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Abstract. 'We address the problem of classical frictional motion under a potential V possessing a
barrier, apart from other possible confining and nonstationary terms. It is pointed out that the
Green’s solution of the exact equation of motion can be reduced (under suitable conditions) either to
an improved Rayleigh form or a non-Rayleigh form, the latter being outside the scope of the
standard large-friction treatment of the Fokker-Planck equation. The resulting dissipationless
dynamics involves an appropriately scaled potential which may have promising applications to
quantum stochastic phenomena. Genuine dissipative corrections in regions far away from the
barrier can be accounted for by the higher-order terms in our asymptotic expansions.
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1. Introduction

The properties of single-particle, nonconservative, frictional motion in classical [1],
quantum [2], stochastic [3] and statistical [4] mechanics are very important conceptually
and quite interesting application-wise. Damping effects on classical trajectories are
theoretically introduced via a linear-velocity term [1a] in an extension of Newton’s law or
a quadratic dissipation function [1b] in a generalization of Lagrange’s equations or an
explicitly time-dependent factor [1c] in the Bateman—Caldirola-kanai (BCK) Hamilto-
nian. Numerous applications of frictional trajectories include the calculation of
deterministic collision [1d] of nuclear heavy ions and probabilistic description of
phenomena-like Brownian movement [3a] of the harmonic oscillator, signal-to-noise
ratio for stochastic resonance [3b] in a double well etc. It may be noted that the problems
tackled in refs, [1d] and [3b] involve a potential energy which has a pronounced barrier
(see figure 1) apart from other possible nonlinear/nonstationary terms.

In the above context, previous workers have employed two different types of theore-
tical modelling, viz., the standard frictional equation and its overdamped Rayleigh
~ version. We review their salient features in § 2.and point out that generally these equa-
tions have been solved [1d, 3b] by numerical computation/analog simulation and their
associated Lagrangians are inconvenient to use in practice. In §3 we carefully set up the
formal Green’s solution of the exact equation of motion and show analytically that the
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Figure 1. Schematic plot of the potential energy as a function of position (at a
specific time). The barrier is explicitly shown. The dashed portions represent other
confining and nonstationary parts of the potential.

non-Newtonian dissipational trajectory near the barrier approximately coincides with a
Newtonian dissipationless trajectory provided the applied potential is scaled by a suitable
factor. Our concluding remarks appear in §4 where it is emphasized that a Lagrangian
employing such a scaled potential can be useful both for path-integral based quantization
and for the treatment of quantum stochastic resonance. The algebraic details of our
formulation are relegated to the Appendix for convenience.

2. Review of existing models

Consider a test paﬁicle moving in an environment and let the symbols
m,t,x,v = dx/dt, V,;F = -0V [Ox,y (1a)-

respectively denote the mass, time, position, velocity, external potential, applied force
and the coefficient of friction. This V may contain possible nonlinear terms in position
and/or nonstationary terms in time. The symbols

V] = V,(x), F] = —QVI(X)/B}C (1b)

will refer to the particular situation when the potential and force do not contain the time
explicitly.

2.1 Standard frictional equation

The basic equation of motion for the unknown trajectory x(z) valid for arbitrary damping,
reads

dv/dt+yV =F/m ' ' (2a)
subject to the initial conditions

Hr=0)=x; vlt=0)=uvo. | “ (2b)
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Table 1.  Salient features of the standard frictional model (cf. eq. 2). The symbols V;
and F; refer to a potential and force not depending on ¢ explicitly.

Item Standard frictional model

Motivation Dissipative force proportional to velocity is motivated experimentally

Parameters The barrier frequency 2 and the coefficient of friction y are arbitrary

Estimated velocity For general potentials with a barrier v is obtained by numerical
computation/analog simulation

. . dv

Effective acceleration — = =Y+ —
dt m

Branch of motion Both types of branches are present depending on whether the particle

is sliding down (Rayleigh-like branch) or climbing up (non-
Rayleigh-like branch) the barrier

Lagrangian L=e"(m?~V) due to Bateman—Caldirola-Kanai which is ex-
plicitly time-dependent
Mechanical energy E; = mv?/2 + Vy dE; /dt = —myv? < 0

As far as x as a function of ¢ is concerned, eq. (2a) is a second-order differential equation
of the deterministic (stochastic) type according as the temporal of the force F is definite
(random). Equation (2a) is equivalent to the formal expression

t
v=ype " +e7 / df' " F'/m, (2c)
0

where F' = F(x(¢'),¢) is the force at the integration time # when the position becomes
x(t'). Other known features of the standard frictional equation are summarized in table 1.
It is seen that irreversible dissipation of the mechanical energy E; = mv*/2 + V; is an
inherent property of the model so that a dissipationless approximation to the motion is
never attempted. Furthermore, since the underlying BCK [lc,2a] Lagrangian
L= (mv*/2 — V)e" is explicitly time-dependent, its path integration in general, would
require complicated numerical matrix multiplication [5a].

2.2 Overdamped Rayleigh equation

If the coefficient of friction is large enough, the right-hand-side of eq. (2c) can be
evaluated by repeated partial integration to yield

v Flmy —F/my* 45 yt>> 1 (3a)

where F = dF/dt. On the so-called Rayleigh branch of motion (labelled by the
superscript R), the leading term of eq. (3a) is picked up, giving a velocity parallel to the
applied force,

v® = F/my. (3b)

As regards the trajectory x(® as a function of #, this is a first-order differential equation of
the deterministic (stochastic) variety depending on whether F has a definite (random)
temporal profile. Table 2 summarizes the main features of the overdamped Rayleigh
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Table 2. Salient features of the overdamped Rayleigh model (cf. eq. 3). Nonleading
terms of order ¥ /my have been suppressed.

 Item Conventional Rayleigh model (label R)
Motivation The frictional force balances the applied force
Parameter y large, yr > 1
. . (R) F
Estimated velocity P = —
my
du® F
. Effective acceleration —%t— ~ —y® 4 — 0
Branch of motion Emphasis is on those branches where v and F are almost parallel as
happens when the particle is sliding down the barrier in figure 1
Lagrangian L®) does not exist because the acceleration has become trivial
Potential energy V,(R) (x) such that dVI(R) Jdr = —mp®’ < 0

equation. It is observed that there is no recipe available to handle the so-called non-
Rayleigh branch on which the velocity would be antiparalle]l to the external force.
Furthermore, eq. (3b) being of the first order can not follow from a usual Lagrangian in
which x{®) is the only degree of freedom.

3. The dissipationless Newtonian model
3.1 Preliminaries

In view of what has been said above it is worth examining (for finite +) questions such as
the possibility of a dissipationless picture, existence of a non-Rayleigh branch, construc-
tion of a convenient Lagrangian, etc. This task will be accomplished analytically for those
problems [1d, 3b] in which the input potential includes a parabolic barrier. Then the full
external force on the particle can be decomposed as

F =Fg +F, =mQ*x + Fy(x,1). (4)

where Fg is the linear force due to the barrier, (2 the corresponding angular frequency and
all the remaining contributions are lumped together in the perturbation force F, which is

supposed to be confining at large distances. In the sequel we shall also need the useful
symbols

Q=@ +92/4)"% Qr=0x92. | (%)

3.2 Formulation

The standard frictional equation (2a) is rewritten as

& d ,1 F |
[dt2+(ﬂ+ Q_)a—i—ﬂ}xwz . (6)
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In the Appendix we construct its formal solution via Green’s functions and impose the
condition that the absolute magnitude of the trajectory x must not grow exponentially as
t — 00. This leads to a pair of exact, formal relations involving integrals (see Appendix,
eqs (A8), (A9, b) between v, x and F,,, which can be suitably approximated depending
upon the mechanical branch of interest. '

3.3 The ‘improved’ Rayleigh branch

Suppose the particle is sliding down the potential hill of figure 1 so that its velocity is
essentially parallel to the applied force. The particle then takes relatively less time to
cover a given distance down the hill. After the system has relaxed with respect to the time
scale erl one employs the asymptotic expansion (All) and finds for the velocity

W =F/mQy—; Qut> 1. (7a)

Here the dots ... stand for nonleading terms of order F,/mQ2 and the superscript (R)"
labels the Rayleigh branch as improved by our analysis. Of course, in the limit /2> 1
the above result coincides with the usual Rayleigh estimate F/my. The improved
expression for the acceleration is given by

dol®” . F F .0
= —p® L R R
which indeed has the appearance of a dis;sipationless Newtonian equation under a force
that has been scaled down by a factor g®)° < 1. Finally, the improved equation of motion
(7b) does follow conveniently from a Lagrangian

LR = m?/2 —‘V(R)* where V& = g®'v, (7c)

in sharp contrast to the customary Rayleigh model. Clearly, if V does not contain
t explicitly the improved energy EIR = mv* /2 + V,R) is approximately conserved,
'unless one goes far from the barrier.

3.4 The non-Rayleigh branch

Next, we turn to the very interesting case of the particle climbing up the potential hill in
figure 1, so that the velocity is essentially antiparallel to the applied force. The particle
then takes a relatively long time to cover a given distance up the hill. For times large
compared to 1/C2_ employing the asymtotic expansion (A12) we obtain for the velocity

oW = —F/mQ_ —--; Q_t> 1. (82)

Here the dots . . . represent nonleading terms of order F,/mQ? and the superscript (N)*
labels the non-Rayleigh branch under consideration. The corresponding acceleration is
deduced from

* F * F * Q .
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which again has the look of a dissipationless Newtonian equation but under a force that
has been scaled up by a factor g¥)° > 1. Of course, the above equation of motion follows
from a Lagrangian

LW =m? )2 — oW Yy = Ny (8c)

which will not depend on ¢ explicitly if V does not, in sharp contrast to the BCK [Ic, 2a]
model. The corresponding energy E}N) =mv?/2 + V,(N) becomes an approximate con-
stant of motion unless we go far from the barrier.

3.5 Physical interpretation and numerical estimates

From the conceptual viewpoint we can say that the effect of the —ypv term in the exact
frictional equation for dv/ds is roughly simulated by altering the force in the
dissipationless formulation. The scale factor q(N)* in eq. (8b) is greater than unity and
is an increasing function of y. This physically implies that as the coefficient of friction
increases, the effective potential hill V™" to be surmounted by the particle becomes
higher and the deceleration grows. Let us estimate a typical numerical range for the ratio
/) for which the asymptotic expansion (8a) on the non-Rayleigh branch holds. Suppose
2 -+t~ 100, implying that the particle has completely relaxed with respect to the time
scale Q;l. Relaxation with respect to the other time scale, viz. 27!, would also have been
achieved during this time provided 2_¢ > 1, i.e.,

Q_/Q, > 1/100, ie.0<y/Q < 10. 9)

In other words the analysis based on eqs (8a—c) remains valid over a fairly wide range of
underdamped as well as overdamped motions, because y/{) = 0 means no-damping and
y/Q = 10 implies very heavy damping.

3.6 Comparison with statistical large-friction expansion

When the input force includes a random component we must examine any possible link
between our theory and the ‘large y expansions’ in statistical mechanics, especially in the
context of the Fokker—Planck [4a,b] equation. It is well known [4a] that the kramers
distribution function P(x,v,t) in phase space can be systematically represented by a
series in inverse powers of y (for very large values of y) as

P=PO 4,10 4 0(72). (10)

The first two terms of this expansion, after integration over the velocity, lead directly to
the Smoluchowski distribution function W(x,t) in configuration space. Reverting to the
trajectory language one may say that the asymptotic reduction from Kramers to
Smoluchowski distribution is equivalent to the asymptotic reduction from the underlying
Langevin [4b] (cf. eqs ((2a), (b)) to the overdamped Rayleigh [4b] (cf. egs (3b), 7(a))
stochastic differential equation (provided the noise is white Gaussian). In this context, the
main results of our theory (cf. eqs (8), (9)) are entirely new because they pertain to the
non-Rayleigh branch of motion, the large parameters involved are .., and the domain of
validity extends even to the extreme underdamped limit.
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4. Conclusions

All our important results are collected in table 3 which should be compared against
the entries of tables 1 and 2. Some additional points which deserve mention are as
follows:

(a) Limited equivalence: We do mnot claim perfect equivalence between the actnal
frictional eq. (2a) and its proposed dissipationless versions viz. eqs (7b, 8b). As a matter
of fact, for time-independent static potentials the exact x trajectories would eventually
come to rest at a potential minimum whereas our x™)* trajectories would go on oscillating
between static confining walls. However, our approximation (8b) is most effective
when the particle is climbing up the hill in figure 1, and hence it can be profitably
employed to calculate the first transit time from the bottom to the top of the barrier. Far
away from the barrier, i.e., in the region of the confining wells, the one-term approxima-
tions (7b, 8b) may become poor. In these regions nontrivial corrections due to dissipa-
tion may be systematically made by including the Fp terms of the asymptotic expansions
(All, 12).

(b) Time-dependent situations: Of greater physical interest is the case when the
perturbation force Fj, contains explicit time-dependence due to applied modulation,
white noise, etc. It is known that at times large compared to Q! the frictional energy loss
suffered by the actual x trajectories tends to be compensated by the energy gain from the
time-dependent perturbation so that the particle tends to follow the profile of F, (see
Appendix, eq. (A8)). Obviously, in the absence of net loss our dissipationless formulation
based on the x™)" trajectories should also become equally valid.

Table 3. Salient features of the dissipationless Newtonian model (cf. eqs M, 8.
Useful abbreviations are Q= (0*+ )’2/4)1/2, Qp =Q49/2, Q- =Q-1y/2,
g® =Q_/Q; and M =Q, /O_.

Item Dissipationless Newtonian model

Motivation The effect of deleting the —yv term in the exact equation of motion is
sought to be partially restored by suitably scaling the external force

Parameters (R)" branch: Q. large, ie. Q> 1 (N)* branch: Q_large, ie
Q.t> 1. Even the limit of zero friction is included in these
inequalities _

Estimated velocity v = F/mQ,, v = —F/mQ_

Effective acceleration do®" Jdt = g F, dv™) Jdt = g™ F

Branch of motion On. the improved Rayleigh branch v and f are essentially parallel as

happens while sliding down the barrier. On the non-Rayleigh branch
reverse is the case

Lagrangian L =m2/2 — g®V, (LN = m2 /2 — g™y

Mechanical energy EF =m224+4®'v;, (BN =m?/2+¢™'V; which are
approximately conserved in regions not too far from the barrier
(i.e., not inside the confining wells)

The superscript (R)* labels the improved Rayleigh branch and (N)* labels the non-Rayleigh
.branch.
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(c) Quantization and stochastic applications: AS regards the frictional motion of a
quantum wave packet near the barrier, our dissipationless Lagrangian L™ (see eq. (8¢))
may have bright applicational prospects. Indeed, if the input V represents time-
independent mean field, the path integral corresponding to the scaled-potential V™ can
be readily computed via the short-time propagator method [5b] of Sethia et al. Next, if V
includes time-dependent random components, the ensuing dynamics based on v can
be treated using the recently developed concept [6] of quantumn dissipationless random
motion. Finally, a detailed application of these ideas to study the quantum stochastic
resonance phenomenon [7]in a double well potential under-the simultaneous influence of

thermal temperature, linear friction, external noise and sinusoidal modulation is in
progress and the results will be reported elsewhere.

Appendix:

Solution of eq. (6)

(i) Green's function. Given the initial condition xo and vo we wish to solve eq. (6) written
in the form ‘

K%Hu)) (5- o )=, e

where Q, Q. and Q. are given by egs (5). The differential operator within square
brackets has the causal Green’s function

G(1,Y) = ___.____“‘9(;5 £) g-i-t) _ -1, (A2)
where 6(t — 1) is the unit step function.

(ii) Formal solution. If the perturbative force F, were absent, the trajectory xg in
presence of the barrier alone would have been

1
Xp = 20 [e—ﬂ'*t(9~x0 —vo) + eQJ(Q+’CO -+ vo)]- (A3)

When F, is also present the use of eqs (A2, 3) permits us to convert eq. (Al) into the
integral equation

x=xp4 / 8 G(1,¢)F' Jm
0

1 a [F s _ o0 > % ot
o _ =3y - _ - ! —S8h. d
XB MZmQ{c ,/o die™" F, —e [[) +[ }dte Fp},

(A4)

where F,= Fp(x(t), t) is the perturbative force at the integration time ¢ when the
position becomes x(t').

The algebraic structure of eq. (A4) shows that there are five types of terms appearing
viz., e~ e-f and three integrals. Therefore, it will be convenient to introduce the
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following notation:
o0
K=Q x—vo; pp= / dt’e”“"lF;,
0

t
N = Qyxo + vy + py/m; & =e . / dtleﬂ‘f"Fl'3
0

- .
— a0 -Q.7
Ap = e -/t df'e F;. (A5)
Then the formal solution (A4) may be recast into the compact form
1 13 A
=——{|Ket _ 5P Qi+t _7p
x 29{[ e mJ+[Ne - ‘ (A6)

(iii) Asymptotic condition. We shall suppose that the static part of the applied force is
confining at large distances as happens, for instance, in the case of a double-well
potential. Then, as t — oo the position x can not blow up exponentially, implying that the
coefficient of ™~ in eq. (A6) should vanish, i.e., '

N=0; v =Qx0+vp— pp/m. (A7)

(iv) Final expressions. Inserting the conditions (A7) into eq. (A6) we get the following
exact, general expression for the position:

x = xpe” M — [¢, — poe™ ™ 4 2] /2m. (A8)

Differentiation with respect to ¢ yields two mutually equivalent representations for the
velocity, viz.,

v=0Q_x—20xee" M + (& — ppe™ ] /m (A9a)
= —Qx— My/m. (A9b)

It is not difficult to verify explicitly that this v satisfies the standard frictional equation
(2a) of the text along with the specified initial conditions (2b).

(V) Existence. At this stage some comments on the mathematical validity of the above
analysis are in order. Although the adjective ‘perturbative’ was used to describe F’ , our
eqs (A8), (9) are exact because no assumption apart from confinement has been made as
regards the shape and strength of Fp. Also, the functions ép. /.;%, and ), in eq. (A5) exist
throughout the interval 0 < ¢ < oo provided the integrand e~ -"Fl’, remains bounded at
all finite #' and drops faster than 1/# as ¢ — co. Finally, although the top of the barrier in
figure 1 corrésponds to a point of unstable equilibrium, our solutions (A8, 9) are quite
stable with respect to choice of the initial location x, because of the important identity
(A7) satisfied by w.

(vi) Lowest order estimates. We shall now evaluate the integrals appearing in eq. (A5)
approximately without employing any specific model for F,, but making a few reasonable
assumptions. Suppose that F; (x, ¢) is a slowly varying function of space and time so that
its derivatives may be neglected — a situation which is somewhat reminiscent of the
potential smoothness assumption in the quantum WKB method. Also, suppose that the
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particle has relaxed with respect to the time-scale Q! implying that Ot > 1. Then,
partial integration in eq. (A5) yields

&~ Fy/Qs N Fpt Fy/Q-, (A10)

where terms of order F o/ 02 have been dropped. With the help of these estimates we can
describe motion on two different types of branches as explained below.

(vii) The improved Rayleigh branch. 1f the particle starts sliding down the barrier in
figure 1 its speed may be relatively substantial. Relaxation with respect to the time scale
Q7! happens soon sO that one can take Q. > 1. Neglecting the e~ terms in the first
representation (cf. eq. (A9a)) for the velocity and using the estimate (A10) one obtains

&  F R

NPT L PURE. .
m  mwy m -

(A11)

where the superscript (R)" labels the ‘improved’ Rayleigh branch and F = mQ%x + F, is
the full external force. Note that the customary Rayleigh velocity is just /my instead (cf.
eq. (3b)). Other dynamical functions of interest, viz., the effective acceleration,
Lagrangian and conserved energy associated with v®" are reported explicitly in table 3.

(viii) The non-Rayleigh branch. If the particle starts climbing up the hill in figure 1 its
speed may get reduced substantially. Since the particle will take a relatively long time to
cover a given distance, relaxation with respect to the time scale Q~! may occur so that we
can take €, > 1. From the second representation (cf. eq. (A9b)) of the velocity we obtain
the asymptotic expansion

N -F K

' _ _ A PO Al2
Y Qex = N, m (AL2)
where use has been made of the estimate (A10), and the superscript (N)” labels the non-
Rayleigh branch. Note that vV)' is outside the scope of the conventional Rayleigh
velocity. The relevant acceleration, Lagrangian and conserved energy are again displayed
explicitly in table 3.
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