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D
iagnostic tests play a vital role in
modern medicine not only for
confirming the presence of disease but
also to rule out the disease in individual

patient. Diagnostic tests with two outcome
categories such as a positive test (+) and negative
test (–) are known as dichotomous, whereas those
with more than two categories such as positive,
indeterminate and negative are called polytomous
tests.  The validity of a dichotomous test compared
with the gold standard is determined by sensitivity
and specificity. These two are components that
measure the inherent validity of a test.

A test is called continuous when it yields
numeric values such as bilirubin level and nominal
when it yields categories such as Mantoux test.
Sensitivity and specificity can be calculated in both
cases but ROC curve is applicable only for
continuous or ordinal test.

When the response of a diagnostic test is
continuous or on ordinal scale (minimum 5

categories), sensitivity and specificity can be
computed across all possible threshold values.
Sensitivity is inversely related with specificity in the
sense that sensitivity increases as specificity
decreases across various threshold. The receiver
operating characteristic (ROC) curve is the plot that
displays the full picture of trade-off between the
sensitivity and (1- specificity) across a series of cut-
off points. Area under the ROC curve is considered as
an effective measure of inherent validity of a
diagnostic test. This curve is useful in (i) finding
optimal cut-off point to least misclassify diseased or
non-diseased subjects, (ii) evaluating the discri-
minatory ability of a test to correctly pick diseased
and non-diseased subjects; (iii) comparing the
efficacy of two or more tests for assessing the same
disease; and (iv) comparing two or more observers
measuring the same test (inter-observer variability).
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Key words: Sensitivity, Specificity, Receiver operating characteristic curve, Sample size, Optimal cut-off point,
Partial area under the curve.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291567415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INDIAN  PEDIATRICS 278 VOLUME 48__APRIL 17, 2011

KUMAR AND INDRAYAN RECEIVER OPERATING CHARACTERISTIC CURVE

ROC curve, with their meaning and interpretation.
Some popular procedures to find optimal threshold
point, possible bias that can affect the ROC analysis,
sample size required for estimating sensitivity,
specificity and area under ROC curve, and finally
commonly used statistical softwares for ROC
analysis and their specifications are also discussed.

PubMed search of pediatric journals reveals that
ROC curve is extensively used for clinical decisions.
For example, it was used for determining the validity
of biomarkers such as serum creatine kinase muscle-
brain fraction and lactate dehydrogenase (LDH) for
diagnosis of the perinatal asphyxia in symptomatic
neonates delivered non-institutionally where area
under the ROC curve for serum creatine kinase
muscle-brain fraction recorded at 8 hours was 0.82
(95% CI 0.69-0.94) and cut-off point above 92.6 U/L
was found best to classify the subjects. The area
under ROC curve for LDH at 72 hours was 0.99 (95%
CI 0.99-1.00) and cut-off point above 580 U/L was
found optimal for classifying the perinatal asphyxia
in symptomatic neonates [1]. It has also been
similarly used for parameters such as mid-arm
circumference at birth for detection of low birth
weight [2], and first day total serum bilirubin value to
predict the subsequent hyperbilirubinemia [3]. It is
also used for evaluating model accuracy and
validation such as death and survival in children or
neonates admitted in the PICU based on the child
characteristics [4], and for comparing predictability
of mortality in extreme preterm neonates by birth-
weight with predictability by gestational age and with
clinical risk index of babies score [5].

SENSITIVITY AND SPECIFICITY

Two popular indicators of inherent statistical validity
of a medical test are the probabilities of detecting

correct diagnosis by test among the true diseased
subjects (D+) and true non-diseased subjects (D-).
For dichotomous response, the results in terms of test
positive (T+) or test negative (T-) can be summarized
in a 2×2 contingency table (Table I).  The columns
represent the dichotomous categories of true
diseased status and rows represent the test results.
True status is assessed by gold standard.  This
standard may be another but more expensive
diagnostic method or a combination of tests or may
be available from the clinical follow-up, surgical
verification, biopsy, autopsy, or by panel of experts.
Sensitivity or true positive rate (TPR) is conditional
probability of correctly identifying the diseased

TPsubjects by test: SN = P(T+/D+) = –––––––; and
TP + FN

specificity or true negative rate (TNR) is   conditional
probability of correctly identifying the non-disease

TNsubjects by test: SP= P(T-/D-) =   –––––––. False
TN +FP

positive rate (FPR) and false negative rate (FNR) are
the two other common terms, which are conditional
probability of positive test in non-diseased subjects:

FPP(T+/D-)= –––––––; and conditional probability of
FP + TN

FNnegative test in diseased subjects: P(T-/D+)= –––––  ,
TP + FN

respectively.

Calculation of sensitivity and specificity of
various values of mid-arm circumference (cm) for
detecting low birth weight on the basis of a
hypothetical data are given in Table II as an
illustration. The same data have been used later to
draw a ROC curve.

ROC CURVE

ROC curve is graphical display of sensitivity (TPR)
on y-axis and (1 – specificity) (FPR) on x-axis for
varying cut-off points of test values. This is

TABLE I DIAGNOSTIC TEST RESULTS IN RELATION TO TRUE DISEASE STATUS IN A 2×2 TABLE

Diagnostic test result Disease status Total

Present Absent

Present True positive (TP) False positive (FP) All test positive (T+)

Absent False negative (FN) True negative (TN) All test negative (T-)

Total Total with disease (D+) Total without disease (D-)  Total sample size
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generally depicted in a square box for convenience
and its both axes are from 0 to 1. Figure 1 depicts a
ROC curve and its important components as
explained later. The area under the curve (AUC) is
an effective and combined measure of sensitivity
and specificity for assessing inherent validity of a
diagnostic test. Maximum AUC = 1 and it means
diagnostic test is perfect in differentiating diseased
with non-diseased subjects. This implies both
sensitivity and specificity are one and both errors–
false positive and false negative–are zero. This can
happen when the distribution of diseased and non-
diseased test values do not overlap. This is
extremely unlikely to happen in practice. The AUC
closer to 1 indicates better performance of the test.

The diagonal joining the point (0, 0) to (1,1)
divides the square in two equal parts and each has
an area equal to 0.5. When ROC is this line, overall
there is 50-50 chances that test will correctly discri-
minate the diseased and non-diseased subjects. The
minimum value of AUC should be considered 0.5
instead of 0 because AUC = 0 means test incorrectly
classified all subjects with disease as negative and
all non-disease subjects as positive. If the test re-
sults are reversed then area = 0 is transformed to area
= 1; thus a perfectly inaccurate test can be
transformed into a perfectly accurate test!

ADVANTAGES OF THE ROC CURVE

ROC curve has following advantages compared
with single value of sensitivity and specificity at a
particular cut-off.

1. The ROC curve displays all possible cut-off
points, and one can read the optimal cut-off for
correctly identifying diseased or non-diseased
subjects as per the procedure given later.

TABLE II HYPOTHETICAL DATA SHOWING THE SENSITIVITY AND SPECIFICITY AT VARIOUS CUT-OFF POINTS OF MID-ARM

CIRCUMFERENCE TO DETECT LOW BIRTH WEIGHT

Mid-arm cir- Low birthweight Normal birth weight Sensitivity Specificity
cumference (cm) (<2500 grams) (n=130) (2500 grams) (n=870) = TP/(TP+FN) = TN/(TN+FP)

True False False True
positive (TP) negative (FN) positive (FP) negative (TN)

8.3 13 117 3 867 0.1000 0.9966

8.4 24 106 26 844 0.1846 0.9701

8.5 73 57 44 826 0.5615 0.9494

8.6 90 40 70 800 0.6923 0.9195

8.7 113 17 87 783 0.8692 0.9000

8.8 119 11 135 735 0.9154 0.8448

8.9 121 09 244 626 0.9308 0.7195

9.0 125 05 365 505 0.9615 0.5805

9.1 127 03 435 435 0.9769 0.5000

9.2 & above 130 00 870 0 1.0000 0.0000

FIG. 1 ROC curve and its components.
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2. The ROC curve is independent of prevalence of
disease since it is based on sensitivity and
specificity which are known to be independent
of prevalence of disease [6-7].

3. Two or more diagnostic tests can be visually
compared simultaneously in one figure.

4. Sometimes sensitivity is more important than
specificity or vice versa, ROC curve helps in
finding the required value of sensitivity at fixed
value of specificity.

5. Empirical area under the ROC curve (explained
later) is invariant with respect to the addition or
subtraction of a constant or transformation like
log or square root [8]. Log or square root
transformation condition is not applicable for
binormal ROC curve. Binormal ROC is also
shortly explained.

6. Useful summary of measures can be obtained
for determining the validity of diagnostic test
such as AUC and partial area under the curve.

NON-PARAMETRIC AND PARAMETRIC METHODS TO

OBTAIN AREA UNDER THE ROC CURVE

Statistical softwares provide non-parametric and
parametric methods for obtaining the area under
ROC curve. The user has to make a choice. The
following details may help.

Non-parametric Approach

This does not require any distribution pattern of test
values and the resulting area under the ROC curve is
called empirical. First such method uses trapezoidal
rule. It calculates the area by just joining the points
(1-SP,SM) at each interval of the observed values of
continuous test and draws a straight line joining the
x-axis. This forms several trapezoids (Fig 2) and
their area can be easily calculated and summed.
Figure 2 is drawn for the mid-arm circumference
and low birth weight data in Table II.  Another non-
parametric method uses Mann-Whitney statistics,
also known as Wilcoxon rank-sum statistic and the
c-index for calculating area.  Both these methods of
estimating AUC estimate have been found
equivalent [7].

Standard errors (SE) are needed to construct a
confidence interval. Three methods have been
suggested for estimating the SE of empirical area
under ROC curve [7,9-10].  These have been found
similar when sample size is greater than 30 in each
group provided test value is on continuous scale
[11]. For small sample size it is difficult to
recommend any one method. For discrete ordinal
outcome, Bamber method [9] and Delong method
[10] give equally good results and better than
Hanley and McNeil method [7].

Parametric Methods

These are used when the statistical distribution of
diagnostic test values in diseased and non-diseased
is known.  Binormal distribution is commonly used
for this purpose. This is applicable when test values
in both diseased and non-diseased subjects follow
normal distribution. If data are actually binormal or
a transformation such as log, square or Box-Cox
[12] makes the data binormal then the relevant
parameters can be easily estimated by means and
variances of test values in diseased and non-
diseased subjects. Details are available elsewhere
[13].

Another parametric approach is to transform the
test results into an unknown monotone form when
both the diseased and non-diseased populations
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FIG. 2 Comparison of empirical and binormal ROC curves
for hypothetical neonatal data in Table II.
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follow binormal distribution [14]. This first
discretizes the continuous data into a maximum 20
categories, then uses maximum likelihood method
to estimate the parameters of the binormal
distribution and calculates the AUC and standard
error of AUC. ROCKIT package containing
ROCFIT method uses this approach to draw the
ROC curve, to estimate the AUC, for comparison
between two tests, and to calculate partial area [15].

The choice of method to calculate AUC for
continuous test values essentially depends upon
availability of statistical software. Binormal method
and ROCFIT method produce results similar to non-
parametric method when distribution is binormal
[16]. In unimodal skewed distribution situation,
Box-Cox transformation that makes test value
binormal and ROCFIT method perform give results
similar to non-parametric method but former two
approaches have additional useful property for
providing smooth curve [16,17]. When software for
both parametric and non-parametric methods is
available, conclusion should be based on the method
which yields greater precision to estimate the AUC.
However, for bimodal  distribution (having two
peaks), which is rarely found in medical practice,
Mann-Whitney gives more accurate estimates
compare to parametric methods [16]. Parametric
method gives small bias for discrete test value
compared to non-parametric method [13].

The area under the curve by trapezoidal rule and
Mann-Whitney U are 0.9142 and 0.9144,
respectively, of mid-arm circumference for
indicating low birth weight in our data.  The SE also
is nearly equal by three methods in these data:
Delong SE = 0.0128, Bamber SE = 0.0128, and
Hanley and McNeil SE = 0.0130. For parametric
method, smooth ROC curve was obtained assuming
binormal assumption (Fig 2) and the area under the
curve is calculated by using means and standard
deviations of mid-arm circumference in normal and
low birth weight neonates which is 0.9427 and its
SE is 0.0148 in this example. Binormal method
showed higher area compared to area by non-
parametric method which might be due to violation
of binormal assumption in this case. Binormal ROC
curve is initially above the empirical curve (Fig 2)
suggesting higher sensitivity compared to empirical

values in this range. When (1–specificity) lies
between 0.1 to 0.2, the binormal curve is below the
empirical curve, suggesting comparatively low
sensitivity compared to empirical values. When
values of (1–specificity) are greater than 0.2, the
curves are almost overlapping suggesting both
methods giving the similar sensitivity. The AUC by
using ROCFIT methods is 0.9161 and it standard
error is 0.0100. This AUC is similar to the non-
parametric method; however standard error is little
less compared to standard error by non-parametric
method. The data in our example has unimodal
skewed distribution and results agree with previous
simulation study [16, 17] on such data. All
calculations were done using MS Excel and STATA
statistical software for this example.

Interpretation of ROC Curve

Total area under ROC curve is a single index for
measuring the performance a test. The larger the
AUC, the better is overall performance of
diagnostic test to correctly pick up diseased and
non-diseased subjects. Equal AUCs of two tests
represents similar overall performance of medical
tests but this does not necessarily mean that both the
curves are identical. They may cross each other.
Three common interpretations of area under the
ROC curve are: (i) the average value of sensitivity
for all possible values of specificity, (ii) the average
value of specificity for all possible values of
sensitivity [13]; and (iii) the probability that a
randomly selected patient with disease has positive
test result that indicates greater suspicion than a
randomly selected patient without disease [10]
when higher values of the test are associated with
disease and lower values are associated with non-
disease. This interpretation is based on non-
parametric Mann-Whitney U statistic for
calculating the AUC.

Figure 3 depicts three different ROC curves.
Considering the area under the curve, test A is better
than both B and C, and the curve is closer to the
perfect discrimination. Test B has good validity and
test C has moderate.

Hypothetical ROC curves of three diagnostic
tests A, B, and C applied on the same subjects to
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classify the same disease are shown in Fig 4. Test B
(AUC=0.686) and C (AUC=0.679) have nearly
equal area but cross each other whereas test A
(AUC=0.805) has higher AUC value than curves B
and C. The overall performance of test A is better
than test B as well as test C at all the threshold
points. Test C performed better than test B where
high sensitivity is required, and test B performed
better than C when high specificity is needed.

Sensitivity at Fixed Point and Partial Area Under
the ROC Curve

The choice of fixed specificity or range of
specificity depends upon clinical setting. For
example, to diagnose serious disease such as cancer
in a high risk group, test that has higher sensitivity is
preferred even if the false positive rate is high
because test giving more false negative subjects is
more dangerous. On the other hand, in screening a
low risk group, high specificity is required for the
diagnostic test for which subsequent confirmatory
test is invasive and costly so that false positive rate
should be low and patient does not unnecessarily
suffers pain and pays price. The cut-off point should
be decided accordingly. Sensitivity at fixed point of
specificity or vice versa and partial area under the

curve are more suitable in determining the validity
of a diagnostic test in above mentioned clinical
setting and also for the comparison of two
diagnostic tests when applied to same or
independent patients when ROC curves cross each
other.

Partial area is defined as area between range of
false positive rate (FPR) or between the two
sensitivities. Both parametric (binormal
assumption) and non-parametric methods are
available in the literature [13,18] but most statistical
softwares do not have option to calculate the partial
area under ROC curve (Table III).   STATA
software has all the features for ROC analysis.

Standardization of the partial area by dividing it
with maximum possible area (equal to the width of
the interval of selected ranged of FPRs or
sensitivities) has been recommended [19]. It can be
interpreted as average sensitivity for the range of
selected specificities. This standardization makes
partial area more interpretable and its maximum
value will be 1. Figure 5 shows that the partial area
under the curve for FPR from 0.3 to 0.5 for test A is
0.132, whereas for test B is 0.140. After
standardization, they it would be 0.660 and 0.700,

FIG. 3 Comparison of three smooth ROC curves with
different areas.

FIG. 4 Three empirical ROC curves. Curves for B and C
cross each other but have nearly equal areas, curve
A has bigger area.
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respectively. The portion of partial area will depend
on the range of interest of FPRs selected by
researcher. It may lie on one side of intersecting
point or may be on both sides of intersecting point
of ROC curves. In Figure 5, SN(A) and SN(B) are
sensitivities at specific value of FPR. For example,
sensitivity at FPR=0.3 is 0.545 for test A and 0.659
for test B. Similarly sensitivity at fixed FPR=0.5 for
test A is 0.76 and 0.72 for test B. All these
calculations were done by STATA (version 11)
statistical software using comproc command with
option pcvmeth(empirical).

METHOD TO FIND THE ‘OPTIMAL’ THRESHOLD

POINT

Optimal threshold is the point that gives maximum
correct classification. Three criteria are used to find
optimal threshold point from ROC curve. First two
methods give equal weight to sensitivity and
specificity and impose no ethical, cost, and no
prevalence constraints. The third criterion
considers cost which mainly includes financial cost
for correct and false diagnosis, cost of discomfort to
person caused by treatment, and cost of further
investigation when needed.  This method is rarely
used in medical literature because it is difficult to
implement. These three criteria are known as points
on curve closest to the (0, 1), Youden index, and
minimize cost criterion, respectively.

The distance between the point (0, 1) and any
point on the ROC curve is d2 =[(1–SN)2 + (1 – Sp)2].
To obtain the optimal cut-off point to discriminate
the disease with non-disease subject, calculate this
distance for each observed cut-off point, and locate
the point where the distance is minimum. Most of
the ROC analysis softwares (Table III) calculate
the sensitivity and specificity at all the observed
cut-off points allowing you to do this exercise.

The second is Youden index [20] that maximizes
the vertical distance from line of equality to the
point [x, y] as shown in Fig 1. The x-axis represents
(1- specificity) and y-axis represents sensitivity. In
other words, the Youden index J is the point on the
ROC curve which is farthest from line of equality
(diagonal line). The main aim of Youden index is to
maximize the difference between TPR (SN) and

FPR (1 – SP) and little algebra yields J =
max[SN+SP]. The value of J for continuous test can
be located by doing a search of plausible values
where sum of sensitivity and specificity can be
maximum. Youden index is more commonly used
criterion because this index reflects the intension to
maximize the correct classification rate and is easy
to calculate. Many authors advocate this criterion
[21]. Third method that considers cost is rarely used
in medical literature and is described in [13].

BIASES THAT CAN AFFECT ROC CURVE RESULTS

We describe more prevalent biases in this section
that affect the sensitivity, specificity and conse-
quently may affect the area under the ROC curve.
Interested researcher can find detailed description
of these and other biases such as withdrawal bias,
lost to follow-up bias, spectrum bias, and
population bias, elsewhere [22,23].

1. Gold standard:  Validity of gold standard is
important–ideally it should be error free and the
diagnostic test under review should be
independent of the gold standard as this can
increase the area under the curve spuriously. The
gold standard can be clinical follow-up, surgical
verification, biopsy or autopsy or in some cases

FIG. 5 The partial area under the curve and sensitivity at
fixed point of specificity (see text).



INDIAN  PEDIATRICS 285 VOLUME 48__APRIL 17, 2011

KUMAR AND INDRAYAN RECEIVER OPERATING CHARACTERISTIC CURVE

opinion of panel of experts. When gold standard is
imperfect, such as peripheral smear for malaria
parasites [24], sensitivity and specificity of the
test are under estimated [22].

2. Verification bias: This occurs when all disease
subjects do not receive the same gold standard for
some reason such as economic constraints and
clinical considerations. For example, in
evaluating the breast bone density as screening
test for diagnosis of breast cancer and only those
women who have higher value of breast bone
density are referred for biopsy, and those with
lower value but suspected are followed clinically.
In this case, verification bias would overestimate
the sensitivity of breast bone density test.

3. Selection bias: Selection of right patients with and
without diseased is important because some tests
produce prefect results in severely diseased group
but fail to detect mild disease.

4. Test review bias: The clinician should be blind to
the actual diagnosis while evaluating a test. A
known positive disease subject or known non-
disease subject may influence the test result.

5. Inter-observer bias: In the studies where observer
abilities are important in diagnosis, such as for
bone density assessment through MRI,
experienced radiologist and junior radiologist
may differ. If both are used in the same study, the
observer bias is apparent.

6. Co-morbidity bias: Sometimes patients have
other types of known or unknown diseases which
may affect the positivity or negativity of test. For
example, NESTROFT (Naked eye single tube red
cell osmotic fragility test), used for screening of
thalassaemia in children, shows good sensitivity
in patients without any other hemoglobin
disorders but also produces positive results when
other hemoglobin disorders are present [25].

7. Uninterpretable test results: This bias occurs
when test provides results which can not be
interpreted and clinician excludes these subjects
from the analysis. This results in over estimation
of validity of the test.

It is difficult to rule out all the biases but
researcher should be aware and try to minimize
them.

TABLE IV  SAMPLE SIZE FORMULA FOR ESTIMATING SENSITIVITY AND SPECIFICITY AND AREA UNDER THE ROC CURVE

 Problem Formula Description of symbol used

Estimating the sensitivity of test SN = Anticipated sensitivity

Prev = Prevalence of disease in population can
be obtained from previous literature or pilot
study

 = required absolute precision on either side of
the sensitivity

Estimating the specificity of test SN = Anticipated specificity

Prev = Prevalence of disease in population can
be obtained from previous literature or pilot
study

 = required absolute precision on either side of
the specificity.

Estimating the area under the V(AUC) = Anticipated variance anticipated
ROC curve  area under ROC curve

nD = number of diseased subjects  = required absolute precision on either side of
n = nD(1+k), k is ratio of prevalence the area under the curve.
of non-disease to disease subjects

Z1–/2 is a standard normal  value and  is the confidence level.  Z1–/2= 1.645 for =0.10 and Z1–/2= 1.96 for =0.05.

Z2
1–/2SN (1–SN)

––––––––––––––––
2 × Prev

Z2
1–/2Sp (1–Sp)

––––––––––––––––
2 × (1–Prev)

Z2
/2×V (AUC)

nD= –––––––––––––
2
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SAMPLE SIZE

Adequate power of the study depends upon the
sample size. Power is probability that a statistical
test will indicate significant difference where
certain pre-specified difference is actually present.
In a survey of eight leading journals, only two out of
43 studies reported a prior calculation of sample
size in diagnostic studies [26]. In estimation set-up,
adequate sample size ensures the study will yield
the estimate with desired precision. Small sample
size produces imprecise or inaccurate estimate,
while large sample size is wastage of resources
especially when a test is expensive. The sample size
formula depends upon whether interest is in
estimation or in testing of the hypothesis. Table IV
provides the required formula for estimation of
sensitivity, specificity and AUC. These are based on
the normal distribution or asymptotic assumption
(large sample theory) which is generally used for
sample size calculation.

Variance of AUC, required in formula 3 (Table
IV), can be obtained by using either parametric or
non-parametric method. This may also be available
in literature on previous studies. If no previous
study is available, a pilot study is done to get some
workable estimates to calculate sample size. For
pilot study data, appropriate statistical software can
provide estimate of this variance.

Formulas of sample size to test hypothesis on
sensitivity-specificity or the AUC with a pre-
specified value and for comparison on the same
subjects or different subjects are complex. Refer
[13] for details. A Nomogram was devised to read
the sample size for anticipated sensitivity and

specificity at 90%, 95%, 99% confidence level [27].

There are many more topics for interested reader
to explore such as combining the multiple ROC
curve for meta-analysis, ROC analysis to predict
more than one alternative, ROC analysis in the
clustered environment, and for tests for repeated
over the time. For these see [13,28]. For predictivity
based ROC, see [6].
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