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ABSTRACT

The equilibrium and the stability of homogeneous masses distorted by the tidal effects of a secondary
(of mass M’ at a distance R) are re-examined on the basis of the second-order virial equations. In agree-
ment with known results, it is shown that, under circumstances when the figure of equilibrium is a prolate
spheroid, there is 2 maximum value of u(= GM’/R3) which is compatible with equilibrium. The problem
of the small oscillations of these Jeans spheroids is next considered. The characteristic frequencies of
oscillation belonging to the second harmonics are determined both in case the mass is considered incom-
pressible and in case it is considered compressible and subject to the gas laws governing adiabatic changes.
In the former case, instability sets in when p attains its maximum value; and in the latter case it sets
in before that happens.

I. INTRODUCTION

In a paper published in 1917 Jeans considered the equilibrium and the stability of
tidally distorted masses in the context of certain cosmogonical speculations current at
that time (see also Jeans 1919, 1929). A substantial part of Jeans’s analysis was devoted
to homogeneous masses under conditions in which the tidally distorted configurations
have prolate spheroidal forms. While the applications of these very special considera-
tions to real astronomical situations may be remote, the results themselves would appear
to have some theoretical meaning. In this paper we shall reconsider Jeans’s problem by
the methods which we have recently developed based on the virial theorem and its ex-
tensions. We shall find that Jeans’s theory can be completed in several respects; and,
further, that some new results which emerge from the present analysis may have a wider
base than the particular circumstances under which they are derived may justify.

II. THE SECOND-ORDER VIRIAL EQUATIONS

Consider a fluid mass (“the primary”’) tidally distorted by a “secondary” of mass M".
Let the distance between the centers of mass of the two objects be R. Choose a co-ordi-
nate system with the origin at the center of mass of the primary and with the x;-axis
pointing in the direction of the secondary.

The principal assumption of Jeans is that the variation of the tidal potential Br over
the primary can be approximated by!

Br = —Fux? + 2 + x5?) + Juws®, @
where
’
p= @
RS

This same assumption will underlie the present investigation. ) i
Allowing for the presence of the tidal potential 8Bz, we have the equation of motion,

du; ap i)
P = ax.-+pax,~

(B+Br), 3

1 The limitations of this approximation and the manner in which it could be refined are fully discussed
by Jeans in his 1917 paper.
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where £ is the self-gravitational potential. By multiplying equation (3) by x; and in-

tegrating over the volume V occupied by the fluid, we obtain in the usual manner the
tensor equation

d
d—t/;puix,-dx=2i,-j—l—§53¢j—ulﬁ+ 3uduly;+ 0,11, @)

where

H=‘/;,pdx, (5)

E¢j=%fpuiujdx, B; = —-%/;piliijdx, and Iij=/;pxixjdx (6)
14

and

are the kinetic energy, the potential energy, and the moment of inertia tensors.

III. THE SECOND-ORDER VIRIAL EQUATIONS GOVERNING EQUILIBRIUM

When no relative motions are present and hydrostatic equilibrium prevails, equation
(4) becomes

Bi; — wli; + 3uduly; = —116;5. n
The diagonal elements of this relation give
Wiy + 2uln = W — play = Was — plss = —101, ®)
while the non-diagonal elements give
Bio=Wi3=0, TLe=TIi3=0, and Wy = ulss. )

Equations (9) can be satisfied identically if the configuration is assumed to have
symmetry about the co-ordinate planes; for in that case the tensors ¥;; and I,; will
be diagonal in the chosen representation and

%ij =0 and Iz'j = () (1 #]) . (10

We shall suppose that equations (9) are satisfied identically in this manner.

In considering equation (8), we shall suppose, in addition, that the configurations
have ellipsoidal forms. It can be readily shown (cf. Jeans 1917) that this supposition is
consistent with the equations of hydrostatic equilibrium and the condition which re-
quires the pressure to vanish on the bounding surface.

We shall first show that, on the assumptions made, the equilibrium configurations
must be prolate spheroids and not true triaxial ellipsoids.

B{ ;n])aking use of the identities (see Chandrasekhar and Lebovitz 1962a, eqgs. [32]
and [3

LWasg;zs = Wazsoe = Wosiez + Was = Wagyse + Wi an
between the elements of the supermatrix,
B
%pq;i}‘: prp axq] dx, (12)

we can rewrite the first two equalities in (8) in the form

Wi — Wagzs + 2uly = — §ZB:as;zs — ulzy = —Wso;30 — ulss. (13)
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If Iq9 5 I33, then we can deduce from the second equality in (13) that
= 2323;23 _ QB32;32

— (14)
I22 - I33
But, for an ellipsoid (Chandrasekhar and Lebovitz 1962¢, eq. [66]),
LWas; 23 — DILY (15)

Iy I3
and we should conclude that
= QB23;2:‘1 = %32;32

I3 Is; '

(16)

which is impossible, since u, by definition, is positive and the matrix elements 8.;;:;
are also positive. Hence the second equality in (13) (and, therefore, also in [8]) can be
satisfied only identically under circumstances when Iz = I3;. In other words, on the
assumption of an ellipsoidal form, the equilibrium configurations can only be prolate
spheroids. The geometry of these spheroids will be determined by the first equality in (8),
namely,

@11+ Io)p = Wy — Wi . )

Expressions for the various tensors associated with homogeneous ellipsoids have been
given in an earlier paper (Chandrasekhar and Lebovitz 1962¢). For a prolate spheroid
we have, in particular (cf. loc. cit., eq. [57])

%22

7|"Gp(11022

Wi
= — 24,14 and WGP(ZIC;?= —2A4.14. (18)

Inserting these expressions in equation (17), we have

A102— 4,0,

(19)

7er 2 012 + (122
Using the relation
2
A1+2A2=;1—a—2§ (20)
(valid for prolate spheroids), we can rewrite equation (19) in the form
o 2022
— = (21)
P TRy
Now it is known that for a prolate spheroid
1 1—e2/1 14+e )
= e — (22)
41 aiay>  e? (elogl—-e 2
and
1 1 1—¢? 14+ e)
= = _ _ (23)
Ay=4s a.as? e? 1 2e 1Ogl—e !
where e is the eccentricity defined by the relation
a2 = 01?(1 - 62) . (24)
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On substituting for 4, from equation (22) in equation (21), we recover Jeans’s relation:

M 1— e? 14+e¢ 6(1—¢?)
= log

= — . 5
7Gp ed 1—e e2(3—¢2) @3

This relation, as Jeans has already noted, predicts a maximum value for u which is con-
sistent with equilibrium and the assumed ellipsoidal form. The maximum value occurs at
I3

e=0.883026, where —=—=0.125536. (26)2
7Gp

Table 1 in Section V includes a column of values of u/7Gp which exhibits the rela-
tionship (25) (see also Fig. 1).

IV. THE SECOND-ORDER VIRIAL EQUATIONS GOVERNING
SMALL OSCILLATIONS ABOUT EQUILIBRIUM

The characteristic frequencies belonging to the different second harmonic modes of
oscillation of the Jeans spheroid can be determined by a consideration of the linearized
form of the second-order virial equations (cf. Lebovitz 1961 for a similar treatment of
the Maclaurin spheroid).

Suppose, then, that the equilibrium spheroid considered in Section III is slightly
perturbed; and, further, that the ensuing motions are described by a Lagrangian dis-

placement of the form
£(x) e, @

where o denotes the characteristic frequency of oscillation to be determined. To the first
order in ¥, the virial equation (4) gives

— Vi = 0Wi; — wély; + 3ubindl1; + 6,011, (28)
where

Vii= fpéixfdx, (29)
14

and o611, 628, and &1,; are the first variations of II, ®,;, and 7;; due to the deforma-
tion of the spheroid caused by the Lagrangian displacement &.
It is convenient to introduce the symmetrized virial
Vij= Vit Vi (30)
in terms of it,
olij = Vij. 31

Writing equation (28) explicitly out for the different components, we have

—0?Vin = 8B + 2uVu + oI, (32)
— 02V = 0LBs2 — uVaee + 611, (33)
—0?V33 = 633 — uVas + 811, (34)
=Wy = 6Wio + 2uV1 5 — oWy = W12 — uVie, (35)
—0Wyis = 6W15 + 2uV s ; —0?Vs1 = 6B13 — uVs, (36)
—0?Vas = 0Waz — uVas ; — 2V = 0oz — uVas. 37

2 Jeans gives ¢ = 0.88258 and u/wGp = 0.125504; but we have not been able to confirm his values.
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By suitably combining these equations, we obtain the following equivalent set of equa-
tions:

(e + w)Vie = =265 ; (24 wVis = —26B3, (38)
a?(Vize — Vo) = —3uVis; o*(Vis — Vi) = —3uVis, (39)
(0% — 2u)Vas = —26Wys ; 0*(Vas — Vi) =0, (40)
—10V = 6B + 2uVu 4+ oI1, (41)
—30%Wa = W2 — uVaee + OI1, (42)
—310%W 33 = 6W3a3 — uVas + 6IL. (43)

a) The Expression of 683:; in Terms of Vi
First, we may recall that (Chandrasekhar 1961, p. 584, eq. [48])

5%31’:': ‘"‘/;’sz 9%

——dx. (44)
axz

And it is known that for homogeneous ellipsoids (cf. Chandrasekhar and Lebovitz 1962c,
eq. [51])

3
Bij = 2Bijxixi+aldy (A i ZA ilx12>’ 45
=1
where
Bij=Ai—afdi;=A4; — a’A (46)

(no summation over repeated indices in eqgs. [45] and [46]) ,

and the remaining symbols have their standard meanings. (Nofe that in writing eq. [45] a
common factor wGpaiaza; has been suppressed.)
With B,; given by equation (45) we find, in accordance with equation (44), that

OB;; = —2ByiVij ( #]) , @7
and
Wi = — (2Bii—ald i) Viit 01'2214 aVu 8)

14
(no summation over repeated indices in eqgs. [47] and [48]) .

The expressions for 62 ;; given in equations (47) and (48) are valid for general tri-
axial ellipsoids. For the particular case of prolate spheroids, in which we are presently
interested, there are simplifications arising from the equality of a; and as. Thus the value
of any of the symbols 4;; and B;; will be unaltered if the index 2 (wherever it may oc-
cur) is replaced by the index 3 (and conversely). On this account we may now write

Wiy = —2B1sVia, Wiz = —2B1Vis, 06Wa3 = —2ByVs, (49)

W1 = —(2Bu — a2A1)Viu+ a2412(Vee + Vi), (50)

. 0B = —(2B2s — 224 20) Voo + 0?4 2Vss + a? 412V 1, (1)
an W33 = —(2B22 — 22A99)Vss + a22A 92V es + 0’412V 1 . (52)
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b) The Divergence Condition

While equations (38)—(43) are of general applicability, the expressions for 828;; given
in Section IVa above are valid only for homogeneous configurations. If we should now
suppose that the fluid is in addition incompressible, then there is a further relation
among the virials which follows from the solenoidal condition on §; it is (cf. Lebovitz

1961, eq. [83])
Vu, Va

a,’ as’

V33
I8 0. (53)
+ ol 0

+

V. THE CHARACTERISTIC FREQUENCIES OF OSCILLATION BELONGING TO
THE SECOND HARMONICS; THE ONSET OF INSTABILITY AT fmax

The characteristic frequencies of the Jeans spheroid belonging to the second harmonics
can now be deduced quite readily from the equations assembled in Section IV. Thus
from equations (38) and (49) it follows that

o2 = 4B1s — u = a1® (say) is a double root . (54)3

Now, putting Vis = Vi3 = 0 (to be consistent with eqs. [38]) in equations (39), we
find that

o? = 0 is a double root . (55)
Similarly, equations (40) lead to the roots
0* = 4B+ 2u = 08 (say)and 02 = 0. (56)
Next, eliminating 6II from equations (42) and (43), we have

—30% (Vs — Vig) = 6Was — 6Wss — u(Vaz — Vi), (57)

whereas, from equations (51) and (52),
W20 — 0Wss = —2Bos(Vae — Vs) . (58)

We are thus led once more to the root
02 = 2(2Bas + u) = o2?. (59)

The roots ¢1® and o,? are each of multiplicity 2; and the root ¢ = 0 is of multiplicity 3.
A last root remains to be determined.
Considering equations (41) and (42) and eliminating 8II, we have

—30 (Vi — Vag) = 6W11 — 6Wos + w2V + Vi) . (60)

In substituting for 6811 — 8Ws» in equation (60) in accordance with equations (50)
and (51), we can put Vi, = V33 to exclude the root ¢y and be consistent with equa-
tion (57). In this manner we find

302(Viu — Vi) — (2Bu — a4 + a?419) V1
-+ 2(322 — a*4q + 012/112) Voa+ #(2V11 + sz) =0.

3 The suppression of the factor #Gpaiasas in eq. (45) for B;; has the consequence that the formulae
for o2 given in this section require to be multiplied by #Gpaia.2.

(61)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1963ApJ...137.1172C

1178 S. CHANDRASEKHAR AND NORMAN R. LEBOVITZ

Supplementing equation (61) by the divergence condition

_ ay B a.?
Vi= —;2‘5(sz+ Vi) = —271;—2 Ve, (62)

we obtain the last of the characteristic roots:

4a,2 a?
o= m[zBu — a4+ a4 12+a—1§(322 — 0?45+ 0’4 12)
(63)
aq? )]
—_— 2 —_ i 2 .
I ( a7 os? (say)
TABLE 1
THE SQUARES OF THE CHARACTERISTIC FREQUENCIES BELONGING

TO THE SECOND HARMONICS

(o2 Is Listed in the Unit #Gp)

e " (1er) o012 a2? oa? e u/ (1er) 012 o2? 3?
0.... 0 1 06667 1 06667, 1 06667|| 0 75 . 0 103451| 0 79312} 1 52033 +0 42239
0 05 . ] 0.000445] 1 06692| 1 06805 1 06342 80 . 114839 .73210| 1.59802| + 28087

.10 .. .001781] 1 06326) 1 07332 1 06016 82 118754] 70341) 1 63172} + 21799
.15 . .004017] 1.05914| 1 08165| 1 05151|| .84 .122038] 67162| 1 66700 + 15169
.20 . .007164] 1 05316] 1 09343| 1 03917} .86 . 124419 .63609| 1 70389| + 08239
.25 . .011240( 1 04528| 1 10881} 1 02273 88... . 125514 .59593| 1 74242 + 01092
.30 . 016262( 1 03535| 1 12793| 1 00167 8830265 125536{ 58938| 1.74839| O
35 .022254] 1 02323| 1 15098 0 97525 90 124760 54987 1.78259| — .06117
.40 . .029235| 1 00860| 1 17823| 0 94275 92 121293| .49595| 1.82434| — .13103
.45.. .037222 0 99121| 1 20996| 0 90304 94 ...| .113683] .43090| 1.86754| — 19319
50 . .046219] 0.97060} 1 24656 0 85493| .96 099288| .34854] 1 91189| — 23617
.55...] .056209| 0.94627| 1.28844] 0 79684| .98. .072040{ .23394| 1 95671 — 23051
60 .067135{ 0 91751| 1 33612 0 72689 995 030569 .09355| 1 98961 — 12693
65 . .078864] 0 88337 1 39020| 0 64289 999, 009236 02782] 1 99798] — .04361
0.70. 0 091137| 0 84255| 1 45134| 0 54229{| 0 9999.. | 0.001381| O 00415 1 99980 —0 00709

After some minor simplifications we can write, alternatively,

4:012

2 —
03t =—F7—
2a:2+ ag?

2
[2A1+ 205?419 — 30?4 11+%i—2(/12" 2a24 4)

_ _ e )]
p.(Z 202/)]

In Table 1, the roots ¢1?, o% and o5 determined in accordance with equations (54),
(59), and (64) are listed; and in Figure 1 their variations along the Jeans sequence is
illustrated.

From Table 1 it is apparent that while the modes belonging to o1*> and a2® are stable,
the mode belonging to o3* becomes unstable at the point where u attains its maximum value.

That a neutral mode can occur only where u = umax can be seen as follows. According
to equation (60), the vanishing of ¢ requires

(64)

d(BW11 — Was) + pd(2In+ I:2) =0, (65)
whereas, according to equation (17), equilibrium requires
Wi — Ve + u(ZIu + 122) =0. (66)
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Fic 1.—Top: the variation of u/7Gp along the Jeans sequence. It attains its maximum at ¢ = 0.88303.
Bottom: the squares of the characteristic frequencies of oscillation belonging to the second harmonics; the
labeling of the curves corresponds to the enumeration in Table 1. The mode ‘“3” becomes unstable when
u attains its maximum.
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Clearly, equations (65) and (66) can be satisfied simultaneously only where u attains its
maximum.

Finally, we may note that, according to equation (64), the explicit condition for the
occurrence of the neutral mode is

-—“—=aa2——-2—"‘2——[2A 42024 15— 3024 54+ 2 (A, — 20,24 )] (©7)
WGP 1¢2 4(112"-022 1 2 12 1 11 012 2 2 22 ]

where the factor m#Gpa,a,?, which had been suppressed in writing the expression for B,
has been restored.

VI. THE EFFECT OF COMPRESSIBILITY ON THE STABILITY OF THE JEANS SPHEROID

The analysis in the preceding section can be readily extended to determine the effect
of compressibility on the stability of the Jeans spheroid. Specifically, the problem to be
considered is that of the adiabatic oscillations of a tidally distorted homogeneous gaseous
configuration. The assumption of homogeneity insures that in the equilibrium state the
configurations will be indistinguishable from the incompressible Jeans spheroids. But
the assumption that the configuration is gaseous has the consequence that the Lagrangian
displacement describing a deformation can no longer be restricted to be solenoidal; in-
stead, we must apply the laws appropriate to a gas which is subject to adiabatic changes.
If the gas is assumed to have a ratio of specific heats v, then the condition div £ = 0
must be replaced by the condition

8p_ . 8¢
P'yp

These relations enable us to express the first variation of II(= fpdx) in terms of &; we
have (cf. Chandrasekhar 1961, p. 584, eqgs. [50] and [51])

= —ydiv £. (68)

6H=(7—1)£’£'gradpdx, (69)

where p denotes the pressure in the equilibrium state.
For the case under consideration,

grad p=0p grad [I — Ax:2 — Aa(x? + x5%) + uxi? — %y(xg"’ + %3] ; (70)
and equation (69) gives
Il = —(v — D[(41 — w)Vu+ (s + 3u)(Var + Vss)] . (71)

Returning to the problem of determining the characteristic frequencies of oscillation
under the present more general circumstances, we first observe that the roots designated
by 01?2 and ¢,? will be unaffected: for, in their derivation no use was made of the diver-
gence condition (53). However, the root designated by o5® will be affected; and the place
at which the analysis must be modified is where the divergence condition (62) was used
to eliminate Vs from equation (61). Instead, we must now consider, along with equation
(61) (which was obtained by eliminating 6II from eqs. {41] and [42]), equation (41) or
(42) and give to 811 its present value (71). Choosing equation (41) as the second equa-
tion and remembering that we must now put Vs, = V33, we have (cf. eq. [50])

'_%‘72V11 = —(2Bu — a2411)Vu + 202415V + 2uV 11
~(v = D41 = w)Vu+ 2424 w)Va .

72)
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Equations (61) and (72) will lead to the desired characteristic equation. It is, however,
more convenient to consider, together with equation (72), the equation

—%02V22 = —2(322 — a4 22) Vs -+ 022/1 12V — Msz
—(vy = D@1 — wVu+ 24+ u)Va,

obtained in a similar way from equations (42) and (71). Equations (72) and (73) now
lead to the characteristic equation

302 — (2Bu — a®Au) + 2u — (v — 1)(41 — u)
20,°415 — (v — 1)(242 + u)

(73)

=0. 79
a?A1s — (v — 1)(41 — u)

30 — 2(Bas — @?A ) — p— (v — 1)(2A2 + u)

The two roots for o2 (¢z? and as?) provided by equation (74) represent a coupling of
two modes (the R- and the S-modes) which are, in the limit g = 0, purely radial and
purely non-radial (and volume-preserving). The corresponding limits to which the two
roots tend are

or %@y —4HrGp and o2 —38aGp (u—0). (75)

Equation (74) has been solved for a number of different cases to determine the be-
havior of ¢z% and og* along the Jeans sequence and their dependence on the value of v.
The results of the calculations are given in Table 2; and they are illustrated in Figure 2.

We observe that the principal effect of compressibility is to enhance the instability
which is already present: configurations which are normally stable when v > £ become
unstable under the influence of tidal action if it is strong enough. And it is important
to note that the effect of compressibility is to make the Jeans spheroid unstable even
before p attains its maximum.

From Table 2 and Figure 2 it is also apparent that ¥ = 1.6 plays a critical role in this
problem, which is similar to the one it plays in the rotational problem (cf. Chandrasekhar
and Lebovitz 1962d). The origin of the critical role in both cases is the same: the equality
of or? and og?in the “zero” limit when v = 1.6 (cf. eq. [75]). The particular manifesta-
tion of this “degeneracy’ in the present problem is that, while it is the R-mode which
becomes unstable when $ < v < 1.6, it is the S-mode which becomes unstable when
v > 1.6. When v = 1.6, neither of the two “pure’” modes which one obtains in the
limit uw — 0 will be purely radial; the phenomenon is the same as that encountered in
the rotational problem, which has been discussed in that connection (see Chandrasekhar
and Lebovitz 1962¢).

VII. CONCLUDING REMARKS

A result which bears on some of Jeans’s conclusions and analysis relative to his sphe-
roids is their instability to small oscillations when u (= GM'/R?) attains its maximum
value umax = 0.12554 7Gp. While Jeans states in a number of places that the spheroids
become ‘“‘unstable’” when u becomes equal to pmsx, it is not always clear from his discus-
sion that he fully appreciated the true nature of the instability, since he did not investi-
gate the problem of the small oscillations.

Let us consider, then, what would happen if x4 were to increase very gradually from
zero. And let us suppose, also following Jeans, that the evolution, at first, is through a
sequence of equilibrium prolate spheroidal figures. This supposition is a reasonable one
if the time scale in which u changes is long compared with the normal periods of oscilla-
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THE CHARACTERISTIC ROOTS ¢z? AND o4?

TABLE 2

(o? Is Listed in the Unit «Gp)

=13 y= y=14
og? oR? og? or? og? oR?
0.. 1.06667 —0 13333 1.06667 0 1 06667 +0 26667
020 . 1 04135 — 13454 1 04163 —0.00149 1 04247 + .26434
.25 1 02817 — 13635 1 02887 — 00372 1.03100 + .26082
.30. 1 01320 — .13976 1 01470 — 00793 1 01927 + .25417
.35. 0 99718 — .14560 1 00007 — .01516 1 00882 + 24277
.40 0 98129 — 15495 0 98639 — .02672 1 00167 + 22467
.45. 0 96679 — 16913 0 97520 — 04420 0 99994 + 19772
.50 0 95536 — .18969 0 96843 — .06942 1 00586 + .15982
.55. 0 94884 — .21827 0 96808 — 10418 1 02126 + .10931
60 0 94916 — .25643 0 97612 — .15006 1 04752 + 04521
.65. 0 95818 — .30532 0.99423 — .20804 1 08547 — 03261
.70 0.97743 — 36522 1 02364 — .27809 1.13555 — .12334
.75 1 00793 — .43484 1 06506 — .35864 1 19792 — .,22483
.80 1 04999 — .51023 1 11857 — .44547 127249 — .33272
.82 1 06992 — .54019 1 14320 — .48014 1 30562 — .37589
.84 1 09146 — .56870 1 16953 — .51344 1 34053 — .47
.86 1 11439 — 59435 1 19736 — .54399 1 37708 — .45704
.88 1 13839 — 61510 1.22640 — .56977 1 41505 — .49175
.90 1 16294 — .62785 1.25617 — .58775 1 45406 — 51897
.92 1 18718 — 62775 1 28590 — .59314 1.49351 — ,53408
.94 1 20962 — .60651 1 31427 — .57782 1 53233 — 52921
.96 1.22740 54826 1 33868 — 52621 1 56842 — 48928
0 98 1 23371 —0 41502 1.35313 —0 40111 1 59703 —0 37834
y=15 vy=16 =%
agt og? [or@r 9 loser P og? og?
0 .. 1.06667 +0.66667 1 06667 +1.06667 1.33333 +1.06667
0.20 1.04592 + .66088 1.10594 +1 00087 1 34275 +1 03073
25 1 03972 -+ .65209 1 12856 +0.96325 1.35471 +1.00377
.30 1 03764 + .63580 1.15666 +0.91679 1 37380 +0.96631
.35 1 04240 + .60918 1.19053 +0.86105 1 40078 +0.91747
.40 1.05628 + 57006 1 23059 +0 79575 1.43604 +0.85697
.45 1 08027 + 51739 1.27724 +0 72041 1 47978 +0 78454
.50 1 11466 + 45101 1 33108 +0 63460 1 53229 +0 70005
.55 1 15936 + 37121 1 39269 +0 53788 1 59397 +0 60327
.60 1 21428 + 27845 1 46283 +0 42990 1 66539 -+0 49400
65 1 27955 + .17331 1 54235 -+0 31051 1 74733 +0 37220
.70 1 35551 + 05670 1 63223 +0 17998 1 84072 +0 23816
.75 1.44266 — .06958 1.73352 -+0 03956 1 94666 +0 09309
.80 . 1.54153 — 20177 1 84732 —0 10755 2.06634 —0 05991
.82 1 58444 — 25471 1 89655 —0 16682 2 11831 —0 12191
.84 1 62925 — .30650 1 94796 —0 22520 2 17271 —0 18329
.86 1 67592 — 35588 2 00156 —0 28152 2 22958 —0 24287
88 1 72431 — 40102 2 05729 —0 33399 2 28889 —0 29892
90 177421 — 43912 2 11502 —0 37993 2 35055 —0 34880
.92 1 82518 — .46575 2 17447 —0 41504 2 41437 —0 38827
.94 1 87645 — 47334 2 23508 —0 43196 2 47988 —0.41010
.96 1 92651 — 44737 2 29571 —0 41657 2 54614 —0 40033
0.98 1 97187 —0.35318 2.35374 —0.33505 2.61095 —0 32559
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F1c. 2.—The squares of the characteristic frequencies belonging to the R- and the S-modes for the
compressible Jeans spheroids. The curves are labeled by the values of v to which they belong The curve
belonging to the incompressible case is labeled by «. For v < 1 6, the R-mode is the one which becomes
unstable, while for v > 16 it is the S-mode which becomes unstable.
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tion of the system. Under these conditions, the eccentricity of the spheroid will increase
in step with u until x attains its maximum value when ¢ = 0.88303. When this happens,
the character of the problem will change into a truly dynamical one. Jeans derives an
equation of motion for e on the assumption that the configuration continues to evolve
along a sequence of prolate spheroidal forms and u varies in some prescribed manner
(Jeans 1917, eq. [82]). Jeans further supposes that, in accordance with his equation
of motion, e can become as high as 0.94774 (where a second point of neutral stability
occurs along the Jeans sequence); and he invokes in his discussion the instability of the
equilibrium spheroids (with respect to a mode of oscillation belonging to the third har-
monics) which sets in at ¢ = 0.94774. It is difficult to see why, under these same circum-
stances, the instability (with respect to a mode of oscillation belonging to the second har-
monics) which sets in at e = 0.88303 should not have intervened already. It is important
to note in this connection that the configuration will become unstable before u attains
its maximum value if allowance is made for compressibility; and we do not, then, have
to face the particular difficulty of treating a “singular’ case in which both stability and
available equilibrium forms cease simultaneously.

The accentuation of the instability of a gaseous configuration by tidal action has been
established only for homogeneous configurations. But it would not seem that the phe-
nomenon is peculiar to them. Clearly, the tidally induced instability of the modes which
are mainly radial for ¥ < v < 1.6, if a general phenomenon, must have some cosmogoni-
cal meaning.

We are grateful to Miss Donna Elbert for having carried out all the numerical calcula-
tions involved in the preparation of Tables 1 and 2.
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