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Lamins are major structural proteins of the nucleus and are essential for nuclear integrity and organization of nuclear
functions. Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of
different tissues such as muscle, adipose or neuronal tissues, or cause premature ageing syndromes. New findings on
the role of lamins in cellular signalling pathways, as well as in ubiquitin-mediated proteasomal degradation, have
given important insights into possible mechanisms of pathogenesis.
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1. Nuclear lamins

The nuclear lamina is the main architectural component of
the metazoan nucleus and encompasses a filamentous
protein network that is associated with the inner nuclear
membrane and also extends into the interior of the nucleus.
The major components of the lamina are a group of nuclear
proteins termed the lamins, which belong to the type V
intermediate filament superfamily of proteins. The lamina
plays an essential role in maintaining the integrity of the
nuclear envelope and provides anchoring sites for chroma-
tin. Lamins are involved in the organization of nuclear
functions such as DNA replication and transcription, and
have been proposed to play important roles in diverse
cellular pathways. Two major kinds of lamins are present in
higher eukaryotes. The B-type lamins are constitutively
expressed in all somatic cell types, whereas the expression
of A-type lamins is restricted to differentiated cells of most
lineages. More than 250 mutations in the human lamin A
gene (LMNA) have been associated with at least 15
debilitating inherited diseases, collectively termed lamino-

pathies, that affect specific tissues such as skeletal muscle,
cardiac muscle, adipose tissue and bone, and also cause
premature ageing or progeria syndromes. Mutations in
lamin B1 and lamin B2 genes as well as genes coding for
various nuclear membrane proteins have also been associ-
ated with heritable diseases. Current research in this area has
given valuable insights into possible mechanisms of
pathogenesis and additional functional roles of lamins,
especially in specific signalling pathways. This review
summarizes recent findings on the deleterious effects of
lamin mutations on nuclear organization and function, and
explores the possibility that nuclear dysfunction is due to
proteasomal degradation of essential proteins. More detailed
information on various aspects of lamin biology has been
covered in excellent reviews on the subject (Worman and
Courvalin 2005; Broers et al. 2006; Capell and Collins
2006; Dechat et al. 2008; Parnaik 2008).

The A- and B-type lamins differ in their solubility
properties, expression patterns and localization during
mitosis (Goldman et al. 2002; Herrmann et al. 2007).
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Lamins A and C (henceforth called lamin A/C) are
alternatively spliced products of the lamin A gene, LMNA,
whereas lamins B1 and B2 are coded by two separate genes,
LMNB1 and LMNB2. Additional splice variants of the
lamins are germ-cell-specific lamins C2 and B3, which are
encoded by LMNA and LMNB2, respectively, and a minor
somatic cell isoform of lamin A termed lamin AΔ10. LMNA
has been mapped to the locus 1q21.2-q21.3 in the human
genome, whereas LMNB1 and LMNB2 have been mapped to
the loci 5q23.3-q31.1 and 19p13.3, respectively. Drosophila
melanogaster has two lamin genes, the B-type lamin Dm0

gene (lamDm0), which is expressed in most cells and the A-
type lamin C gene (lamC), whose expression is develop-
mentally regulated. Caenorhabditis elegans has only one
lamin gene, lmn-1, which is expressed in all cells except the
mature sperm. Genome sequence analysis of yeast and
Arabidopsis indicates that these species do not have lamins.
Thus, lamins appear to have evolved in animal cells.

Lamins are characterized by a tripartite structure consist-
ing of a central α-helical rod domain flanked by non-helical
N-terminal ‘head’ and C-terminal ‘tail’ domains that is
typical of intermediate filament proteins (Herrmann et al.
2007). The central rod domain drives the interaction
between two lamin proteins to form a coiled-coil dimer,
the basic structural unit of lamin assembly. The head-to-tail
associations between two lamin dimers lead to the formation
of protofilaments that have the propensity to associate
laterally in different configurations such as parallel, stag-
gered or half-staggered to give rise to the 10 nm lamin
filament. The three-dimensional crystal structure of the
lamin A/C globular tail domain has revealed a compact,
well-defined structure termed the immunoglobulin (Ig)
domain or fold; Ig domains serve as structural scaffolds or
may mediate specific intermolecular interactions with other
proteins. Most of the disease-causing mutations in the rod
domain affect lamin assembly and cause increased mobility
of lamins in live cells (Gilchrist et al. 2004; Broers et al.
2005; Tripathi et al. 2009).

The C-terminii of lamins A, B1 and B2 bear a CaaX
motif (C, cysteine; a, aliphatic; X, any amino acid), which is
post-translationally modified by cysteine farnesylation fol-
lowed by proteolytic cleavage of the last three amino acids
(aaX) and methyl esterification of the carboxyl group of the
farnesylated cysteine residue. Farnesylation appears to be
required for increasing the hydrophobicity of the C-terminus
to allow targeting of lamins to the inner surface of the
nuclear envelope. After nuclear envelope localization, the
18 C-terminal residues of pre-lamin A, including the
farnesylated cysteine, are cleaved off by the ZMPSTE24
protease to form mature lamin A.

In addition to their typical localization at the nuclear
periphery, lamins have also been detected in the interior of
the nucleus in the form of foci or a diffuse network. Some of

these intranuclear lamin structures have been implicated in
establishing patterns of DNA replication sites (Moir et al.
1994; Kennedy et al. 2000) and in organizing transcription
(Jagatheesan et al. 1999; Kumaran et al. 2002). Lamins are
dispersed at the onset of mitosis, as a consequence of
phosphorylation of essential serine residues on either end of
the rod domain of lamin by cyclin-dependent kinase 1
(Cdk1), which results in depolymerization of the lamina into
dimers and tetramers. The lamina is reassembled towards
late telophase and in early G1 phase of the cell cycle (Gant
and Wilson 1997).

Lamins can bind to two broad categories of proteins,
nuclear membrane proteins and gene regulatory proteins
(Worman and Courvalin 2005; Wilson and Foisner 2010).
Several inner nuclear membrane proteins interact directly
with lamins, which helps to anchor lamin filaments to the
nuclear envelope. Prominent lamin-binding proteins are
emerin, lamin B receptor and lamin-associated-
polypeptides (LAPs) 1 and 2. Emerin, LAP2 and another
envelope protein MAN1 possess a 40-residue folded motif
called the LEM domain (derived from LAP, emerin,
MAN1) that binds directly to barrier-to-autointegration
factor (BAF), a conserved DNA-binding protein that is
involved in higher-order chromatin structure and in nuclear
assembly. Emerin has been reported to stabilize β-catenin
and thereby influence the onset of adipogenesis (Tilgner et
al. 2009). LAP2α forms functional complexes with lamin A
and retinoblastoma protein (pRb) in the interior of the
nucleus (Dechat et al. 2000; Markiewicz et al. 2002).

The nuclear envelope comprises approximately 80
transmembrane proteins (Schirmer and Gerace 2005). Two
important families of nuclear membrane-bound proteins are
the nesprins and the SUNs (Starr 2009). The nesprins (also
called Syne/ANC-1 proteins) are large, actin-binding pro-
teins that span the outer nuclear membrane, and exist in
many forms with tissue-specific expression patterns due to
alternate splicing. Most SUN (Sad1/UNC-84 homology)
domain proteins contain multiple transmembrane domains
and localize to the inner nuclear membrane. The N-terminal
domains of SUN-1 and SUN-2 are located in the nucleo-
plasm and bind directly to A-type lamins; the C-terminal
domains are localized in the lumen of the nuclear envelope,
where they interact with nesprins. The nesprins and SUN
domain proteins have been proposed to bridge the nuclear
envelope and provide connectivity between the nucleus and
cytoskeleton during processes such as nuclear positioning
and migration.

There is substantial evidence that lamin A/C associates
with specific gene regulatory factors as well as signalling
molecules and thereby modulates their activities (Wilson
and Foisner 2010). A few examples are described here. The
active hypophosphorylated form of pRb, a tumour suppres-
sor protein involved in regulation of the cell cycle and
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apoptosis as well as in muscle and adipocyte differentiation,
can bind to A-type lamins and also interact with LAP2α,
and LAP2α–lamin A/C complexes are able to anchor pRb to
the nuclear envelope (Markiewicz et al. 2002). Cyclin D3
interacts directly with lamin A/C in muscle cells, and
binding interactions between lamin A/C, pRb and cyclin D3
are likely to play an important role in muscle differentiation
(Mariappan and Parnaik 2005; Mariappan et al. 2007).
Lamin A has been reported to bind to c-Fos and sequester it
at the nuclear periphery, leading to repression of AP-1
transcriptional activity (Ivorra et al. 2006). An adipocyte
differentiation factor, sterol response element binding
protein 1 (SREBP1) has been shown to interact directly
with lamin A by binding to the Ig-fold of the lamin A/C tail
domain (Lloyd et al. 2002). The Ig-fold domain also binds
directly to the DNA replication factor, proliferating cell
nuclear antigen (PCNA), and this association has been
proposed to be important for the spatial organization of
DNA replication (Shumaker et al. 2008). Heat shock
proteins like Hsp70 as well as small heat shock proteins
associate with nuclear lamins and might be required to
stabilise intranuclear lamin A/C under heat stress conditions
(Willsie and Clegg 2002; Adhikari et al. 2004).

2. Laminopathies

Mutations in LMNA are associated with tissue-specific
laminopathies that affect striated muscles, adipose tissue
and peripheral nerves, and also cause premature ageing
syndromes that afflict several tissues (figure 1). Certain
cases of overlapping symptoms have also been described.
The clinical condition termed Emery-Dreifuss muscular
dystrophy (EMD) can be caused by mutations in the gene
coding for emerin or lamin A/C (Bione et al. 1994; Bonne
et al. 1999), and has also been linked to mutations in genes
coding for other nuclear membrane proteins. The disease is
marked by contractures of the elbows, Achilles tendons and
posterior neck, slow progressive muscle wasting and dilated
cardiomyopathy with atrioventricular conduction block. The
majority of EMD mutations in LMNA are missense
mutations and a few are small deletions or nonsense
mutations; mutations are found in all exons of the gene.
Most mutations are autosomal dominant, and both familial
and sporadic mutations have been identified. Autosomal
dominant mutations in LMNA are the most common cause
of dilated cardiomyopathy (DCM) (Fatkin et al. 1999) and
lead to a particularly severe form of the disease. DCM is a
progressive disease that is characterized by ventricular
dilatation and systolic dysfunction. In patients with LMNA
mutations, DCM is usually accompanied by conduction
defects and may include skeletal muscle involvement.
Missense mutations and splicing defects in LMNA have
also been linked to autosomal dominant limb girdle

muscular dystrophy type 1B (LGMD1B) (Muchir et al.
2000). LGMD1B is a slowly progressing disease character-
ized by weakness and wasting of shoulder and pelvic
muscles due to necrosis, and is accompanied by cardiac
conduction defects in some patients.

Mutations in LMNA have been linked to Dunnigan-type
familial partial lipodystrophy (FPLD) by several groups
(Cao and Hegele 2000; Shackleton et al. 2000; Speckman et
al. 2000). FPLD is an autosomal dominant disorder
characterized by loss of fat tissue from the extremities and
excess fat accumulation on the face and neck, beginning at
puberty, and is accompanied by insulin-resistant diabetes,
hyperlipidemia and atherosclerotic vascular disease. Ap-
proximately 90% of the mutations in FPLD are located in
exon 8, with substitutions at arginine at 482 amino acid
position being found in 75% of cases; mutation of this
residue has been shown to block binding of the adipocyte
differentiation factor SREBP1 (Lloyd et al. 2002).

An autosomal recessive mutation at R298C of LMNA
gives rise to Charcot-Marie-Tooth disorder (CMT) type
2B, which is an axonal neuropathy characterized by
peripheral loss of large myelinated fibres and axonal
degeneration that results in sensory impairment with some
reduction in motor nerve conduction velocity (De Sandre-
Giovannoli et al. 2002).

The most deleterious effects of mutations in LMNA have
been observed in the premature ageing disorder Hutchinson-
Gilford progeria syndrome (HGPS) (De Sandre-Giovannoli
et al. 2003; Eriksson et al. 2003). HGPS is an autosomal
dominant condition that is characterized by short stature,
early thinning of skin, loss of subcutaneous fat, premature
atherosclerosis and cardiac failure leading to death. HGPS is
a very rare disorder that affects about one in a million and
leads to early mortality, usually in the second decade of life.
The majority of cases are due to a de novo missense
mutation (GGC to GGT) in exon 11 that does not cause an
amino acid change (G608G) but leads to creation of an
abnormal splice donor site which results in expression of a
truncated pre-lamin A protein (also termed progerin or
lamin AΔ50) with loss of 50 amino acids from the C-
terminus including the second ZMPSTE24 cleavage site,
resulting in a permanently farnesylated C-terminus. Man-
dibuloacral dysplasia (MAD) is a rare, autosomal recessive
disorder characterized by postnatal growth retardation, skull
and facial anomalies, skeletal abnormalities, mottled skin
pigmentation, partial or generalized lipodystrophy and signs
of premature ageing. Most patients with MAD type A, who
exhibit partial lipodystrophy, have a R527H homozygous
mutation in LMNA (Novelli et al. 2002). On the other hand,
MAD type B, characterized by generalized loss of fat
involving face, trunk and extremities, is caused by muta-
tions in ZMPSTE24 protease, which is involved in the
processing of pre-lamin A to lamin A (Agarwal et al. 2003).
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Mutations in LMNA as well as ZMPSTE24 are associated
with restrictive dermopathy, which is a rare disorder
characterized by intra-uterine growth retardation, tight and
rigid skin with erosions, facial malformation, bone miner-
alization defects and early neonatal mortality (Navarro et al.
2004, 2005; Shackleton et al. 2005).

A few disease-causing mutations have been identified in
the B-type lamin genes. Missense mutations in the lamin B2
gene have been associated with acquired partial lipodys-
trophy, which is a rare disease that results in a gradual loss
of subcutaneous fat from the head, neck, upper extremities
and thorax but not from the lower extremities (Hegele et al.
2006). Duplications of the lamin B1 gene have been
identified in patients with adult onset leukodystrophy, a
progressive neurological disorder characterized by loss of
myelin in the central nervous system (Padiath et al. 2006).
In general, mutations in the B-type lamins are likely to be
highly deleterious, based on findings in mouse models. The
knock-out of the mouse lamin B1 gene causes defects in
embryonic development (Vergnes et al. 2004) and lamin
B2-null mice show severe brain abnormalities (Coffinier et
al. 2010). Genetic diseases due to mutations in genes
encoding proteins that associate with lamins have also been
reported (Worman and Courvalin 2005; Dechat et al. 2008;
Parnaik 2008).

3. Deleterious effects of lamin mutations on nuclear
organization and functions

Lamins play a crucial role in maintenance of nuclear shape
and integrity, organization of chromatin and distribution of
nuclear pore complexes. Lamins are also involved in the
spatial organization of DNA replication, transcription and
mitotic events, and are specifically cleaved during apopto-
sis. Binding of lamins to specific gene regulatory factors
influences cellular signalling pathways involved in muscle
differentiation, adipocyte differentiation, DNA repair, cellu-
lar proliferation and transforming growth-factor-β-mediated
signalling (Broers et al. 2006; Capell and Collins 2006;

Melcer et al. 2007; Dechat et al. 2008; Parnaik 2008). The
functional role of lamins is strongly supported by data with
disease-causing lamin mutants as well as earlier findings
with loss-of-function lamin mutants in C. elegans and D.
melanogaster, and dominant-negative mutants in cultured
cells. Recent studies suggest that the lamina might play an
active role in genome organization through specific binding
to large genomic segments (Kind and van Steensel 2010).

HGPS cells exhibit severe nuclear abnormalities such as
lobulation, blebbing and loss of heterochromatin (Eriksson et
al. 2003; De Sandre-Giovannoli et al. 2003; Goldman et al.
2004; Taimen et al. 2009). The accumulation of farnesylated
pre-lamin A in HGPS cells has been proposed to cause
aberrant nuclear morphology and pathogenesis (Fong et al.
2004). This is supported by evidence for improvement of
nuclear morphology by blocking farnesyl transferase activity
in HGPS cells (Capell et al. 2005; Columbaro et al. 2005;
Yang et al. 2005) or knocking out the Zmpste24 gene in a
mouse model (Fong et al. 2006). Importantly, administration
of a farnesyl transferase inhibitor to Zmpste24-deficient mice
can decrease progeria-like disease symptoms and improve
survival (Fong et al. 2006), raising the possibility of
beneficial effects of these drugs in humans. However, a
caveat to the long-term use of farnesyl transferase inhibitors
is a recent report that non-farnesylated pre-lamin A causes
cardiomyopathy in mice (Davies et al. 2010).

Cells from patients with other laminopathies also display
abnormal nuclear morphology. Fibroblasts from patients
with EMD, LGMD, DCM and FPLD due to LMNA
mutations show abnormal nuclear phenotypes with nuclear
blebbing and aberrant lamin foci in up to 20% of the cells
(Vigouroux et al. 2001; Capanni et al. 2003; Favreau et al.
2003; Muchir et al. 2004). Exogenous expression of several
lamin A/C disease mutants in mouse or human cells causes
aberrant nuclear morphology, altered lamina assembly,
mislocalization of emerin and disruption of the endogenous
nuclear lamina (Östlund et al. 2001; Raharjo et al. 2001;
Vigouroux et al. 2001; Favreau et al. 2003; Manju et al.
2006). Aberrant nuclear morphology results in cellular

Figure 1. Schematic of lamin A protein structure and disease mutations identified in various laminopathies. Lamin A comprises a rod
domain containing the α-helical segments 1A, 1B, 2A and 2B, which are flanked by a short head domain and a tail domain that harbours
an Ig-fold motif. Mutations leading to EMD, LGMD1B and DCM occur throughout the protein (approximately 200 mutations have been
identified), and a few EMD mutations are indicated (G232E, Q294P, R386K). Most cases of FPLD bear a mutation at R482, whereas
those with MAD harbour the mutation R527H. An R298C mutation leads to CMT2B. Majority of HGPS patients bear a mutation at G608,
which results in abnormal splicing of pre-lamin A and production of a mutant lamin A protein with a deletion of amino acid residues 607–
656 (lamin AΔ50; see text for details).
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senescence, downregulation of transcription, impaired DNA
repair and apoptosis (Capanni et al. 2003; Goldman et al.
2004; Lammerding et al. 2004; Manju et al. 2006; Gurudatta
et al. 2010). An interesting observation is that nuclei from old
individuals acquire defects that are similar to those seen in
cells from HGPS patients, and this has been attributed to
accumulation of progerin (Scaffidi and Misteli 2006).

4. Molecular and cellular basis of pathogenesis

The reported molecular and cellular defects in laminopathic
cells range from susceptibility to physical stress due to
weakening of the nuclear lamina-envelope network to alter-
ations in tissue-specific gene expression patterns and altered
protein–protein interactions. Interestingly, in certain cases,
lamin misexpression can trigger degradation of key regulatory
proteins in the cell, some of which have tissue-specific
functions. These are described in greater detail below.

As the majority of mutations in LMNA affect muscle
tissue, there is considerable interest in understanding the
role played by A-type lamins in muscle development and
the effects of mutations on this process. Valuable insights
into cellular defects associated with lamin A deficiency, in
particular, those leading to muscular dystrophy and cardio-
myopathy, have been obtained from the mouse lamin A
gene knock-out model (Sullivan et al. 1999). Lmna−/− mice

show symptoms of EMD and DCM and die by 6–8 weeks
of age. Fibroblasts from Lmna−/− mice show aberrant
nuclear morphology and herniations of the envelope, and
in response to mechanical strain, these fibroblasts exhibit
increased nuclear deformations and defective mechano-
transduction, together with reduced expression of genes
activated by NF-κB (Lammerding et al. 2004). Cardio-
myocytes from these mice show abnormal nuclear archi-
tecture, relocalization of heterochromatin to the nuclear
interior and changes in localization of the cytoskeletal
filament protein desmin, leading to contractile dysfunction
(Nikolova et al. 2004). Activation of the mitogen-activated
protein kinase (MAPK) signalling pathway has been
observed in the H222P-knock-in mouse model of EMD
(Muchir et al. 2007).

Certain markers of muscle differentiation such as MyoD
and pRb, as well as desmin are decreased in Lmna−/−

myoblasts (Frock et al. 2006). Both MyoD and desmin
transcripts are reduced in proliferating Lmna−/− myoblasts
but pRb transcript levels are normal. The degradation of
pRb protein in Lmna−/− fibroblasts can be reversed by
treatment with proteasomal inhibitors or ectopic expression
of lamin A/C, suggesting that a normal lamina is required
for pRb stability (Johnson et al. 2004). In addition to
dysfunction of pRb in terminal differentiation, the pRb-
mediated G1-S phase transition is hindered in HGPS cells,

Figure 2. Model for effects of lamin misexpression on protein stability and nuclear structure. Expression of laminopathy mutants or
lamin A/C shRNA leads to activation of specific E3 ubiquitin ligases such as RNF123 and HECW2, as well as the F-box protein
FBXW10, resulting in increased proteasomal degradation (P) of HP1α and β (blue) and other regulatory factors (brown), as well as
dispersal of emerin (orange) and aberrant nuclear lamina morphology (maroon).
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probably due to inhibition of phosphorylation of pRb by
Cdk4 kinase (Dechat et al. 2007); these cells also display
abnormal localization of progerin during mitosis and mitotic
defects (Cao et al. 2007; Dechat et al. 2007). C2C12
myoblasts stably expressing a common EMD-causing lamin
A mutation, R453W, are deficient in expression of
myogenic markers like myogenin, do not exit the cell cycle
properly and are eventually targeted for apoptosis (Favreau
et al. 2004). Differentiation is also impaired in myoblasts
expressing the EMD mutants G232E, Q294P or R386K
(Parnaik and Manju 2006).

In fibroblasts from an LGMD1B patient with a homozy-
gous LMNA nonsense mutation (Y259X), which leads to
absence of lamin A, the integral membrane proteins emerin
and nesprin-1α are mislocalized to the ER and subsequently
degraded; this degradation is mediated by the proteasomal
machinery (Muchir et al. 2006). Proteomics analysis has
demonstrated that reduction of lamin A/C to ~10% of
normal values by an shRNA approach in HeLa cells leads to
depletion of 34 proteins, most of which are involved in
cytoskeletal organization, cell cycle regulation and prolifer-
ation (Chen et al. 2009).

Fibroblasts from the Zmpste24-null mouse, which is a
model for progeria, show genomic instability, higher
sensitivity to DNA damaging agents, and impairment in
recruitment of repair proteins such as p53 binding protein 1
(53BP1) and Rad51 to sites of DNA lesions (Liu et al.
2005), as well as upregulation of p53 targets (Varela et al.
2005). In Lmna−/− fibroblasts, 53BP1 is degraded by the
proteasomal machinery, and this may contribute to telomere
dysfunction in these cells (Gonzalez-Suarez et al. 2009). In
cell culture models, lamin mutants impair the formation of
DNA repair foci and hinder the recruitment of 53BP1 to
repair sites after short-term DNA damage; these mutants
cause degradation of ATM-and-Rad3-related (ATR) kinase
in untreated cells (Manju et al. 2006).

Loss of heterochromatin in HGPS cells is accompanied
by downregulation of trimethylation at lysine 9 of histone
H3 (H3K9), which normally marks pericentric constitutive
heterochromatin (Columbaro et al. 2005; Shumaker et al.
2006). Furthermore, the inactive X chromosome from a
female HGPS patient shows loss of trimethylation at lysine
27 of histone H3 (H3K27), a mark for facultative
heterochromatin, which results in reduced association with
heterochromatin protein 1α (HP1α) (Shumaker et al. 2006).
Cells from patients with MAD type A due to a R527H
mutation in LMNA also exhibit accumulation of pre-lamin A
and loss of peripheral heterochromatin, together with
mislocalization of HP1β, trimethylated H3K9 and LBR
(Filesi et al. 2005). A recent study has reported another
progeria mutation, E145K that is highly disruptive of
nuclear structure but does not respond to treatment with a
farnesyl transferase inhibitor (Taimen et al. 2009).

Expression of the lamin A EMD mutants G232E,
Q294P and R386K in HeLa cells results in depletion of
HP1α and β isoforms; treatment with proteasomal
inhibitors leads to restoration of levels of HP1 isoforms,
stable association of lamin mutants with the nuclear
periphery, rim localization of the inner nuclear membrane
lamin-binding protein emerin and partial improvement of
nuclear morphology. FBXW10, a member of the F-box
family of substrate-binding proteins that are components
of RING ubiquitin ligases such as SCF-ligase, is induced
several-fold in cells expressing lamin mutants, and
expression of FBXW10 directly leads to depletion of
HP1α and β and dispersal of emerin (Chaturvedi and Parnaik
2010). This is the first report on the identification of specific
components of the ubiquitination pathway that are activated
by lamin misexpression (see schematic in figure 2). Two
other ubiquitin ligases that are upregulated upon expres-
sion of lamin mutants or in lamin A knock-down cells,
RNF123 and HECW2, are also involved in degradation of
HP1 isoforms and other regulatory proteins (Parnaik,
Chaturvedi and Muralikrishna, unpublished work). Thus
ubiquitin-mediated proteasomal degradation of essential
nuclear proteins may afford a distinct mechanism for the
deleterious effects of disease-causing lamin mutants.

5. Concluding remarks

Lamins are essential for nuclear integrity and spatial
organization of nuclear functions, and they also provide
interconnections between the cytoplasm and the nucleus.
Binding interactions between lamins and specific proteins
lead to the formation of critical regulatory networks. Studies
with laminopathic mutations in both cellular and animal
models have given valuable information on the role of
lamins in key signalling pathways. It is becoming increas-
ingly evident that certain highly deleterious mutations in
lamin A/C are able to affect multiple cellular processes,
leading to general cellular toxicity and cell death. Both
decreased levels of lamin A/C and lamin missense muta-
tions trigger proteasomal degradation of essential proteins.
Recent findings on the identification of specific components
of the ubiquitination pathway that are activated by lamin
misexpression have provided new insights into these
processes. Further studies should yield a better understand-
ing of the mechanism of activation of ubiquitin ligases in
laminopathic cells.

Acknowledgements

We apologize to those whose references have not been cited
due to space restrictions. VKP is a recipient of the JC Bose
National Fellowship from the Department of Science and

476 VK Parnaik, P Chaturvedi and Bh Muralikrishna

J. Biosci. 36(3), August 2011



Technology. PC was supported by a senior research
fellowship from the Council of Scientific and Industrial
Research. Research in VKP’s laboratory has been supported
by the Council of Scientific and Industrial Research,
Department of Biotechnology and Department of Science
and Technology.

References

Adhikari AS, Rao KS, Rangaraj N, Parnaik VK and Rao CM 2004
Heat-stress induced alterations in localization of small heat
shock proteins in mouse myoblasts: intranuclear lamin A/C
speckles as target for αB-crystallin and hsp 25. Exp. Cell Res.
299 393–403

Agarwal AK, Fryns JP, Auchus RJ and Garg A 2003 Zinc
metalloproteinase, ZMPSTE24, is mutated in mandibuloacral
dysplasia. Hum. Mol. Genet. 12 1995–2001

Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G
and Toniolo D 1994 Identification of a novel X-linked gene
responsible for Emery-Dreifuss muscular dystrophy. Nat.
Genet. 8 323–327

Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda
EH, Merlini L, Muntoni F, Greenberg CR, et al. 1999
Mutations in the gene encoding lamin A/C cause autosomal
dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21
285–288

Broers JLV, Kuijpers HJH, Östlund C, Worman HJ, Endert J and
Ramaekers FCS 2005 Both lamin A and lamin C mutations
cause lamina instability as well as loss of internal nuclear lamin
organization. Exp. Cell Res. 304 582–592

Broers JL, Ramaekers FC, Bonne G, Yaou RB and Hutchison CJ
2006 Nuclear lamins: laminopathies and their role in premature
ageing. Physiol. Rev. 86 967–1008

Cao H and Hegele RA 2000 Nuclear lamin A/C R482Q mutation
in Canadian kindreds with Dunnigan-type familial partial
lipodystrophy. Hum. Mol. Genet. 9 109–112

Cao K, Capell BC, Erdos MR, Djabali K and Collins FS 2007 A
lamin A protein isoform overexpressed in Hutchinson-Gilford
progeria syndrome interferes with mitosis in progeria and
normal cells. Proc. Natl. Acad. Sci. USA 104 4949–4954

Capanni C, Cenni V, Mattioli E, Sabatelli P, Ognibene A,
Columbaro M, Parnaik VK, Wehnert M, et al. 2003 Failure of
lamin A/C to functionally assemble in R482L mutated familial
partial lipodystrophy fibroblasts: Altered intermolecular inter-
action with emerin and implications for gene transcription. Exp.
Cell Res. 291 122–134

Capell BC and Collins FS 2006 Human laminopathies: nuclei gone
genetically awry. Nat. Rev. Genet. 7 940–952

Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R,
Conneely KN, Gordon LB, Der CJ, Cox AD and Collins FS 2005
Inhibiting farnesylation of progerin prevents the characteristic
nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc.
Natl. Acad. Sci. USA 102 12879–12884

Chaturvedi P and Parnaik VK 2010 Lamin A rod mutants target
heterochromatin protein 1α and β for proteasomal degradation
by activation of F-box protein, FBXW10. PLoS ONE 5 e10620

Chen S, Martin C, Maya-Mendoza A, Tang CW, Lovric J, Sims
PFG and Jackson DA 2009 Reduced expression of lamin A/C
results in modified cell signaling and metabolism coupled with
changes in expression of structural proteins. J. Prot. Res.
8 5196–5211

Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, Toth JI,
Fong LG and Young SG 2010 Abnormal development of the
cerebral cortex and cerebellum in the setting of lamin B2
deficiency. Proc. Natl. Acad. Sci. USA 107 5076–5081

Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK,
Squarzoni S, Maraldi NM and Lattanzi G 2005 Rescue of
heterochromatin organization in Hutchinson-Gilford progeria
by drug treatment. Cell. Mol. Life Sci. 62 2669–2678

Davies BSJ, Barnes II RH, Tu Y, Ren S, Andres DA, Spielmann
HP, Lammerding J, Wang Y, Young SG and Fong LG 2010 An
accumulation of non- farnesylated prelamin A causes cardio-
myopathy but not progeria. Hum. Mol. Genet. 19 2682–2694

De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir
M, Kassouri N, Szepetowski P, Hammadouche T, et al. 2002
Homozygous defects in LMNA, encoding lamin A/C nuclear-
envelope proteins, cause autosomal recessive axonal neuropathy
in human (Charcot-Marie-Tooth disorder type 2) and mouse.
Am. J. Hum. Genet. 70 726–736

De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J,
Boccaccio I, Lyonnet S, Stewart CI, et al. 2003 Lamin A
truncation in Hutchinson-Gilford progeria. Science 300 2055

Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ and
Foisner R 2000 Lamina-associated polypeptide 2α binds intra-
nuclear A-type lamins. J. Cell Sci. 113 3473–3484

Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK,
Solimando L and Goldman RD 2008 Nuclear lamins: major
factors in the structural organization and function of the nucleus
and chromatin. Genes Dev. 22 832–853

Dechat T, Shimi T, Adam SA, Rusinol AE, Andres DA, Spielmann
HP, Sinensky MS and Goldman RD 2007 Alterations in mitosis
and cell cycle progression caused by a mutant lamin A known
to accelerate human aging. Proc. Natl. Acad. Sci. USA 104
4955–4960

Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott
L, Erdos MR, Robbins CM, et al. 2003 Recurrent de novo point
mutations in lamin A cause Hutchinson-Gilford progeria
syndrome. Nature (London) 423 293–298

Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux
M, Atherton J, Vidaillet HJ Jr, et al. 1999 Missense mutations
in the rod domain of the lamin A/C gene as causes of dilated
cardiomyopathy and conduction-system disease. N. Engl. J.
Med. 341 1715–1724

Favreau C, Dubosclard E, Östlund C, Vigouroux C, Capeau J,
Wehnert M, Higuet D, Worman HJ, Courvalin JC and Buendia
B 2003 Expression of lamin A mutated in the carboxyl-terminal
tail generates an aberrant nuclear phenotype similar to that
observed in cells from patients with Dunnigan-type partial
lipodystrophy and Emery-Dreifuss muscular dystrophy. Exp.
Cell Res. 282 14–23

Favreau C, Higuet D, Courvalin J-C and Buendia B 2004
Expression of a mutant lamin A that causes Emery-Dreifuss
muscular dystrophy inhibits in vitro differentiation of C2C12
myoblasts. Mol. Cell. Biol. 24 1481–1492

Lamins and inherited disease 477

J. Biosci. 36(3), August 2011



Filesi I, Gullotta F, Lattanzi G, D’Apice MR, Capanni C, Nardone
AM, Columbaro M, Scarano G, et al. 2005 Alterations of
nuclear envelope and chromatin organization in mandibuloacral
dysplasia, a rare form of laminopathy. Physiol. Genomics 23
150–158

Fong LG, Ng JK, Meta M, Cote N, Yang SH, Stewart CL, Sullivan
T, Burghardt A, et al. 2004 Heterozygosity for Lmna deficiency
eliminates the progeria-like phenotypes in Zmpste24-deficient
mice. Proc. Natl. Acad. Sci. USA 101 18111–18116

Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C and
Young SG 2006 A protein farnesyltransferase inhibitor
ameliorates disease in a mouse model of progeria. Science
311 1621–1623

Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD
and Kennedy BK 2006 Lamin A/C and emerin are critical
for skeletal muscle satellite cell differentiation. Genes Dev.
20 486–500

Gant TM and Wilson KL 1997 Nuclear assembly. Ann. Rev. Cell
Dev. Biol. 13 669–695

Gilchrist S, Gilbert N, Perry P, Östlund C, Worman HJ and
Bickmore WA 2004 Altered protein dynamics of disease-
associated lamin A mutants. BMC Cell Biol. 5 46

Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK and Spann
TP 2002 Nuclear lamins: Building blocks of nuclear architec-
ture. Genes Dev. 16 533–547

Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman
AE, Gordon LB, Gruenbaum Y, Khuon S, et al. 2004
Accumulation of mutant lamin A causes progressive changes
in nuclear architecture in Hutchinson-Gilford progeria syn-
drome. Proc. Natl. Acad. Sci. USA 101 8963–8968

Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B,
Lichtensztejin D, Grotsky DA, Morgado-Palacin L, Gapud
EJ, et al. 2009 Novel roles for A-type lamins in telomere
biology and the DNA damage response pathway. EMBO J. 28
2414–2427

Gurudatta BV, Shashidhara LS and Parnaik VK 2010 Lamin
C and chromatin organization in Drosophila. J. Genet. 89
37–49.

Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V,
Rodger NW and Durrington PN 2006 Sequencing of the
reannotated LMNB2 gene reveals novel mutations in patients
with acquired partial lipodystrophy. Am. J. Hum. Genet. 79
383–389

Herrmann H, Bar H, Kreplak L, Strelkov SV and Aebi U 2007
Intermediate filaments: from cell architecture to nanomechanics.
Nat. Rev. Mol. Cell Biol. 8 562–573

Ivorra C, Kubicek M, González JM, Sanz- González SM, Álvarez-
Barrientos A, O’Connor J-E, Burke B and Andrés V 2006 A
mechanism of AP-1 suppression through interaction of c-Fos
with lamin A/C. Genes Dev. 20 307–320

Jagatheesan G, Thanumalayan S, Muralikrishna Bh, Rangaraj N,
Karande AA and Parnaik VK 1999 Colocalisation of intra-
nuclear lamin foci with RNA splicing factors J. Cell Sci. 112
4651–4661

Johnson BR, Nitta RT, Frock RL, Mounkes L, Barbie DA, Stewart
CL, Harlow E and Kennedy BK 2004 A-type lamins regulate
retinoblastoma protein function by promoting sub-nuclear
localization and preventing proteasomal degradation. Proc.
Natl. Acad. Sci. USA 101 9677–9682

Kennedy BK, Barbie DA, Classon M, Dyson N and Harlow E
2000 Nuclear organisation of DNA replication in primary
mammalian cells. Genes Dev. 14 2855–2868

Kind J and van Steensel B 2010 Genome-nuclear lamina interactions
and gene regulation. Curr. Opin.Cell Biol. 22 320–325

Kumaran RI, Muralikrishna Bh and Parnaik VK 2002 Lamin A/C
speckles mediate spatial organisation of splicing factor compart-
ments and RNA polymerase II transcription. J. Cell Biol. 159
783–793

Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T,
Kamm RD, Stewart CL and Lee RT 2004 Lamin A/C
deficiency causes defective nuclear mechanics and mechano-
transduction. J. Clin. Invest. 113 370–378

Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD,
Li KM, et al. 2005 Genomic instability in laminopathy-based
premature aging. Nat. Med. 11 780–785

Lloyd DJ, Trembath RC and Shackleton S 2002 A novel
interaction between lamin A and SREBP1: implications for
partial lipodystrophy and other laminopathies. Hum. Mol.
Genet. 11 769–777

Manju K, Muralikrishna Bh and Parnaik VK 2006 Expression of
disease-causing lamin mutants impairs the formation of DNA
repair foci. J. Cell Sci. 119 2704–2714

Mariappan I and Parnaik VK 2005 Sequestration of pRb by cyclin
D3 causes intranuclear reorganization of lamin A/C during
muscle cell differentiation. Mol. Biol. Cell 16 1948–1960

Mariappan I, Gurung R, Thanumalayan S and Parnaik VK 2007
Identification of cyclin D3 as a new interaction partner of lamin
A/C. Biochem. Biophys. Res. Comm. 355 981–985

Markiewicz E, Dechat T, Foisner R, Quinlan RA and Hutchison
CJ 2002 Lamin A/C binding protein LAP2α is required for
nuclear anchorage of retinoblastoma protein. Mol. Biol. Cell
13 4401–4413

Melcer S, Gruenbaum Y and Krohne G 2007 Invertebrate lamins.
Exp. Cell Res. 313 2157–2166

Moir RD, Montag-Lowy M and Goldman RD 1994 Dynamic
properties of nuclear lamins: lamin B is associated with sites of
DNA replication. J. Cell Biol. 125 1201–1212

Muchir A, Bonne G, van der Kooi AJ, van Meegan M, Baas F,
Bolhuis PA, de Visser M and Schwartz K 2000 Identifica-
tion of mutations in the gene encoding lamins A/C in
autosomal dominant limb girdle muscular dystrophy with
atrioventricular conduction disturbances. Hum. Mol. Genet.
9 1453–1459

Muchir A, Massart C, van Engelen BG, Lammens M, Bonne G
and Worman HJ 2006 Proteasome-mediated degradation of
integral inner nuclear membrane protein emerin in fibroblasts
lacking A-type lamins. Biochem. Biophys. Res. Commun. 351
1011–1017

Muchir A, Medioni J, Laluc M, Massart C, Arimura T, van der
Kooi AJ, Desguerre I, Mayer M, et al. 2004 Nuclear envelope
alterations in fibroblasts from patients with muscular dystrophy,
cardiomyopathy, and partial lipodystrophy carrying lamin A/C
gene mutations. Muscle Nerve 30 444–450

Muchir A, Pavlidis P, Bonne G, Hayashi YK and Worman HJ
2007 Activation of MAPK in hearts of Emd null mice:
similarities between mouse models of X-linked and autosomal
dominant Emery-Dreifuss muscular dystrophy. Hum. Mol.
Genet. 16 1884–1895

478 VK Parnaik, P Chaturvedi and Bh Muralikrishna

J. Biosci. 36(3), August 2011



Navarro CL, De Sandre-Giovannoli A, Bernard R, Boccaccio I,
Boyer A, Genevieve D, Hadj-Rabia S, Gaudy-Marqueste C, et al.
2004 Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear
disorganization and identify restrictive dermopathy as a lethal
neonatal laminopathy. Hum. Mol. Genet. 13 2493–2503

Navarro CL, Cadinanos J, De Sandre-Giovannoli A, Bernard R,
Courrier S, Boccaccio I, Boyer A, Kleijer WJ, et al. 2005 Loss
of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive
dermopathy and accumulation of lamin A precursors. Hum.
Mol. Genet. 14 1503–1513

Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia
D, Kesteven SH, Michalicek J, et al. 2004 Defects in nuclear
structure and function promote dilated cardiomyopathy in lamin
A/C-deficient mice. J. Clin. Invest. 113 357–369

Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D’Apice
MR, Massart C, Capon F, Sbraccia P, et al. 2002 Mandibu-
loacral dysplasia is caused by a mutation in LMNA-encoding
lamin A/C. Am. J. Hum. Genet. 71 426–431

Östlund C, Bonne G, Schwartz K andWorman HJ 2001 Properties of
lamin A mutants found in Emery-Dreifuss muscular dystrophy,
cardiomyopathy and Dunnigan-type partial lipodystrophy. J. Cell
Sci. 114 4435–4445

Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T,
Koeppen A, Hogan K, Ptacek LJ and Fu YH 2006 Lamin B1
duplications cause autosomal dominant leukodystrophy. Nat.
Genet. 38 1114–1123

Parnaik VK 2008 Role of nuclear lamins in nuclear organization,
cellular signaling and inherited diseases. Int. Rev. Cell Mol.
Biol. 266 157–206

Parnaik VK and Manju K 2006 Laminopathies: multiple disorders
arising from defects in nuclear architecture. J. Biosci. 31 405–421

Raharjo WH, Enarson P, Sullivan T, Stewart CL and Burke B 2001
Nuclear envelope defects associated with LMNA mutations cause
dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy.
J. Cell Sci. 114 4447–4457

Scaffidi P and Misteli T 2006 Lamin A-dependent nuclear defects
in human ageing. Science 312 1059–1063

Schirmer EC and Gerace L 2005 The nuclear membrane proteome:
extending the envelope. Trends Biochem. Sci. 30 551–558

Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh
BM, Schmidt H, Brabant G, et al. 2000 LMNA, encoding lamin
A/C is mutated in partial lipodystrophy. Nat. Genet. 24 153–156

Shackleton S, Smallwood DT, Clayton P, Wilson LC, Agarwal
AK, Garg A and Trembath RC 2005 Compound heterozygous
ZMPSTE24 mutations reduce prelamin A processing and result
in a severe progeroid phenotype. J. Med. Genet. 42 e36

Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR,
Erdos MR, Eriksson M, Goldman AE, et al. 2006 Mutant nuclear
lamin A leads to progressive alterations of epigenetic control in
premature aging. Proc. Natl. Acad. Sci. USA 103 8703–8708

Shumaker DK, Solimando L, Sengupta K, Shimi T, Adam SA,
Grunwald A, Strelkov SV, Aebi U, Cardoso MC and Goldman
RD 2008 The highly conserved nuclear lamin Ig-fold binds to
PCNA: its role in DNA replication. J. Cell Biol. 181 269–280

Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E,
Taylor SI, Lovett M and Bowcock AM 2000 Mutational and
haplotype analyses of families with familial partial lipodys-
trophy (Dunnigan variety) reveal recurrent missense mutations
in the globular C-terminal domain of lamin A/C. Am. J. Hum.
Genet. 66 1192–1198

Starr DA 2009 A nuclear-envelope bridge positions nuclei and
moves chromosomes. J. Cell Sci. 122 577–586

Sullivan T, Escalante-Alcade D, Bhatt H, Anver M, Bhat N,
Nagashima K, Stewart CL and Burke B 1999 Loss of A-type
lamin expression compromises nuclear envelope integrity
leading to muscular dystrophy. J. Cell Biol. 147 913–920

Taimen P, Pfleghaar K, Shimi T, Moller D, Ben-Harush K, Erdos
MR, Adam SA, Herrmann H, et al. 2009 A progeria mutation
reveals functions for lamin A in nuclear assembly, architecture,
and chromosome organization. Proc. Natl. Acad. Sci. USA 106
20788–20793

Tilgner K, Wojciechowicz K, Jahoda C, Hutchison CJ and
Markiewicz E 2009 Dynamic complexes of A-type lamins and
emerin influence adipogenic capacity of the cell via nucleocy-
toplasmic distribution of β-catenin. J. Cell Sci. 122 401–413

Tripathi K, Muralikrishna Bh and Parnaik VK 2009 Differential
dynamics and stability of lamin A rod domain mutants. Int. J.
Integrative Biol. 5 1–8

Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A,
Folgueras AR, Sanchez LM, Zhou Z, Rodriguez FJ, et al.
2005 Accelerated ageing in mice deficient in Zmpste24 protease
is linked to p53 signalling activation. Nature 437 564–568

Vergnes L, Peterfy M, Bergo MO, Young SG and Reue K 2004
Lamin B1 is required for mouse development and nuclear
integrity. Proc. Natl. Acad. Sci. USA. 101 10428–10433

Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J,
Courvalin JC and Buendia B 2001 Nuclear envelope disorga-
nisation in fibroblasts from lipodystrophic patients with
heterozygous R482Q/W mutations in the lamin A/C gene. J.
Cell Sci. 114 4459–4468

Wang Y, Herron AJ and Worman HJ 2006 Pathology and
nuclear abnormalities in hearts of transgenic mice expressing
M371K lamin A encoded by an LMNA mutation causing
Emery-Dreifuss muscular dystrophy. Hum. Mol. Genet. 15
2479–2489.

Willsie JK and Clegg JS 2002 Small heat shock protein p26 associates
with nuclear lamins and Hsp 70 in nuclei and nuclear matrix
fractions from stressed cells. J. Cell. Biochem. 84 601–614

Wilson KL and Foisner R 2010 Lamin-binding proteins. Cold
Spring Harb. Perspect. Biol. 2 a000554

Worman HJ and Courvalin J-C 2005 Nuclear envelope, nuclear
lamina and inherited disease. Int. Rev. Cytol. 246 231–279

Yang SH, Bergo MO, Toth JI, Qiao X, Hu Y, Sandoval S, Meta
M, Bendale P, Gelb MH, Young SG and Fong LG 2005
Blocking protein farnesyltransferase improves nuclear bleb-
bing in mouse fibroblasts with a targeted Hutchinson–Gilford
progeria syndrome mutation. Proc. Natl. Acad. Sci. USA 102
10291–10296

ePublication: 08 July 2011

Lamins and inherited disease 479

J. Biosci. 36(3), August 2011


	Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins
	Abstract
	Nuclear lamins
	Laminopathies
	Deleterious effects of lamin mutations on nuclear organization and functions
	Molecular and cellular basis of pathogenesis
	Concluding remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


