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The cone phase of liquid crystals: Triangular lattice
of double-tilt cylinders
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Abstract. We predict the existence of a new defect-lattice phase near the nematic—smectic-C (NC)
transition. This tilt-analogue of the blue phase is a lattice of double-tilt cylinders which are disclina-
tion lines in the smectic layer normal as well as thiield. We discuss the structure and stability of

the cone phase. We suggest that many ‘nematics’ exhibiting short range layering and tilt order may
in fact be in the molten cone phase, which is a line liquid.
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1. Introduction

In the nematic to smectic-C (NC) transition the continuous translational symmetry of the
nematic is spontaneously broken and a layered structure with unit layer néiheselops

[1]. Smectic-C liquid crystals have tilt order which is characterized by the projection

of the apolar nematic directoronto the smectic layers. The smectic-C structure belongs
to the symmetry group £ (a mirror plane, a two-fold rotation axis normal to the mirror
plane, and a centre of inversion). Note in particular that this biaxial structure spontaneously
breaks the continuous azimuthal symmetry; the average orientation@¥#utor is fixed

in space (figure 1).

In this paper we address the following question: Can a phase in which the smectic layer
normal explores the entire range (0 t@) »f azimuthal angles about the nematic director
exist? We answer this question in the affirmative, propose a possible defect-lattice structure
(figure 3) and analyse the mechanism which stabilizes it.

Liquid crystals are soft materials; this makes the existence of well-known defect-lattice
phases such as the blue phases and the twist grain boundary phases possible [1]. Our
discussion has certain similarities with the low chirality stability analysis of the blue
phases [1,2]. It is therefore useful to draw an analogy between the stabilizing mechanisms
of the blue phases and the cone phase.

The cholesteric phase (which has a single twist axis) is unstable to the formation of the
blue phases (which are lattices made up of double-twist cylinders) if the coefficient of the
saddle-splay term in the Frank free energy is positive. The blue phases satisfy the tendency
of chiral molecules to sustain twist in all possible directions. The smectic-C phase (which
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Figure 1. Schematic of the equilibrium smectic-C structure.

has tilt order in one direction) is unstable to the formation of the cone phase (which is a
defect lattice made up of tilt disclinations) if the coefficient of the Gaussian curvature term
(which is the saddle-splay-like term in the smectic layer noiN)ain the free energy is
negative. The cone phase is a lattice of double-tilt cylinders in which the smectic layer
normal tilts in all possible directions about the nematic director. If the coefficient of the
Gaussian curvature term in the free energy is positive for a smectic with tilt order, the cone
phase is clearly not stabilized. Instead, we expect ‘plumber’s nightmare’ phases of the type
discussed in [3].

The de Gennes model [4] of the NC transition and the Chen—Lubensky NAC model
[5] are motivated by the experimental observation that X-ray scattering shows two rings
peaked aroundc = (q, cosp,q, sintp,iqu) in the vicinity of the NC transition. Pre-
transitional fluctuations explore all the azimuthal angles. Fluctuations drive the second-
order mean field NC transition of the Chen—Lubensky model to a first-order transition
[6,7]. The de Gennes model as well as the Chen—Lubensky model predict that all the Frank
elastic constants diverge at the NC transition. This has been borne out experimentally [8].

Clearly, any distortion in the nematic director is enormously costly near the NC transi-
tion. However, it is possible to have stable configurations where the smectic layer normal
exhausts the full range of azimuthal angles relative to a distortion-free nematic director.
Such field configurations are topologically non-trivial and necessarily involve disclination
lines (figure 2). The cone configuration has a positive, delta-function Gaussian curvature
along its axis, which screens the disclination charge [9-11]. It is therefore essential to use
covariant elasticity to calculate the energetics of the disclination lines. Our formulation
naturally incorporates the elasticity theory of membranes with tangent-plane order.

2. The free energy

For the stability of the cone phase, it is essential that the NC transition be first order (see
the discussion following eq. (5)). This is the case for almost all compounds exhibiting the
NC transition. To describe this transition it is sufficient for our purpose to use a simple
phenomenological free energy density
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Figure 2. Schematic of a double-tilt cylinder. The nematic directds parallel to the

cone axis, which i®+ 1 disclination line. Thes-vector (shown by the arrows in the
figure) lies in the smectic layers and points towards the cone axis. Note thafitie

has no distortion, whereas the smectic layers bend. There is no change in the smectic
layer spacing along the local layer normal.

f|_ = a(Tc - T); (1)

wherea is a constant. The free energy dendityaccounts for the condensation energy of
the smectic layering as well as that for the development of tilt order at the NC transition.
The Frank free energy density
K K K
fo=—2(0-n)2+ =22(n-0xn)?+ =2(nx Oxn)? 2
2 2 2
describes the energy cost for distortion in the Frank director [1]. In ed {2, andK,
are respectively the splay, twist and bend elastic constants.
The free energy density for distortions in the smectic layering is given by

B K
fs= SV + 5H 4 KoK, 3)

wherey is the strain due to compression or dilation of the smectic layees)dK respec-
tively denote the mean curvature and the Gaussian curvature of the smectic layers [1].
Finally

K . K
fo=5'Dic/D'ej + 2 ((N?q)c)?, @)

accounts for the energy cost for distortions indHild which do not arise from distortions
in the Frank directon but from distortions in the smectic layers. In eq. (4), Dedenote
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covariant derivatives, j,k = 1,2 refer to the internal coordinates of the smectic layers,
anda =1,2,3. The term with the coefficierd, in eq. (4) can be schematically written

as(K,/2)(S—K)—5(S—K), whereSis the disclination density and? is the covariant

Laplacian in the two-metriéz)gi- describing the geometry of the smectic layers. Gaussian
curvature screens disclination charges [10,11]. Stability requiresBthaK ,,Kg > 0.
Since Gaussian curvature is a total derivative, the coeffigigntan either be positive or
negative. Thus the full free energy for our modefis= [(f + fn+ fs+ fc)adV.

3. Stability of the cone phase

If the coefficient of the Gaussian curvature term in eq. (3) is negative, a double-tilt cylindri-
cal structure of radiuR with a +1 disclination in thec-field lowers the energy. However,

the smectic layers in this conical configuration are bent. We now show that the free energy
cost from mean curvature;field distortion, and surface tension can be compensated by
the free energy gain from Gaussian curvature to stabilize a lattice of cones (figure 3).

Let us consider a triangular lattice of cylindrical stacks of cones (i.e., a triangular lattice
of straight+1 disclination lines), and fill in the gaps between cylinders with nematic mate-
rial such that the nematic director is parallel to the disclination lines. Such a configuration
minimizes the interfacial energy between the nematic and the smectic. In what follows we
ignore the repulsive interaction energy between the disclination lines. In the continuum,
a stack of conical smectic layers with its core alongztaxis can be parametrized by a
position vectoR = (r cosg, r sing, mr+ z) in the cylindrical polar coordinate system. We
choosen = tan@, where@ is the tilt angle of the nematic director with respect to the local
layer normal and = d/cos8, whered is the equilibrium smectic layer spacing. This
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Figure 3. Schematic of the cone phase — a triangular lattice of double-tilt cylinders.
Each cylindrical stack of cones is a double-tilt cylinder depicted in figure 2.
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separation along the local layer normal equhl§ he disclination density is a delta func-
tion, S= 216 (r, ¢)/ /3, wheregis the determinant of the two-metric corresponding to the
bent configuration of the two-dimensional smectic layers. The Gaussian curvature is zero
everywhere except on tleaxis with a line curvature charge, : K = 2z, 5(r,¢)/,/9,

with £, =1— (1/v/1+ nP?). For cones with radiuR the energy per unit length (along the
cone axes) of the triangular lattice with reference to the equilibrium smectic-C is

fcone= (\/:_3— g) a(Te—T)R?

n K e K e InB
*2( Vit A<1+mZ>3/2> a

1
1— ——
+”"G( Vit

wherea is a cut-off length of molecular dimension, and we have included the contribu-
tion from the interfacial tensioa between smectic-C and nematic. The Frank free energy
does not enter into the energetics of the cone phase because the Frank director is free of
distortions. Although the Gaussian curvature term in eq. (3) integrates to the boundary,
it nevertheless contributes to the energetics because the double-tilt cylinders have a finite
radius. The smectic-C—nematic interfaces at the boundaries of the double-tilt cylinders are
essential for the stabilization of the cone phase. We also note that the Gaussian curvature
term drops out of the energetics fior= 0. It is therefore clear that double-tilt cylinders
cannot be energetically favoured near a second-order NC transition in muigiciws con-
tinuously from zero in the smectic-C phase. In fact, a relatively strong first-order transition
with sufficiently small (large in magnitude and negative in sign) value ofvould favour

the formation of stable double-tilt cylinders.

We assume the following reasonable values for the parameters entering eg.~5):
10 % dyne K, ~ 3x 10’ dyne,o ~ 102 dyne/cm [12]. At the first-order NC transition
point, there is no free energy difference between the two phasesntti/2 [13], and
the cut-offa = 20 A, double-tilt cylinders of radiuR < 200A are energetically favoured
over a distortion-free smectic-C providag, < —3 x 10-% dyne. We are not aware of
any measurements &f; in thermotropic liquid crystals. However, some lyotropic liquid
crystals havexg values of this sign and magnitude [14]. It is clear that the energy of a
double-tilt cylinder is lowered for smaller values Bf It is interesting to contrast this
with the case of blue phases of cubic symmetry where the pitch of the helix provides a
natural length scale which determines the radius of double-twist cylinders. There is no
such natural length scale determining the radius of double-tilt cylinders of the cone phase
[15]. Within the framework presented in this paper, we expect the radius of the double-tilt
cylinders to be of the order of a few times the cut-off length, which is the smallest possible
radius consistent with the conical structure.

Purely from a molecular point of view the tilt of the molecular director in the smectic-C
owes its origin to the fact that a mutual displacement of the molecules along their long
axes lowers the interaction energy [16]. If all the neighbors of a given molecule are dis-
placed relative to it by an equal amount in the same direction, the interaction energy can be
lowered further. This is precisely the molecular configuration near the apex of the cones
forming double-tilt cylinders. This tendency of the molecules may contribute significantly
towards rendering s negative.

) + o, 5)
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Narrow double-tilt cylinders arrange themselves in a triangular lattice to form the cone
phase. With a decrease in temperature from the transition point, the energy cost for the
nematic which fills the gap between the cylinders would become prohibitively large. Con-
sequently there would be a transition from the cone phase to the smectic-C phase. We
expect the temperature range of the cone phase to be narrow (of the 8@jemslin the
case of the blue phases. To our knowledge such a phase has not been reported in the litera-
ture. However, there are several examples of compounds which exhibit a skew-cybotactic
short-range order over a wide (about®) temperature range [17,18]. X-ray and neutron
scattering experiments show that these systems exhibit several orders of scattering maxima
corresponding to molecular length along the nematic director in addition to the scattering
due to tilt of the layers. This implies that the molecular positions are correlated along the
director. This scattering pattern corresponding to fibre-like structures can be interpreted as
arising from the narrow double-tilt cylinders proposed above. Since the medium is in the
nematic phase, there is no long-range positional order of the double-tilt cylinders. Indeed,
these ‘nematics’ may in fact be in a molten line liquid phase which has been discussed in
the context of directed polymers in nematics, and flux lattices [19].

4. Conclusion

Our principal results are as follows: We predict the existence of the cone phase of liquid
crystals near a first-order NC transition and discuss the mechanism responsible for stabi-
lizing it. The cone phase is a triangular lattice of double-tilt cylinders, each of which is a
+1 disclination (in both the-field as well as thé&l-field) in the form of a stack of conical
layers. For reasonable values of parameters we estimate that the cone phase composed of
double-tilt cylinders of radius 208 would be stabilized if the coefficient of the Gaussian
curvature term in the free energy; ~ —3 x 10 dyne. We note that the estimate of

the radius of the double-tilt cylinders depends sensitively on the cut-off lengBased

on our theoretical analysis and the results of X-ray and neutron diffraction experiments
on many compounds exhibiting skew-cybotactic order, we surmise that this so-called ‘ne-
matic’ phase with short-range layering/tilt order may in fact be the molten cone phase — a
line liquid of double-tilt cylinders.

Finally, we note that the foregoing analysis is also applicable to structures such as the
smectic-1 which has hexatic order with molecular tilt oriented along bonds connecting
nearest neighbours [1].

Further experiments to confirm the work presented in this paper are clearly of great
interest. We have taken up some experiments to test these ideas in our laboratory.
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