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Abstract. We show that, the part of the universe that is observable today
(in principle), could not have evolved out of a domain which was causally
connected in the past. This and other issues related to horizon problem in
inflationary models are discussed. 
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1. Introduction 
 
Models for the inflationary universe have enjoyed immense popularity in the last few 
years. The original model for inflation proposed by Guth is quite elegant and simple.
It was originally invoked to explain: (i) the homogeneity of the surface of last
scattering (LSS) and the consequent isotropy of cosmic microwave background
radiation (CMBR), (ii) the closeness of the rate of expansion of the universe to that of
a spatially flat universe (‘flatness problem’) and (iii) the absence of GUT monopoles.
Unfortunately the model turned out to be unworkable due to other reasons––it
produced a universe very different from what we observe.

In the subsequent years several other models for inflation were proposed. It was
also discovered that any inflationary model can produce density inhomogeneities out
of the inherent quantum fluctuations of the field responsible for inflation. All these
models are, however, unnatural in the sense that dimensionless parameters have to be 
fine-tuned to very low values for the model to produce an acceptable universe. (Thus, 
in order to avoid fine-tuning of initial conditions we have to invoke fine-tuning of
theoretical parameters.) It is generally believed that, once this fine-tuning of the
theoretical model is accepted, inflation would provide a natural explanation to (i) and
(ii) of the previous paragraph.

In this paper, we examine the claim that ‘inflation solves the horizon problem’. To
motivate the discussion, consider a conventional inflationary scenario: The universe
evolves from a singularity at t = 0, and is radiation dominated until t = ti; it inflates for
ti < t < tf  and is radiation dominated for tf < t. The proper distance to the horizon ––
which is the linear extent of the causally connected domain—is given by
 

(1) 
 
where S(t) is the expansion factor. Thus dH(t) also represents the size of the observable
universe. At any time t, an observer at the origin can receive signals from proper
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distances up to dH(t). The reader, at this stage, is invited to decide for himself the
correctness (or otherwise) of the following statements: 
 

1. In a model with sufficient inflation, the currently observable part of the universe 
has evolved out of a region which was causally connected in the past. In other words,
the observable universe is causally connected (Turner 1983: p. 237, lines 6–9; Linde
1984: p. 946, lines 6–8). 

2. Perturbations at some wavelengths can grow bigger than the horizon during the
inflationary phase and reenter the horizon at a later stage.

3. Inflation can explain the isotropy of the CMBR in a natural manner.
 

In this paper we shall discuss the above claims and show: (a) The only way to make
the whole of observable universe causally connected is to have a horizon-free model,
i.e. choose a model with infinite dH(t) for all t > 0. (This can be realized if, for example,
S(t) ~ t” with n > 1 near t = 0.) (b) The second statement is incorrect if ‘horizon’ is
defined as dH(t). Unfortunately, the term ‘horizon’ is used in literature to denote two
very different objects: dH(t) and the inverse Hubble distance H– 1(t) = (S/S)– l. For
S(t) ~ t”, with n ~ 0 (1) both Η – 1 (t) and dH(t) are proportional to t and are of the same
order of magnitude. But during an inflationary epoch, they behave very differently. 
The statement (2) is correct if horizon is interpreted as ‘inverse Hubble distance’—
which is the sense in which the term ‘horizon’ is used in literature dealing with
perturbations. (c) The explanation of the isotropy of CMBR in inflationary models
involves a surprising fine tuning.
 

2. Horizons in RW cosmology
 
Consider a k = 0, Robertson-Walker universe with an expansion factor S(t). (Since we
are not interested in ‘flatness problem’ we shall set k = 0; our results are independent
of this assumption.) This proper distance to the horizon, dH(t), is defined by (1). Let t0 
denote the present moment (1018 s) and λ(t0) = λ0 be any proper length scale in the
present day universe, which would correspond to the size
 

(2) 
 
at any other epoch t. We are interested in the ratio,
 

(3)
 
 
A particular scale λ0 is ‘within the horizon’ at some time t if r(t) > 1 and is ‘outside the
horizon’ if r(t) < 1. We can rewrite (3) as,
 

(4)
 
 

The complete, observable, region of the universe today corresponds to a length
scale λu(t0) = dH(t0). In other words, for this scale r(t0) =  1. From (4) it follows that, 
 

(5) 
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Notice that λu (t) represents the size of that region at time t, which expands to form the 
currently observable region of the universe. Equation (5) shows that the horizon size 
will always be smaller than the size of the region which evolves to form the currently
observable universe. In other words, it is simply impossible for the observable universe to
have evolved out of a single causally connected domain in the past. Statement 1 is false, in
spite of repeated assertions to the contrary in the literature (Turner 1983: p. 237, lines
6–9; Linde 1984: p. 946, lines 6–8).

It is clear from the definition that, for t1    t2 
 

(6)
 

So if r(t2) <  1 (the scale is outside the horizon  at t = t2) then r(t) must be less than
unity for all 0    t1   t2 (‘the scale must be outside the horizon in the past’). In other
words no scale can grow bigger than the horizon and ‘go outside the horizon’
sometime in the past. (To do so, one would require r(t2) < 1 and r(t1) > 1 with t2 > t1;
this is impossible.) Thus the claim in statement 2 is impossible if ‘horizon’ is taken to
mean dH(t). We will come back to this point later. 

The validity or otherwise of statement 3 depends on the specific form of S(t) used.
We shall take S(t) to be,
 

(7)
 

(8)
 

(9)
 
 

where Z = exp H(tf – ti). (We have neglected the matter-dominated epoch after
recombination, but this hardly changes the results.) The coordinate length along the
surface of last scattering (which is observable today) is,
 

(10)
 
coordinate horizon distance at t = trec is, 
 

(11) 
 
 
Therefore, the number of causally disconnected volumes in CMBR is about ~ N3

with, 
 

(12)
 
 

Using (7)–(9) we can easily compute l(t,0). For t > tf, this is given by, 
 

(13) 
 
 

(14)
 
In arriving at (14) we have made the usual assumptions regarding inflation: 2ti  H– 1

 
≃ 
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(   1010 GeV)–1), Ζ     1 and have taken t     tf. Using (14) in (12) we get,
 

(15) 
 
 
If the whole of CMBR has to be within a causally connected patch, then N  1. In
other words, 
 

(16) 
 
or equivalently, 
 

(17)
 
 
(Guth 1981). The value of right-hand side in conventional models is ~ 3 × 1027. So the
usual inflation with z    1029 will make CMBR homogeneous. 

There is however, a surprise hidden in (17). Let us rewrite (17) in the form,
 

(18) 
 
Now, all the parameters on the right-hand side of (18) are fixed by microscopic physics
at a very early epoch. (All the parameters ti, tf and Η are fixed in terms of the
fundamental theory producing inflation.) The isotropy of CMBR will hold true only as
long as the age of the universe t0 (the ‘present’ epoch) is smaller than the pre-decided
timescale on the right-hand side! CMBR may appear to be isotropic today; but may
appear anisotropic sometime in future! 

There is another way of presenting the same result: Given a microscopic theory Z, 
ti, tf are fixed. One can now violate (17) by simply taking a sufficiently large t0. Thus, if 
we wait long enough, CMBR will appear to be anisotropic. (The same result can be 
restated in terms of T0 the CMBR temperature at the present epoch. We also would
like to stress the fact our results are independent of various approximations invoked
in the discussion.)
 

3. Comparison and conclusions
 
The apparent contradiction between the Standard lore of inflation and our results
above demands a comparison, which we shall now provide.

Let us begin with statement 2. The growth of perturbations is actually governed by
the scale (inverse Hubble distance).
 

(19) 
 

rather than by  dH (t). Bounds like (6) are not applicable to the ratio [dH (t)/h(t)]. There
are, however, two aspects related to this issue that require comment: (i) It is sometimes
stated in literature that only perturbations smaller than the ‘horizon’ (meaning h(t))
are physically relevant because they are inside the causally connected region. This is 
clearly untrue because h (t) is much smaller than dH(t). Wavelengths in the range
h(t) < λ(t) < dH(t) are well within the causally connected domain but outside the
 

≃ 

≃ 
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Hubble distance. The validity of the statement ‘microphysics cannot operate at scales
λ(t) > h(t), is not obvious in inflationary models with dH (t)    h(t). (Brandenberger
1985: p. 46; Turner 1985: p. 243). The issue is somewhat subtle, (ii) The behaviour of
λ(t), h(t) and dH(t) are shown in Fig. 1, for an inflationary model described by (7)–(9).
Note the exponential growth of λ (t) during ti < t < tf . 

In a simplified picture described by (7)–(9), h(t) will be discontinuous at t = tf. 
Proper discussion of reheating is necessary to smoothen this discontinuity.

Let us now consider statement 1. This statement is simply false. To understand how
it is conventionally tackled, let us estimate dH (t0)—the size of the horizon today. It is
easily computed to be,
 

(20)
 
 

(21)
 
for Ζ  1, t  tf, 2ti  H–1  Taking ti  10–35  s, tf  10–33   s, Ζ  1029, and
t0    1018 s we get 
 

(22) 
 

In Standard inflationary lore, the size of observable universe is taken to be λ (t0)  1028 
cm    dH(t0). Such a scale would have been inside the causally connected domain all
the way down to t = t i. At the end of inflation, (t = tf) dH(tf)   105 cm while λ (tf)
3 × 102

 cm; at the beginning of inflation (t = t i), dH(ti)  10–24  cm while l (ti)
3 × 10– 27 cm. The arguments in (5)–(7), of course, are not applicable if r(t0) > 1. 
 
 

 

Figure 1. Evolution of various lengthscales with time. Thick line denotes the evolution of the
particle horizon, dashed line denotes the growth of a comoving length scale and dotted line
represents H– 1. 
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But what is the size of observable universe today? All the region in the universe that 
is causally connected to us are observable in principle. Thus the size of the region which
is observable by us today (in principle) is λu(t0) = dH(t0). This region would have been 
outside the horizon for all t < t0. 

The claim that ‘observable universe has a size of 1028 cm’ arises from the existence
of a last scattering surface (LSS) at Z  103. It is usual to say that universe at higher
redshifts is ‘opaque’ and unobservable. Such a statement is misleading, to say the least.
If cosmic neutrino background is discovered, one can proceed to redshifts Z    103.
Nothing—in principle—precludes the possible existence of one exotic relic particles
which decoupled at very large Z. Therefore, it is more proper to consider dH(t0) to be the 
size of observable universe.  

If the above definition is accepted, the following conclusion is inescapable: Inflation
can never produce the observable region of the universe from a single causally
connected region. It can only be achieved in models which are strictly horizon-less.
(This happens in many quantum gravitational models; for example, see Narlikar &
Padmanabhan 1983, 1985.)

Lastly, we repeat that the conventional inflation does explain the homogeneity of
CMBR. But only because our universe is still young, i.e., t0 is less than some
predecided value.
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