}$nition, we see that ifA; $\mathrm{B}_{2} \mathrm{Mnnn}_{\mathrm{nf}}(\mathrm{C})$, the follow ing conditions are equivalent:
(a) there exists a linear transform ation $\mathrm{T}: \mathrm{V}$! V such that A and B represent T w ith repect to two orthonorm al.bases;
(b) there exists a unitary m atrix U such that $B=$ UAU ${ }^{i 1}$.

In (b) above, the $\mathrm{U}^{i}{ }^{1}$ denotes the unique m atrix whidh serves as them ultiplicative inverse of them atrix U. (Recall that the m ultiplicative identity is given by the m atrix I_{n} whose (ij) th entry is $\pm_{i j}$ (de ned in Lem ma 3 (ii) above); and that the m atrix representing an operator is invertible if and only if that operator is invertible.)

Finally recall that the trace of a matrix A $2 \mathrm{Mn}_{\mathrm{n}}(\mathrm{C})$ is de ${ }^{-}$ned by ${ }^{4}$

$$
\operatorname{Tr} A=\operatorname{Tr} A=X_{i=1}^{\mathrm{X}_{\mathrm{n}}} \mathrm{a}_{\mathrm{ii}}
$$

and recall the follow ing basic property of the trace:
PROPOSITION 4. Suppose A $2 \mathrm{Mm}_{\mathrm{m}} \mathrm{n}$ (C);
B $2 \mathrm{M}_{\mathrm{n} £ \mathrm{~m}}(\mathrm{C})$. Then,

$$
T r_{m} A B=T r_{n} B A:
$$

${ }^{4}$ Here and in the sequel, we shall write M_{n} instead of $M_{n} \times n$.

In particular, if C; $S 2 \mathrm{Mn}_{\mathrm{n}}(\mathrm{C})$ and if S is invertible, then

$$
\operatorname{TrSCS}{ }^{i 1}=\operatorname{TrC} ;
$$

T he second identily follow s from the ${ }^{-1}$ rst, since

$$
\operatorname{TrSCS}{ }^{1}=\operatorname{TrCS}{ }^{i} S=\operatorname{TrC} I_{\mathrm{n}}=\operatorname{TrC}:
$$

O n C om m utators, N um erical R anges and Zero D iagonals

W e w ish to discuss elem entary proofs of the follow ing three well know n results:
(A) A square com plex matrix A has trace zero if and only if it is a commutator $\{$ i.e., $A=B C i C B$, for some B; C .
(B) If T is a linear operator on an inner product space V , then its num erical range W (T) = fhTx;xi : x 2 V; $\bar{j} \dot{x} j \mathfrak{j}=1 g$ is a convex set.
(C) A matrix A $2 \mathrm{M}_{\mathrm{n}}$ (C) has trace zero if and only if there exists a unitary matrix $U 2 M_{n}(C)$ such that $\mathrm{UAU}{ }^{i}{ }^{1}$ has all entries on its im ain diagonal' equal to zero.

A s for the arrangem ent of the proof, we shall show that (C) follows from (B), which in tum is a consequence of the case $\mathrm{n}=2$ of (C). So as to be logically consistent, we shall ${ }^{-}$rst prove (C) when $n=2$, then derive (B), then deduce (C) for general n, and -nally deduce (A) from (C). Further, since the 'if' parts of both (A) and (C) are im m ediate (given the truth ofP roposition 4), we shall only be concemed w ith the `only if' parts of these statem ents.

O ur proofs will not be totally self-contained; we will need one 'standard fact' from linear algebra. T hus, in the proof of Lem m a 5 below, we shall need the fact \{ at least in two-dim ensions \{ that every com plex m atrix has an 'upper triangular form '.

In the follow ing proofs, we shall interchangeably think about elem ents of $M_{n}(C)$ as linear operators on C^{n} (or equivalently, on som en-dim ensionalcom plex innerproduct space w th a distinguished orthonorm albasis) .

LEMMA 5. IfA $2 \mathrm{M}_{2}(\mathrm{C})$ and $\operatorname{Tr} A=0$, then there exists a unitary matrix U $2 \mathrm{M}_{2}$ (C) such that

$$
\mathrm{UAU}^{i 1}=\begin{array}{lll}
\mu \\
0 & \alpha^{\boldsymbol{I}} \\
\alpha & 0
\end{array} \quad:
$$

P roof: To start w ith, we appeal to the fact \{ see [1], for instance $\{$ that every com plex square m atrix has an upper triangular form ' w ith respect to a suitable orthonorm al basis; in other words, there exists a unitary m atrix $U_{1} 2 M_{2}(C)$ such that

$$
\mathrm{U}_{1} \mathrm{AU}_{1}^{\mathrm{i}^{1}}=\begin{align*}
& \mu \tag{9}\\
& \mathrm{a} \mathrm{~b}^{\mathrm{I}} \\
& 0 \mathrm{c}
\end{align*}
$$

N ote \{ by Proposition 4 \{ that

$$
a+c=\operatorname{Tr}_{1} A U_{1}^{i 1}=\operatorname{Tr} A=0 ;
$$

and soc= $\mathrm{c}=$ a. In case $\mathrm{a}=0$, wem ay take $\mathrm{U}=\mathrm{U}_{1}$ and the proof w illbe com plete.

So suppose a 0 . This hypothesis guarantees that the m atrix A has the distinct `eigenvalues' a and ; a; i.e., we can ${ }^{-}$nd vectors $x ; y$ ofnorm 1 such that $U_{1} A U_{1}^{i}{ }^{1} x=a x$ and $U_{1} A U_{1}{ }^{1} y=j$ ay. In fact, $x=e_{1}^{(2)}$ and $y=p e_{1}^{(2)}+$ $q_{2}^{(2)}$ for suitable p and $q w$ th $q \in 0$ (since $\left.a \in 0\right)$. Thus x and y are lineary independent. Now, if $\circledR^{\circledR} ;^{-} 2 C$, we have:
$\mathrm{hU}_{1} A \mathrm{U}_{1}{ }^{1}\left(\Omega \mathrm{x}+{ }^{-} \mathrm{Y}\right) ;\left(\Omega \mathrm{x}+{ }^{-} \mathrm{Y}\right) \mathrm{i}$
$=a h\left(\Omega x i^{-} y\right) ;\left(\Omega x+{ }^{-} y\right) i$

N ow pick $\circledR^{\circledR} ;^{-}$to satisfy $\bigotimes^{\circledR} j=j j=1$ and $\operatorname{Im} \circledR^{1} h x ; y i=$ 0 \{ which is clearly possible. Independence of x and y and the fact that $\circledR^{-}{ }^{-} 0$ guarantee that $w=\circledR x+{ }^{-} y \in$ 0. Then, $h U_{1} A U_{1}{ }^{i}{ }^{1} w ; w i=0$.

Let $u_{1}=\frac{w}{j \hat{j} w j}$, and let u_{2} be a unit vector orthogonal to u_{1}. Let U_{2} be the unitary operator on C^{2} such that $U_{2}^{i}{ }_{j}^{1} e_{j}^{(2)}=u_{j}$ for $j=1 ; 2$. It is then seen that if $U=$ $\mathrm{U}_{2} \mathrm{U}_{1}$ and $\mathrm{B}=\mathrm{UAU}^{i}{ }^{1}$, then

$$
\begin{aligned}
h B e_{1}^{(2)} ; e_{1}^{(2)} i & =h U_{2}\left(U_{1} A U_{1}^{i 1}\right) U_{2}^{i{ }^{1}} e_{1}^{(2)} ; e_{1}^{(2)} i \\
& =h\left(U_{1} A U_{1}^{i}\right) U_{2}^{i 1} e_{1}^{(2)} ; U_{2}^{i 1} e_{1}^{(2)} i \\
& =h\left(U_{1} A U_{1}^{i 1}\right) u_{1} ; u_{1} i \\
& =0:
\end{aligned}
$$

Since TrB $=\operatorname{Tr} A=0$, we conclude that the $(2,2)$-entry of B must also be zero; in other words, this U does the trick for us.

Proof of (B): It sum ces to prove the result in the special case when V is two-dim ensional. (Reason: Indeed, if x and y are unit vectors in V, and if V_{0} is the subspace spanned by x and y, let T_{0} denote the operator on V_{0} induced by the m atrix
μ
$h T u_{1} ; u_{1} i$
$h T u_{1} ; u_{2} i$ hT $_{2} ; u_{1} ; u_{2} i^{\text {I }} \quad ;$
where $f u_{1} ; u_{2} g$ is an orthonom albasis for $V_{0} . T$ he point is that T_{0} is w hat is called a 'com pression ' of T and we have

$$
h T_{0} x_{0} ; y_{0} i=h T x_{0} ; y_{0} i w h e n e v e r x_{0} ; y_{0} 2 V_{0}:
$$

In partioular, if we knew that $W\left(T_{0}\right)$ was convex, then the line joining hT x;xi and $\mathrm{hT} y ; y i$ would be contained
in the convex set W (T_{0}) which in tum is contained in W (T) (by the displayed inclusion above).)
T huswem ay assum $e V=C^{2}$. Also, since W (T i,$\left.I_{2}\right)=$ W (T)i, \{ as is readily checked \{ wem ay assum e, w ithout loss of generality that $\operatorname{TrT}=0$. Then, by Lem m a 5, the operator T is represented, w ith respect to a suitable orthonom albasis, by the m atrix

μ		I
0	a	

A n easy com putation then show s that

$$
W(T)=\text { fayk }+b x y y: x ; y 2 C ; \dot{x}{ }^{\imath}+\dot{y} \tilde{J}^{2}=1 g:
$$

 we thus ${ }^{-}$nd that

$$
W(T)=f a z+b z: z 2 C ; \dot{z} j \cdot \frac{1}{2} g
$$

and wem ay deduce the convexity of (T) from that of the disc fz $2 C: \dot{z} j \cdot \frac{1}{2} g$.

Proof of (C):W e prove this by induction, the case $\mathrm{n}=2$ being covered by Lem mat.

So assum e the result forn $; 1$, and suppose A $2 M_{n}(C)$. T hen notice, by the now established (B), that

$$
0=\frac{1}{n}_{i=1}^{X^{n}} h A e_{i}^{(n)} ; e_{i}^{(n)} i 2 W \quad(A):
$$

C onsequently, there exists a unit vector u_{1} in C^{n} such
 $u_{n} g$ is an orthonorm albasis for C^{n}, and let U be the unitary operator on $C{ }^{n}$ such that $U_{1}{ }^{1} e_{i}^{(n)}=u_{i}$ for $1 \cdot i \cdot$ n. Then it is not hard to see that if $A_{1}=U_{1} A U_{1}{ }^{1}$, then

$$
{ }^{2} \mathrm{hA}_{1} \mathrm{e}_{1}^{(\mathrm{n})} ; \mathrm{e}_{1}^{(\mathrm{n})} \mathrm{i}=0 ; \text { and }
$$

Suggested Reading

[1] P R Halmos, Finite-dimensional vector spaces,Van N ostrand, L ondon, 1958.
[2] A A Albert and B M uckenhoupt, On matrices of trace zero, Michigan Math. J.,Vol. 4, pp. 1-3, 1957.
[3] A Brown and C Pearcy, Structure of Commutators of operators, A nn. of M ath., Vol. 82, pp. 112-127, 1965.

Address for Correspondence V S Sunder
The Institute of Mathematical Sciences
Chennai 600 036, India.

2 if B denotes the subm atrix of A_{1} determ ined by deleting its ${ }^{-}$rst row and ${ }^{-}$rst colum n, then, $\left.T r_{n}\right]_{1} B=T r_{n} A_{1}=T r_{n} A=0$; and hence by our induction hypothesis, we can choose an orthonor-
 by $f e_{2}^{(n)} ; \dot{\text { ¢ }} \dot{\prime} ; \dot{e}_{n}^{(n)} g$ such that $h B v_{j} ; v_{j} i=0$ for all 2• j•n.

W e then ${ }^{-}$nd that $f u_{1}^{0}=u_{1} ; u_{2}^{0}=U^{i 1} V_{2} ;$ ¢ф¢; $u_{n}^{0}=$ $U^{i}{ }^{1} V_{n} g$ is an orthonorm albasis for C^{n} such that hA $u_{i}^{0} ; u_{i}^{0} i$ $=0$ for $1 \cdot i \cdot n . F i n a l l y$, if we let U be a unitary matrix so that $U^{i}{ }^{1} e_{i}^{(n)}=u_{i}^{0}$ for each i, then $U A U^{i}{ }^{1}$ is seen to satisfy

$$
\operatorname{hUAU}{ }^{i 1} e_{i}^{(n)} ; e_{i}^{(n)} i=0 \text { for all } i \text { : }
$$

Proof of (A): By replacing A by $U A U^{i 1}$ for a suitable unitary matrix U, we may, by (C), assume that $a_{i i}=$ 0 for all i. Let $b_{1} ; b_{2} ; \dot{\text { i }} \boldsymbol{j} ; \mathrm{b}_{n}$ be any set of n distinct com plex num bers, and de- ne

$$
b_{i j}= \pm_{i j} b_{j} ; c_{i j}={ }^{1 / 2} \begin{array}{ll}
0 & \text { if } i=j \\
\frac{a_{i j}}{b_{i} i b_{j}} & \text { if } i \neq j
\end{array}
$$

It is then seen that indeed $A=B C ; C B$.
Extensions
It is naturalto ask ifoom plex num bers have anything to do w th the result that we have called (A). T he reference [2] extends the result to m ore general -elds.

In another direction, one can seek 'good in' nite-dim ensional analogues' of (A); one possible such line of generalisation is pursued in [3], where it is shown that `a bounded operator on H ilbert space is a com m utator (of such operators) if and only if it is not a com pact perturbation of a non-zero scalar'.

