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Abstract

Let Q be a nondegenerate indefinite quadratic form on Rn, n ≥ 3, which
is not a scalar multiple of a rational quadratic form, and let CQ = {v ∈ Rn |
Q(v) = 0}. We show that given v1 ∈ CQ, for almost all v ∈ CQ \Rv1 the
following holds: for any a ∈ R, any affine plane P parallel to the plane of v1
and v, and ε > 0 there exist primitive integral n-tuples x within ε distance
of P for which |Q(x)− a| < ε. An analogous result is also proved for almost
all lines on CQ.
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1 Introduction

Margulis proved in the mid-nineteen-eighties, in response to a long-standing
conjecture of A. Oppenheim, that given a nondegenerate indefinite real
quadratic form Q on Rn, n ≥ 3, which is not a scalar multiple of a form
with rational coefficients, the set Q(Zn) of values of Q at integer points is a
dense subset of R, namely, for any a ∈ R and ε > 0 there exists x ∈ Zn such
that |Q(x) − a| < ε. There have been various strengthenings of the result
and other developments around it since then, including some quantitative
versions of the conjecture. A nice exposition of the developments on the
theme until the mid-nineteen-nineties is given by Margulis in [9]; for some
later results the reader may refer [1] and [2].

One question in this respect on which our understanding is still meager
is whether we can specify location requirements for the integral solutions of
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the diophantine inequalities |Q(x) − a| < ε as above. For instance, given a
proper non-zero subspace, or more generally an affine subspace W of Rn can
the solution x of the inequality |Q(x)− a| < ε be chosen near W , say within
distance ε? For an affine hyperplane the question is equivalent to whether
the x can also be chosen simultaneously to be a solution of |L(x)− b| < ε for
a given linear form L on Rn and b ∈ R. A result from [4] shows that for n = 3
the answer is in the affirmative if the plane {v ∈ Rn | L(v) = 0} is tangential
to the cone {v ∈ Rn | Q(v) = 0}. On the other hand it was deduced in [1]
from a result of Kleinbock and Margulis [8] that in absence of the additional
condition, for a certain large class of L the two diophantine inequalities
as above do not admit common integral solutions, for small enough ε. For
n ≥ 4, using Ratner’s theorem on orbit closures, A. Gorodnik [6] obtained an
affirmative answer for a large class of pairs (Q,L); (see also [7] for results for
pairs of quadratic forms); it is stated in [6] that the result can be extended,
with arguments similar to those involved in the proof there, to cover all pairs
(Q,L) for n = 4; however for n ≥ 5 the question remains to be resolved fully.

When the location requirement as above is specified in terms of subspaces
or affine subspaces of codimension two or more, no significant result seems
to be known. Our results here partially addresses the question for affine
planes (2-dimensional affine subspaces) and also lines through the origin; see
Theorem 1.1 and Corollaries 1.2 and 1.3 for details. The diophantine results
are deduced from a result of Nimish Shah [10] on asymptotics of measures on
homogeneous spaces under actions of sequences of diagonal elements; see §2.

Now let V = Rn, n ≥ 3; we consider it equipped with the usual inner
product and the corresponding norm which we shall denote by || · ||. For
any linearly independent pair of vectors v1, v2 ∈ V we denote by P (v1, v2)
the plane (two-dimensional subspace) spanned by v1 and v2; in the sequel
whenever we write P (v1, v2) for vectors v1 and v2, they will be linearly inde-
pendent, either by choice or construction, and we may omit specific mention
of this. For a plane P in V we denote by P⊥ the orthocomplement of P and
by π(x, P ), x ∈ V , the orthogonal projection of x on P⊥.

We recall that x ∈ Zn is said to be primitive if k−1x /∈ Zn for any integer
k ≥ 2. We denote by P(Zn) the set of all primitive elements in Zn. The
solutions we obtain for various diophantine systems will be primitive.

A quadratic form Q on Rn is said to be rational if its coefficients with
respect to the standard basis of Rn are rational.

Let Q be a nondegenerate quadratic form on V . We denote by CQ the
cone defined by CQ = {v ∈ V | v 6= 0, Q(v) = 0}. Then CQ is a differentiable
submanifold of V . We shall consider CQ equipped with a measure which on
coordinate charts is equivalent to (has the same sets of measure zero as) the
Lebesgue measure. If P is a plane in V such that for every a ∈ R, w ∈ P⊥ and
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ε > 0 there exists x ∈ Zn such that |Q(x)− t| < ε and ||π(x, P )−w|| < ε then
P ∩ CQ is nonempty (see Remark 3.1 for details). It is therefore natural in
addressing our question to consider only planes intersecting CQ; furthermore
while considering generic planes we may assume the plane to be spanned by
two vectors in CQ. We prove the following.

Theorem 1.1. Let Q be a nondegenerate indefinite quadratic form on V

which is not a scalar multiple of a rational quadratic form. Let v1 ∈ CQ be
given. Then for almost all v ∈ CQ \Rv1 the following holds: for any t ∈ R,
w ∈ P (v1, v)⊥ and ε > 0 there exists x ∈ P(Zn) such that

|Q(x)− t| < ε and ||π(x, P (v1, v))− w|| < ε.

The method of proof of Theorem 1.1, via study of flows on homogeneous
spaces as we shall see below, is not applicable to one-dimensional subspaces,
in the place of planes (higher dimensional subspaces are evidently taken care
of, with any particular dimension). However, we deduce from Theorem 1.1,
via elementary considerations, the following result dealing with the analo-
gous question for lines (on CQ, as would be natural to assume), with regard
to values near 0, namely the “homogeneous” case of the diophantine inequal-
ities; it turns out that generalisation to the inhomogeneous case is not to be
expected in this case (see Remark 3.3). For v ∈ V \{0} let π(x, v), x ∈ V ,
denote the projection of x on the orthocomplement of the subspace spanned
by v. Then we have the following:

Corollary 1.2. Let Q be a nondegenerate indefinite quadratic form on V

which is not a scalar multiple of a rational quadratic form. Then for almost
all v ∈ CQ the following holds: for any ε > 0 there exists x ∈ P(Zn) such
that

|Q(x)| < ε and ||π(x, v)|| < ε.

Theorem 1.1 and Corollary 1.2 can also be formulated as statements
about simultaneous diophantine approximation involving a quadratic form
together with n− 2, or n− 1 respectively, linearly independent linear forms.
Let Q be a quadratic form as in Theorem 1.1 and for l = 1, 2 let Ln−l

Q

be the manifold consisting of all (n − l)-tuples (L1, . . . , Ln−l) of linearly
independent linear forms such that the restriction of Q to the l-dimensional
subspace {v ∈ V | Lk(v) = 0 for all k = 1, . . . , n − l} is a nondegenerate
indefinite quadratic form. We consider Ln−l

Q equipped with a measure which
on coordinate charts is equivalent to Lebesgue measure. Theorem 1.1 and
Corollary 1.2 imply the following; see §3 for details.
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Corollary 1.3. i) For almost all (L1, . . . , Ln−2) in Ln−2
Q the following holds:

for all s0, s1, . . . , sn−2 ∈ R and ε > 0 there exists x ∈ P(Zn) such that

|Q(x)− s0| < ε and |Lk(x)− sk| < ε for all k = 1, . . . , n− 2.

ii) For almost all (L1, . . . , Ln−1) ∈ Ln−1
Q and ε > 0 there exists x ∈ P(Zn)

such that

|Q(x)| < ε and |Lk(x)| < ε for all k = 1, . . . , n− 1.

The method of proof of Theorem 1.1 is analogous to Margulis’s proof of
Oppenheim conjecture and many subsequent results along the line, in that
it involves considering orbits on the homogeneous space SL(n,R)/SL(n,Z)
under the action of the subgroup of SL(n,R) leaving the diophantine system
invariant. There is a major difference however that while in the earlier cases
the subgroup concerned was generated by unipotent elements (up to finite
index), in the case at hand the subgroup is a diagonalisable one-parameter
subgroup, whose action does not have the rigidity properties of the actions of
subgroups generated by unipotent elements. It is this aspect that constrains
the results to “almost all” rather than all systems (with specified conditions).

In §2 we recall a special case of a theorem of Nimish Shah [10] (Theo-
rem 2.1) and note a consequence of it (Corollary 2.2) to density of certain
sequences of points on homogeneous spaces G/Γ of connected Lie groups by
lattices. The proof of Theorem 1.1, which is described in §3, involves the
case G = SL(n,R) and Γ = SL(n,Z), with the sequences arising as orbits of
a cyclic subsemigroup of the diagonalisable one-parameter subgroup leaving
invariant the diophantine system. Some related results based on a theorem
from [5], which may be of indirect interest, are also noted.

Acknowledgement: I would like to thank G.A. Margulis for a discussion with
him in 2000 at the Isaac Newton Institute, Cambridge, England, which has
played a role on the way to arriving at the results presented here. Thanks are
also due to D. Kleinbock, Nimish A. Shah and two anonymous referees for
useful suggestions enabling improvements in the presentation of the results.

2 Dense sequences in G/Γ

We begin by recalling a result of Nimish Shah [10] from which Theorem 1.1
will be deduced.

Let G be a connected Lie group and Γ be a lattice in G, namely a discrete
subgroup of G such that G/Γ carries a finite G-invariant measure; we shall
denote by µ the G-invariant probability measure on G/Γ. We denote by e
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the identity element in G. Let H be a connected semisimple real algebraic
group realised as a closed subgroup of G. Let A be a maximal connected
diagonalisable subgroup of H; i.e. A as in the Iwasawa decomposition of H.
Let H be the Lie algebra of H and H = ⊕α∈ΛHα be the decomposition with
respect to the adjoint action of A on H, Λ being the corresponding set of
roots, consisting of all α : A → R+ = {t ∈ R | t > 0} for which there exists
ξ ∈ H, ξ 6= 0, such that (Ad a)(ξ) = α(a)ξ for all a ∈ A. Then Theorem 1.4
of [10] implies in particular the following:

Theorem 2.1. Let the notation be as above. Let {ai} be a sequence in A

such that for every α ∈ Λ, either {α(ai)} is relatively compact in R+, or
α(ai) → 0 or α(ai) → ∞. Let U = {u ∈ H | a−1

i uai → e, as i → ∞}.
Suppose that U is not contained in any proper closed normal subgroup of H.
Let x ∈ G/Γ be such that Hx is dense in G/Γ. Let λ be a Haar measure on
U . Then for any Borel subset Θ of U and any bounded continuous function
ϕ on G/Γ, as i→∞,∫

Θ
ϕ(aiux)dλ(u) −→ λ(Θ)

∫
G/Γ

ϕdµ.

Clearly it suffices to prove the assertion when 0 < λ(Θ) < ∞. For this
we apply Theorem 1.4 of [10] with G and H as above in the place L and
G respectively, in the notation of [10]; for the lattice Λ as in [10] we choose
gΓg−1 with g ∈ G such that x = gΓ, and the probability measure λ in the
statement of the theorem in [10] is chosen to be the measure assigning the
value λ(E ∩Θ)/λ(Θ) for all Borel subsets E of U .

Corollary 2.2. Let the notation be as in Theorem 2.1. Then for λ-almost
all u ∈ U , {aiux | i ∈ N} is dense in G/Γ.

Proof. Let Ω be any nonempty open subset of G/Γ and let E = {u ∈ U |
aiux /∈ Ω for i ∈ N}. We shall show that λ(E) = 0; as G/Γ is second
countable, this would imply the corollary. Let ϕ be a continuous nonnegative
function on G/Γ, with compact support contained in Ω and

∫
ϕdµ > 0. By

Theorem 2.1
∫
E ϕ(aiux) dλ(u) → λ(E)

∫
ϕdµ. For u ∈ E we have ϕ(aiux) =

0 for all i, so
∫
Θ ϕ(aiux) dλ(u) = 0. Therefore λ(E) = 0. �

Let me also note here a property of the set of u for which the conclusion
of Corollary 2.2 holds. The result, Corollary 2.3 below, does indeed have
implications to assertions in Theorem 1.1 and Corollary 1.2. However their
significance in terms of diophantine approximation seems limited from the
present perspective, and hence the specifics are perhaps best left to the inter-
ested reader. The property is deduced from a result from [5], independently
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of Corollary 2.2, and may be of interest in other contexts. For the author it
has been of interest en route to arriving at the results described above.

It can be seen that U as above is a simply connected nilpotent Lie group.
Let U be the Lie subalgebra corresponding to U . Then the exponential map
exp : U → U is a diffeomorphism onto U . Hence the theorem implies in
particular, that for almost all ξ ∈ U, {ai(exp tξ)x | i ∈ N} is dense in G/Γ
for almost all t ∈ R. In this respect we shall prove the following.

Corollary 2.3. Let {ai}, U and x be as in Corollary 2.2. Let ξ ∈ U be such
that there exists t0 ∈ R for which {ai(exp t0ξ)x | i ∈ N} is dense in G/Γ.
Then {ai(exp tξ)x | i ∈ N} is dense in G/Γ for almost all t ∈ R.

Corollary 2.3 is derived from the following theorem from [5], which is
a “uniform version” of Ratner’s uniform distribution theorem for unipotent
one-parameter flows; we recall that x = gΓ, where g ∈ G, is said to be
generic for the action of a unipotent one-parameter subgroup {ut} of G if
there is no proper closed subgroup F of G containing {g−1utg} and such
that F ∩ Γ is a lattice in F .

Theorem 2.4. Let {u(i)
t } be a sequence of unipotent one-parameter sub-

groups of G converging to a one-parameter subgroup {ut} of G (i.e. u(i)
t → ut

for all t ∈ R, as i→∞). Let {xi} be a sequence of points in G/Γ converging
to a point which is generic for the action of {ut}. Let {Ti} be a sequence
of positive numbers such that Ti → ∞ as i → ∞. Then for any bounded
continuous function ϕ on G/Γ, as i→∞,

1
Ti

∫ Ti

0
ϕ(u(i)

t xi)dt −→
∫

G/Γ
ϕdµ.

Corollary 2.5. Let {ai}, U and x be as before and let ξ ∈ U be as in
Corollary 2.3. Then for any Borel subset Θ of R and any bounded continuous
function ϕ on G/Γ we have∫

Θ
ϕ(ai(exp tξ)x) dt→ l(Θ)

∫
G/Γ

ϕdµ, as i→∞,

where l is the Lebesgue measure on R.

Proof. Recall that by hypothesis there exists t0 ∈ R such that {ai exp(t0ξ)x}
is dense in G/Γ. Considering exp(t0ξ)x in the place of x we may assume that
t0 = 0, namely that {aix} is dense in G/Γ. We note that by regularity of the
Lebesgue measure it suffices to prove the assertion for Θ any interval, say
(a, b), with a < b. For each i let αi = ||Ad ai(ξ)||. Then αi → ∞ as i → ∞.
Passing to a subsequence we may assume that {α−1

i Ad ai(ξ)} converges, say
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α−1
i Ad ai(ξ) → θ ∈ U. We note that ||θ|| = 1, and in particular θ 6= 0. Now

for each i let ξi = α−1
i Ad ai(ξ) and u

(i)
t = exp tξi for all t ∈ R. Also for all

t ∈ R let ut = exp tθ. Then ξi → θ, and u
(i)
t → ut for all t. Since {aix} is

dense in G/Γ, passing to a subsequence we may assume that {aix} converges
to a point which is generic for the action of {ut}. Now let ϕ be a bounded
continuous function on G/Γ. Then by Theorem 2.4 we have

1
αi(b− a)

∫ αib

αia
ϕ(u(i)

t aix) dt −→
∫

G/Γ
ϕdµ.

We note that, for all t ∈ R and i ∈ N, u(i)
t = exp tξi = expα−1

i tAd ai(ξ) =
ai(expα−1

i tξ)a−1
i . Therefore, for all i, we have∫ αib

αia
ϕ(u(i)

t aix) dt =
∫ αib

αia
ϕ(ai(expα−1

i tξ)x) dt = αi

∫ b

a
ϕ(ai(exp tξ)x) dt.

Substituting this in the above convergence we see that
∫ b
a ϕ(ai(exp tξ)x) dt→

(b− a)
∫
ϕdµ, as i→∞, as sought to be proved. �

Proof of Corollary 2.3: follows from Corollary 2.5 in the same way as Corol-
lary 2.2 from Theorem 2.1. We omit the details.

3 Diophantine approximation

We now prove Theorem 1.1 using Corollary 2.2, and deduce the corollaries
described in §1.

Proof of Theorem 1.1: Let the notation be as in the hypothesis. Then, as
Q(v1) = 0, {v1} can be extended to a basis {v1, . . . , vn} of V such that for
any ξ1, . . . , ξn ∈ R,

Q(Σn
j=1ξjvj) = 2ξ1ξn − Σn−1

j=2 σjξ
2
j ,

where σj = ±1 for all j = 2, . . . , n− 1.
Let G = SL(V ), the special linear group of V = Rn, and Γ be the lattice

in G consisting of all elements leaving invariant the lattice Zn in V = Rn;
namely Γ is the subgroup SL(n,Z) when SL(V ) is realised as SL(n,R) with
respect to the standard basis of Rn. Let H be the connected component of
the identity in SO(Q) = {g ∈ SL(V ) | Q(gv) = Q(v) for all v ∈ V }, the
special orthogonal group corresponding to the quadratic form Q. Let α > 1
and a ∈ G = SL(V ) be the element such that a(v1) = αv1, a(vn) = α−1vn,
and a(vj) = vj for all j = 2, . . . , n−1. Then clearly a ∈ H. Furthermore, the
sequence {ai} satisfies the condition for the sequence {ai} as in Theorem 2.1.
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Let U = {h ∈ H | a−ihai → e as i→∞}. It can be seen that U consists of
all transformations such that v1 7→ v1, vj 7→ vj + σjujv1 for j = 2, . . . , n− 1,
and vn 7→ vn + Σn−1

j=2ujvj + 1
2(Σn−1

j=2 σju
2
j )v1, with u2, . . . , un−1 ∈ R.

Let x ∈ G/Γ be the identity coset Γ. Since Q is not a scalar multiple of
a rational quadratic form it follows that Hx is dense in G/Γ; see [3]. Thus
the conditions in Theorem 2.2 are satisfied, and we get that for almost all
u ∈ U the set {aiux | i ∈ N} is dense in G/Γ. Let U ′ be the set of all u in U
such that {aiux | i ∈ N} is dense in G/Γ. Also, let λ be a Haar measure on
U . We have λ(U \U ′) = 0.

Consider any u ∈ U ′. For k = 2, 3, . . . , n − 1 let Lk be the linear forms
on V = Rn defined by Lk(

∑n
j=1 ξjvj) = ξk, for all ξ1, . . . , ξn ∈ R, where

{v1, v2, . . . , vn} is the basis of V as above. Let f : V → Rn−1 be the map
defined by f(v) = (Q(v), L2(v), . . . , Ln−1(v)) for all v ∈ V . It can be seen,
using the expression for Q in terms of the basis {v1, . . . , vn}, that f is sur-
jective. We note also that f is a-invariant; that is, f(av) = f(v) for all
v ∈ V .

Now let v ∈ V \ {0} be arbitrary. We can write v as g(p), with g ∈ G

and p ∈ P(Zn). Since {aiux | i ∈ N} is dense in G/Γ, there exists a sequence
{ki} in N such that akiux → gΓ, as i → ∞. Hence there exists a sequence
{γi} in Γ such that akiuγi → g. Therefore akiuγi(p) → g(p) = v, and in
turn f(akiuγi(p)) → f(v) as i → ∞. Since f is a-invariant we get that
f(uγi(p)) → f(v). Therefore f(v) ∈ f(uP(Zn)) for any v ∈ V \ {0}. Since
f : V → Rn−1 is surjective, it follows that f(uP(Zn)) is dense in Rn−1. Since
Q is u-invariant, we get that {(Q(p), L2(u(p)), . . . , Ln−1(u(p))) | p ∈ P(Zn)}
is dense in Rn−1.

Let Pu be the plane spanned by v1 and u−1(vn), and let ρ : P⊥
u → Rn−2 be

linear the map defined by ρ(v) = (L2(u(v)), . . . , Ln−1(u(v))) for all v ∈ P⊥
u .

Since Pu is contained in the kernel of each Lk ◦u, k = 2, . . . , n− 1, it follows
that ρ is an isomorphism. Let ν = ||ρ−1||, the norm as a linear transformation,
with Rn−2 considered equipped with the usual norm, and P⊥

u with the norm
induced from Rn.

Now let t ∈ R, w ∈ P⊥
u and ε > 0 be given. From what we have seen, there

exists p ∈ P(Zn) such that |Q(p)− t| < ε and ||(L2(u(p)), . . . , Ln−1(u(p)))−
ρ(w)|| < ε/ν. We note that ρ(π(p, Pu)) = (L2(u(p)), . . . , Ln−1(u(p))). There-
fore we have ||ρ(π(p, Pu))− ρ(w)|| < ε/ν and hence ||π(p, Pu)−w|| < ε. Thus
we have shown that for any v ∈ CQ \Rv1 such that P (v1, v) = Pu for some
u ∈ U ′, the assertion as in the statement of the theorem holds.

From the description of the U -orbit of vn noted earlier it can be seen that
the orbit equals O = {v =

∑n−1
j=1 ξjvj + vn | ξ1, . . . , ξn−1 ∈ R, Q(v) = 0};

ξ2, . . . , ξn−1 can be chosen freely and then ξ1 is precisely such that Q(v) = 0.
Hence the set R∗O consisting of all nonzero points on the lines through points
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of O contains all points of CQ other than those on the hyperplane spanned by
{v1, . . . , vn−1}. We note that the intersection of CQ with this hyperplane is a
differentiable submanifold of codimension 1, and hence it is a set of measure
0 in CQ. Now, since λ(U\U ′) = 0, {tu−1(vn) | t ∈ R∗, u ∈ U ′} is a set of full
measure in R∗O, and hence in CQ. For all v ∈ R∗O the plane P (v1, v) has
the form Pu, and we have shown that this holds for almost all v ∈ CQ \Rv1.
Hence in view of the conclusion in the preceding paragraph the assertion as
in the theorem holds for almost all v in CQ. This proves the theorem. �

Remark 3.1. Let the notation be as in Theorem 1.1. We note that if P is
a plane in V such that P ∩CQ = ∅ then the conclusion as in the theorem is
not to be expected. In fact, if P is such a plane, for t ∈ R and w ∈ P⊥ the
inequalities |Q(x) − t| < ε and ||π(x, P ) − w|| < ε admit common solutions
x ∈ Zn for all ε > 0 only if there exists x ∈ Zn such that Q(x) = t and
π(x, P ) = w. This may be seen as follows: firstly, the restriction of Q to P
is a definite quadratic form, which we may assume without loss of generality
to be positive definite. Hence there exists a basis {v1, . . . , vn} of V such
that P is the span of v1 and v2 and the form Q is given by Q(

∑n
j=1 ξjvj) =∑s

j=1 ξ
2
j −

∑n
j=s+1 ξ

2
j , for all ξ1, . . . , ξn ∈ R, where 2 ≤ s ≤ n − 1 is the

signature of Q. It can be seen from this that for any t ∈ R, w ∈ P⊥ and
α > 0 the set {v ∈ V | |Q(v) − t| ≤ α, ||π(x, P ) − w|| ≤ α} is a compact
subset, which in turn leads to the desired conclusion as above. In particular
the observation shows that when P∩CQ = ∅ there exist only countably many
pairs (t, w), with t ∈ R and w ∈ P⊥ for which the inequalities as above hold.

Proof of Corollary 1.2: Let R be the set of points v ∈ CQ such that the
assertion in the corollary holds, namely for every ε > 0 there exists x ∈ P(Zn)
such that |Q(x)| < ε and ||π(x, v)|| < ε. Let v1 ∈ CQ\R; (if such a v1 does
not exist then we are through already). Let v ∈ CQ\Rv1 be such that the
conclusion as in Theorem 1.1 holds, for this choice of v1, and further such
that the restriction of Q to the plane P (v1, v) is a nondegenerate quadratic
form; the latter part of the condition holds for almost all v ∈ CQ\Rv1 (and in
fact it may be seen that the vectors for which the conclusion of Theorem 1.1
was upheld satisfy this condition). We shall show that v ∈ R; by Theorem 1.1
this would then imply the corollary.

Without loss of generality we may assume that ||v1|| = ||v|| = 1. Let
vn = v. There exist v2, . . . , vn−1 ∈ V , such that {v1, . . . , vn} is a basis of V
and the quadratic form Q is given, for any ξ1, . . . , ξn ∈ R, by

Q(Σn
j=1ξjvj) = 2ξ1ξn − Σn−1

j=2 σjξ
2
j ,

where σj = ±1 for all j = 2, . . . , n − 1. Let P be the plane spanned by
v1 and vn and W , W1 and Wn be the subspaces spanned by {v2, . . . , vn−1},
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{v2, . . . , vn}, and {v1, . . . , vn−1} respectively. Let α > 1 be such that the
following conditions are satisfied; (existence of such an α follows from el-
ementary considerations): (i) if v = y + w with y ∈ P and w ∈ W then
||w|| ≤ α||π(v, P )||, (ii) if v = ξvj + w, with j = 1 or n, ξ ∈ R and w ∈ Wj ,
then ||π(v, vj)|| ≤ α||w||, and (iii) |Q(v)| ≤ α||v||2 for all v ∈ V .

Now let 0 < ε < 1 be given, and let δ = ε/2α4. Since v = vn is chosen so
that the conclusion of Theorem 1.1 holds, there exists x ∈ P(Zn) such that
|Q(x)| < δ2 and ||π(x, P )|| < δ. Let x = Σn

j=1ξjvj , ξ1, . . . , ξn ∈ R, and let
w = Σn−1

j=2 ξjvj . Since ||π(x, P )|| < δ, by condition (i) we have ||w|| ≤ αδ, and
in turn by condition (iii) |Q(w)| ≤ α3δ2. Now

|2ξ1ξn| = |Q(x)−Q(w)| ≤ |Q(x)|+ |Q(w)| < δ2 + α3δ2 < 2α4δ2.

Hence at least one of ξ1 or ξn is less than α2δ. By condition (ii) above,
||π(x, v1)|| ≤ α||ξnvn + w|| ≤ α(|ξn| + ||w||) < α2(|ξn| + δ) and similarly
||π(x, vn)|| < α2(|ξ1| + δ). Hence the preceding conclusion implies that ei-
ther ||π(x, v1)|| or ||π(x, vn)|| is less than 2α4δ = ε. Thus for any ε > 0
there exists x ∈ P(Zn) such that |Q(x)| < ε, and either ||π(x, v1)|| < ε

or ||π(x, vn)|| < ε. Since v1 /∈ R, when ε is small enough the inequalities
|Q(x)| < ε and ||π(x, v1)|| < ε have no common solution x ∈ P(Zn). There-
fore for all ε > 0 there must exist x ∈ P(Zn) such that |Q(x)| < ε and
||π(x, vn)|| < ε. In other words, v = vn ∈ R. As noted earlier this proves the
corollary. �

Proof of Corollary 1.3. The set P of planes P in V such that P ∩ CQ is a
pair of lines is an open submanifold of the Grassmannian manifold of planes
in V ; we consider it equipped with a measure which on coordinate charts is
equivalent to the Lebesgue measure. Theorem 1.1 implies in particular that
for almost all P in P, given a ∈ R, w ∈ P⊥ and ε > 0 there exists x ∈ P(Zn)
such that |Q(x) − a| < ε and ||π(x, P ) − w|| < ε. This may be seen to be
equivalent to assertion (i) in the corollary. Assertion (ii) is an equivalent
formulation of Corollary 1.2. �

As may be seen from its proof, in content assertion (i) in Corollary 1.3
is weaker than Theorem 1.1. We next describe an equivalent formulation
of Theorem 1.1 in terms of linear forms. Let the notation be as before,
and for any v ∈ CQ let Ln−2

Q,v denote the subset of Ln−2
Q consisting of

all (L1, . . . , Ln−2) such that Lk(v) = 0 for all k = 1, . . . , n − 2. Every
(L1, . . . , Ln−2) in Ln−2

Q belongs to Ln−2
Q,v for vectors v on two lines of CQ.

Then each Ln−2
Q,v , v ∈ V , is a differentiable submanifold and carries a mea-

sure mv which on coordinate charts is equivalent to Lebesgue measure. Then
Theorem 1.1 may be seen to correspond to the following.
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Theorem 3.2. Let v ∈ CQ be given. Then for mv-almost all (L1, . . . , Ln−2)
in Ln−2

Q,v the following holds: for all s0, s1, . . . , sn−2 ∈ R and ε > 0 there exists
x ∈ P(Zn) such that

|Q(x)− s0| < ε and |Lk(x)− sk| < ε for all k = 1, . . . , n− 2.

Remark 3.3. We note that inhomogeneous inequalities as in assertion (i)
of Corollary 1.3 are not to be expected to hold in the case of systems of
n − 1 linear forms as in assertion (ii) in the Corollary. Let Q be as above,
(L1, . . . , Ln−1) ∈ Ln−1

Q , and consider the map ψ : V → Rn defined by
ψ(v) = (Q(v), L1(v), . . . , Ln−1(v)). It can be seen that on V \ψ−1({0}), ψ is
a nonsingular two-to-one map. Thus for every neighbourhood Ω of 0 in Rn

the restriction of ψ to V \ψ−1(Ω) is a proper map. It follows that 0 is the only
possible limit point of ψ(Zn). Hence given a nonzero (s0, s1, . . . , sn−1) in Rn

the system of inequalities |Q(x)−s0| < ε and |Lk(x)−sk| < ε, k = 1, . . . , n−1,
admits an integral solution for every ε > 0 only if there exists a x ∈ Zn such
that Q(x) = s0 and Lk(x) = sk for all k = 1, . . . , n− 1.

Before concluding we note also that the statements of the diophantine
results in §1 can not be improved from “almost all” to “all”. For simplicity
let us restrict the discussion to assertion (i) in Corollary 1.3; analogous com-
ments apply to the other results as well. Consider first the case n = 3, and
let Q be a quadratic form as in Corollary 1.3. Then firstly we need to exclude
the linear forms L such that some nontrivial linear combination of Q and L2

(with real coefficients) is a rational quadratic form, in which case an assertion
as in the Corollary would not hold. However, there is actually a much larger
class of such systems for which the conclusion does not hold; this was shown
in [1] using a result of Kleinbock and Margulis [8] that for the action of a
diagonalisable one-parameter subgroup on a homogeneous space there exists
a “large” class of orbits whose closure is compact (in particular such orbits
are not dense); the largeness is in terms of the Hausdorff dimension of the set
of such points being equal to the dimension of the homogeneous space. The
observations in [1] extend also to systems of the form (Q,L1, . . . , Ln−2) as
above, for all n ≥ 3, for which also, as noted earlier the invariance subgroup
is, up to finite index, a diagonalisable one-parameter subgroup. The latter
fact suggests also that it may not be feasible to identify precisely the class of
systems for which the diophantine systems of inequalities as in Theorem 3.2
admit solutions. It would however be interesting to know specific sufficient
conditions which would ensure that solutions exist.
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