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Abstract. We argue that observations on Milky Way and dwarf spheroidals
imply existence of individual haloes around dwarf spheroidals. If neutrinos
(or any other ‘hot’ particle) provide the dark matter then we show that:
(i) Embedding of visible matter inside large (∼ few Mpc) dark matter islands
is observationally untenable. (ii) Dwarf spheroidals possess dark matter
haloes of about 10 kpc radius around them, and have an (M/L) ratio of about
104. (iii) The haloes of spiral galaxies (e.g. Milky Way) extend to about
100 kpc in radius. If ‘cold’ dark matter makes up the haloes, then no
significant constraints are obtained. We discuss briefly the effect of these
constraints on larger scales.
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1. Introduction and summary: Is dark matter hot or cold?

 
It is likely that most of the matter in the universe is invisible; that is, it emits little or no
electromagnetic radiation. The dark matter makes its presence known through
gravitational effects. The flat rotation curves of spiral galaxies (Rubin 1979; Rubin et al. 
1982; Rubin, Thonnard & Ford 1982) and the mass to light ratios of large virialized 
clusters (see e.g. Rood 1981; Faber & Gallagher 1979), are most easily interpreted in 
terms of dark matter haloes. (Alternative interpretations, involving modification of 
dynamical laws will not be considered in this paper; (see Milgrom 1983; Bekenstein & 
Milgrom 1984). 

What does the invisible halo consist of? Since most of the visible matter is made of 
baryons, one may attempt to build the haloes from baryonic matter. However, a variety 
of observational constraints make baryonic dark matter an unattractive alternative, if 
not an impossibility, (Hegyi 1984). 

Leptonic dark matter could consist of any of the host of particles postulated to exist 
by the particle physicists. Among leptons, massive neutrinos were one of the earliest 
candidates (Gerhstein & Zeldovich 1966; Cowsik & McClelland 1972; Marx & Szalay 
1972). An experimental claim (as yet unconfirmed by other teams) that electron 
neutrinos are massive gave impetus to this idea (Lubimov et al. 1980). Considerable 
amount of work was done in recent years regarding the kinematics and dynamics of 
neutrino dominated universe (Sato & Takahara 1980; Bond, Efstathiou & Silk 1980; 
Doroshkevich et al. 1981; Klinkhamer & Norman 1981; Wasserman 1981; Peebles 
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1982). Two disturbing features emerged from this analysis: (i) If massive neutrino
haloes exist around dwarf spheroidals, with scale lengths comparable to that of visible
matter, then the neutrino mass should be greater than about 530 eV which is completely
ruled out (Aaronson 1983; Lin & Faber 1983). (ii) The numerical experiments suggest
that galaxy formation in a neutrino dominated universe would have taken place at
redshifts z < 2, which is in contradiction with the existence of high redshift objects
conventionally interpreted as the nuclei of galaxies (Frenk, White & Davies 1983; Dekel
& Aarseth 1984; Hut & White 1984; Kaiser 1983; Mellot 1983; Faber 1984). These two
features make neutrinos rather unattractive. (For attempts to reconcile these features
with the hypothesis of neutrino dominance, see Cowsik & Ghosh 1986; Mellot 1985.)

Motivated by these considerations, many people have attempted to model the dark
matter by supersymmetric fermions (‘sparticles’) and axions. Since these particles are
heavier than neutrinos, their ‘thermal’ velocities will be lower, earning them the name
‘cold dark matter’. (Neutrino, on the other hand, is an example of ‘hot dark matter’.)
Cold dark matter can be made to avoid the two difficulties mentioned in the previous
paragraph with relative ease (Blumenthal et al. 1984; Primack 1984). On the other hand
they seem to face some trouble in explaining the largest scale structures viz.
superclusters and voids (Primack & Blumenthal 1984). Besides, the experimental
evidence for the existence of many of the cold dark matter candidates is weaker than
that for the nonzero mass of the neutrino. (Theoretical ideas have to be hastily reshaped
if the mass of any species of neutrinos is proved to be definitely non-zero!).

Taking an unprejudiced viewpoint, one may ask: Do observations give a clear cut
‘yes’ or ‘no’ answer to the existence of ‘hot’ or ‘cold’ dark matter?

We attempt to discuss this question in a series of three papers. In the present paper we
analyse the constraints on dark matter distribution which arise from observations on
our Galaxy and the dwarf satellites. The second paper will discuss groups and clusters
of galaxies; the third paper will consider various dynamical aspects of clustering.

Within the scope of existing observations, we have not been able to provide a clear cut
‘yes-no’ answer to the question we have raised. However, rather stringent constraints 
can be imposed on the scale length, shape and densities of dark matter haloes. We find
that neutrino (‘hot’ dark matter) distribution is much more severely constrained than
any cold dark matter scenario. If neutrinos constitute the dark matter, then, we show:
 

(i) Scenarios in which galaxies are embedded in large (∼ Mpc) neutrino ‘islands’ are
ruled out by observations.

(ii) The halo around our Galaxy cannot extend significantly beyond ~ 60 kpc.
(iii) Dwarf spheroidals must have, a halo which extends upto about 10 kpc from

their centre. This will give dwarf spheroidals a mass to light ratio of 104(!) 
making them very peculiar objects.

 

Cold dark matter, on the other hand does not lead to such stringent conditions. We
leave the reader to judge for himself whether these constraints effectively rule out
neutrino dominance.

The paper is organized as follows: In Section 2, we review and analyse the existing
observational data about Milky Way and dwarf spheroidals. Section 3 compares
standard theoretical modelling with the observations and determines the constraints.
Section 4 discusses various offshoots, arguments and counterarguments based on the
previous sections.
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2. Dark matter observations
 

2.1 Milky Way
 
The visible matter in our Galaxy does not extend significantly beyond l0 kpc.
Presumably the effects of dark matter haloes would be most pronounced at distances
> 10 kpc. The rotation curve derived from 21 cm observations is reasonably flat right
from about 8 kpc. Using CO observations of molecular complexes related to Η II
regions, the flat rotation curve can be extended out to 16 kpc. At larger distances,
globular clusters can be used as tracers of dark matter. The data from globular clusters
(as well as 21 cm and CO observations) are summarized in Fig. 1. (The data are taken 
from the conclusions of Innanen, Harris & Webbink 1983; Faber & Gallagher 1979;
Hartwick & Sargent 1978; Peebles 1979; Mihalas & Binney 1981; Gunn, Knapp &
Tremaine 1979; Similar data are also presented in Lynden-Bell 1983.) 

Within the limits of observational error, the data are very well fit by the mass radius
curve,
 

(1)
 

The error-bar in the coefficient arises from the spread in the data points. The mean
curve (solid line) and the spread (broken lines) are shown in Fig. 1.
 

 

Figure 1. Total mass Μ within a radius r plotted against the radius r of the Milky Way galaxy.
The solid line is the best fit curve for M(r) equation. The broken lines are the best fit lines with
upper and lower limits on error bar. The dot-dash line represents the M – r curve corresponding
to Equation (13) in the text.
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For judging the goodness of fit, the data were tested with a power law Μ ∝ rn . The
best fit value for n turns out to be 0.9 with a σ2 (mean square deviation) of 0.0095. On the
other hand, the theoretical curve Μ ∝ r, shown in the figure has a σ2 of 0.01 which is
comparable to 0.0095, indicating a good fit. For future reference, we may note that
Μ ∝ r3 curve leads to a σ2 of 0.58, nearly sixty times higher.

We note that, in the range 8 kpc < r < 75 kpc, the mass distribution (1) is equivalent
to the density fall off
 

ρ(r) = 8.1 × 10–23g cm–3 (r/1 kpc)–2 (2)
 

2.2 Dwarf  Spheroidals
 
The seven dwarf spheroidals Fornax, Sculptor, Leo I, Leo II, Draco, Ursa Minor and
Carina are usually considered to be the satellite galaxies of Milky Way. The
gravitational mass of these objects were determined recently (Faber & Lin 1983;
Aaronson 1983). In Fig. 2, we have plotted the gravitational mass of the dwarf
spheroidals against their radii, in a log-log plot. The ‘best fitting’ curve is,
 

M (r) = 3.6 × 106 M  (r/1 kpc)2.4 (3)
 

However, the σ2 for this fit is about 0.24. For comparison we tried Μ ∝ R curve
and Μ ∝ R3 curve which give σ2 values of 0.31 and 0.26 respectively. Clearly the data are
too scattered for being fitted into any single power law curve with significantly small σ2.

For Draco and Ursa Minor mass estimates are available from velocity dispersion
(Aaronson 1983) while for others the masses are estimated from tidal non-disruption.
One may plot the mean density of dwarf spheroidals against their distance from Milky
Way. (The distances are heliocentric distances.) This plot is shown in Fig. 3. The solid
line in the figure corresponds to the relation,
 

ρDS(r) = 9.2 × 10–22 g cm–3(r/1 kpc)–2 (4)
 

The σ2 for this fit is 0.009; for comparison, the best fit curve for log ρ – log r has a slope
of (– 2.2) and σ2 of 0.006. Thus the mean densities of dwarf spheroidals falloff as the
inverse square of the distance from Milky Way. This is to be expected because tidally
limited mass estimates are used for most dwarfs. A comparison of (4) and (2) shows that
ρDS exceeds the expected dark matter halo density of Milky Way at the same location by
about a factor of 10. We shall discuss this point more fully in the next section.
 

2.3 Spirals
 
The flat rotation curve of Milky Way signals the relation Μ ∝ r. It is well known that
this feature is exhibited by a large number of spiral galaxies. If we denote the mass-
radius relation of n th spiral galaxy in a sample by
 

M (r) = cnr (5)
 

then we may ask the question: How different are the numbers in the set {cn}? If the dark 
matter halo around the galaxies are more fundamental units than the visible galaxies,
then we would expect the {cn} to be ‘reasonably’ close to each other. One main source of
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Figure 2. The mass Μ of the dwarf spheroidals plotted against the radius r of the dwarf
spheroidals. The solid line is the best fitting curve,
 

 

scatter in the {cn} is the mass variation in the visible part of the galaxies themselves.
(Since Μ in (5) is the total mass, the variation in visible part will affect cn). This scatter
can be minimized by studying the relation (5) for various types of spirals individually.

In Figs 4(a, b) we have plotted the mass–radius relation for SAB and SA types spirals. 
The data are taken from the table given by Faber & Gallagher (1979). The gravitational
mass estimated from rotation velocity at the Holmberg radius is plotted against the
corresponding Holmberg radius. In a further attempt to minimize the effect of visible
part of the galaxy we have used only those spirals with (Holmberg) radius greater than
15 kpc. 

In the case of SAB galaxies all the points lie within a strip indicated by dotted lines in
Fig. 4(a) corresponding to (with solid line showing the best fit),
 

(6)
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Figure 3. The solid line shows mean density of dwarf spheroidals plotted against the distance
of dwarf spheroidals from the centre of the Milky Way. The thin line shows the density falloff of 
MW as a function of its distance from the centre of MW.
 
 
On the other hand all SA galaxies are bound within the mass–radius curves
 

(7)
 

Considering the scales and uncertainties involved one may reasonably assume that cn
’s

do not differ from each other drastically.
In other words, all spirals are embedded in individual dark matter haloes with r–2 

density profile. We shall attempt later (in Section 4 as well as in subsequent papers) to
treat galaxies with dark haloes as basic units. Spiral galaxy observations add credibility
to this assumption.

We shall now consider the constraints on the theoretical models which arise from the
above observations.
 

3. Theoretical models
 
The constraints on theoretical models naturally depend on some basic assumptions as
well as on the nature of the dark matter: (a) neutrino (hot) or (b) cold dark matter. We
shall discuss (a) and (b) separately below.
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Figure 4.  Mass-radius relationship for a) SAB spirals b) SA spirals. The solid line shows the
best fit curve.
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3.1 Neutrino (Hot) Dark Matter
 
Assuming neutrinos constitute the dark matter in the universe, we have the well-known
constraint from cosmology (Gerhstein & Zeldovich 1966; Cowsik & McClelland 1972)
 

(8)
 
Here the sum is over all species of neutrinos, h is the Hubble constant in units of 
100 km s–1 Mpc–1 and Ω is the ratio between mass density of the universe and critical 
density. Assuming a single species of neutrino and that Ωh2~ 1/2, we shall take mv to be 
less than 50 eV. The only existing experimental support for massive neutrinos suggests
a bound 14 eV < mv < 40 eV. Thus mv ~ 30 eV will be used for scaling the expressions
in what follows.

Tremaine & Gunn (1979) have shown that mv must satisfy the constraint,
 

(9)
 
where σν is the velocity dispersion of neutrinos bound in a gravitational potential well
of core radius rcv. The constraint (9) arises from the theorem (see for example, Lynden-
Bell 1967), which states that maximum coarse grained phase space density can only
decrease with time. Equation (9) can be rewritten as (note a crucial printing error in the
original paper of Tremaine & Gunn 1979).
 

(10)
 

If we make the following two crucial assumptions: (i) the σν for neutrinos in dwarf
spheroidals is the same as that of baryonic matter ~ 10 km s–1 (Aaronson 1983) and
(ii) the rcv for neutrinos in dwarf spheroidals are of the same order as that of tidal radii
of baryonic matter ~ 1 kpc, then we get mv > 170 eV, in violent contradiction with (8).
Clearly hot dark matter picture is in trouble.

The only way to escape this situation is to relax the assumptions (i) and (ii) in the
above paragraph. If one assumes that the velocity dispersion of neutrinos is much
higher than that of baryonic matter, making the rcv much larger than rc baryons (= rcb).
Clearly this will bring down the right hand side of (10) allowing one to escape the
constraint. The question that faces us is the following: How much can one push up rcv 

and σv? 
There are three essentially different approaches which one may consider at this stage:

(i) Neutrinos form large (few Mpc) dark matter islands in which our local group and
dwarf spheroidals are embedded (Cowsik & Ghosh 1986). There is no dark matter
bound to dwarf spheroidals individually, (ii) Dwarf spheroidals are imbedded in the
haloes of our Galaxy. The neutrino halo extends for ∼ 250 kpc around Milky Way. No
significant amount of dark matter is attached to dwarf spheroidals. (iii) Dwarf
spheroidals do have a neutrino halo around them, but this halo has rc         rcb.

We shall now show that approaches (i) and (ii) are theoretically and observationally 
unsound; it is essential to assume that there exists dark matter bound individually to 
dwarf spheroidals. 

To see this consider the mass and density profiles of Milky Way shown in Figs 1 and
3. Milky Way dark matter, right up to 75 kpc, is definitely not a constant density profile.
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The density enhancement between 10 kpc and 100 kpc is by a factor 100 and cannot be
treated at all as a small perturbation on a constant density background. The best
analysed dwarf spheroidals Draco and Ursa Minor are at about 67 kpc which is in the
region of M ∝ r behaviour. (This conclusion is independently supported by the
standard Milky Way modelling by Lin & Lynden-Bell (1982) based on Magellanic
Stream and by Frenk & White (1982) based on globular cluster orbits.) Dark matter
halo around our Galaxy is best represented by an isothermal sphere.

Is it possible to assume that the visible matter in dwarf spheroidals only sample the
neutrinos which are actually bound to the halo around Milky Way, but just happen to
be streaming in the vicinity of dwarfs? This is impossible because of two reasons. 

Firstly observations show that the density of gravitating matter in dwarf spheroidals
is more than ten times higher than that of Milky Way halo density at that point. (See
Equations 2 and 4.) This ten-fold local enhancement of density indicates the existence of
about 106 Μ  of dark matter bound to the dwarf spheroidals. Secondly, considerations
of tidal stability imply the existence of dark matter bound to dwarf spheroidals.
Consider embedding a dwarf spheroidal in the isothermal halo of our Galaxy. The
condition for the tidal stability of the dwarf spheroidals can be derived from
Chandrasekhar (1942); (Section 5.5; Equations 5.601 to 5.613.) We get
 

(ρv + ρB)bound > 6 ρbg. (11)
 

Here ρv and ρB on the left denote average density of neutrinos and baryons (stars)
bound to the dwarf spheroidal, while ρbg is the density of background dark matter (not 
bound to dwarf spheroidal; part of Milky Way halo or still larger structure), at the 
vicinity of the dwarf spheroidal. Since ρbg in the vicinity of Draco or Ursa Minor 
(~ 67 kpc) is about 2 times 10–26 g cm–3 , the density of matter bound to Draco should
satisfy the condition,
 

(ρv+ρB)bound > 1.2×10–25 g cm–3 (12)
 

In a size of 1 kpc, this implies a gravitationally bound mass of ~ 8 ×10 Μ   , which is 
more than one order of magnitude higher than the visible matter (both Draco and Ursa
Minor have visible mass of ~ 2×105 Μ ; see Faber & Lin 1983). In other words the
amount of dark matter bound to these dwarf spheroidals must be quite high (~7.8 
×106 Μ  ) to ensure tidal stability. Thus, both observationally and theoretically, there
must exist dark matter bound to dwarf spheroidals.

Before we proceed further we would like to emphasize three important points
relevant to this discussion, (i) Equation (11) was derived assuming the satellite galaxy
to be orbiting Milky Way in a low eccentricity orbit. Eccentricity of the orbit will
change the numerical coefficient 6 in Equation (11) to a higher value making matters
worse (King 1962). (ii) The background density ρbg(r) may vary very little over the
visible extent (~1 kpc) of the dwarf spheroidal. We shall show later that even (ρv)bound

does not vary significantly over the visible extent of the dwarf spheroidals. This does not
affect the tidal stability argument, (iii) On the other hand, the fact that ρbg is; not
globally constant is crucial for the tidal stability argument. This is because a globally
constant density distribution tidally compresses matter rather than disrupts.

The last point mentioned above shows that we may be able to make the tidal
constraint less severe by flattening the rbg (r) to a constant value beyond some radius rf.
Since Draco is at ~ 67 kpc, rf < 67 kpc (at least). Further Draco and Ursa Minor have 
ρv of the order of ~2 × 10–25 gcm–3. To provide this much of background density the
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Milky Way halo must flatten from about r f ~ 20 kpc. (From (2) we see that ρbg   2
× 10–25 gem–3 when r ~ 20 kpc.) In other words, one requires a density profile like,
 

ρ bg = 8 ×10–23 g cm–3 (r/1 kpc)–2 r     20 kpc
 

= 2 × 10–25 g cm–3 r    20 kpc (13)
 

Such a drastic assumption leads to many more problems: First of these is the direct
contradiction with accepted mass-radius relation for Milky Way halo. (We have
indicated modified mass profile based on (13) by a dash dot line in Fig. 1 which goes
outside the error bars of known observations.) Secondly it is impossible to ensure the
dynamical stability of an artificial configuration like the one in (13) where density falls
by two orders of magnitude and then remains constant. Lastly a configuration like (13)
will over-estimate the mass of local group (Milky Way–Andromeda systems) by a large
factor. For example, if we assume (13) to be valid up to ~ 300 kpc (tidally limited radius
of Milky Way by Andromeda) the mass contribution of Milky Way to our local group is
greater than 3 × 1014 M   ! This is nearly two orders higher than the upper bound (8.6
× 10 12 Μ ) obtained by studying the infall of local group towards Virgo cluster
(Lynden-Bell 1983). In short, there is no escape from assuming the existence of dark
matter bound to dwarf spheroidals.

Granted that neutrinos are bound around dwarf spheroidals what kind of
constraints can we obtain regarding their distribution?

From (10) it is clear that one has to increase the velocity dispersion σν and the core 
radius rv of the neutrino distribution. We shall now see how much latitude exists in 
these parameters. Suppose that the baryons are described by a truncated isothermal 
sphere with core radius rb, velocity dispersion σb and cutoff radius rt. (The sharp cutoff 
at an outer radius could be tidal truncation or because of the Gaussian falloff arising
from neutrino core.) Observationally, for the four dwarfs Sculptor, Draco, Ursa Minor
and Carina (which Faber &  Lin 1983 cite as having M/L > 1), the tidal cutoff radius rt 

varies between 0.5 kpc to 1.28 kpc with a mean value of 0.94 kpc. One may take the core 
radius rb to be about one-tenth of cutoff radius; i.e. rb ~ 100 pc. The σb for dwarfs are 
quite uncertain. Estimating from the visible mass, as 
 

σb ∼ (GMb/rt)1/2 (14)
 

it varies between 0.59 km s–1 and 2.63 km s–1 with an average of 1.4 km s–1 . (This
value is consistent with Aaronson’s (1983) measurements, though he uses a χ2 bound of
6.4 km s–1 for this discussion.) As for neutrino halo we shall assume it to be a concentric
isothermal sphere with core radius rv and velocity dispersion σv. When concentric
isothermal spheres form out of violent relaxation (or virialization) their core densities
will be comparable (see e.g. Sato 1981). Since central densities of isothermal spheres are
related to core radius and velocity dispersion as,
 

ρc = 9σ2/(4πGr2) (15)
 

the equality ρ vc      ρbc implies, (for a discussion of this assumption, see Appendix 2),
 

σv/σv = σb/rb. (16)
 

Using Equation (16), after some simple algebra Equation (10) can be rewritten as,
 

mv > (1010eV)(1 km s–1/σb)1/4(100 pc/rb)1/2(rb/rv)3/4 (17)

≃ 

⊙
⊙

≃ 
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or equivalently,
 

(rv/rb) > 109(mv/30 eV)–4/3(1 km s–1/σb)1/3(100 pc/rb)2/3. (18)
 

The right-hand side is scaled to ‘physically reasonable’ parameters. (For comparison we
note that with σb = 10km s–1, rb = 200 pc the coefficient 109 becomes 32.) We see
from (18) that the neutrino core radius must be nearly 100 times the baryonic core
radius; with rb ~ 100 pc, rv ~ 10 kpc. (By resorting to the extreme limits of
σb ~ 10 km s–1, rb ~ 200 pc, we will get rv ~ 6.4 kpc.)The baryonic matter with cutoff at
rt ~ 1 kpc is situated well within the neutrino core.

Such a large neutrino core will give an M/L value at the tidal radius r t to be about,
 

M/L = 3(rt/rb)2 ∼ 300. (19)
 

However the true M/L associated with the dwarf spheroidal is much higher than 300,
because the halo extends much further than rt. One may estimate the tidally limited
halo radius by setting,
 

(Mv/x3) > [Mbg/(R – x)3] (20)
 

where Mv (x) is the halo mass around dwarf within a distance x from its centre and Mbg 

is the mass in the halo of Milky Way within a distance R – x from Milky Way. (R is the
centre to centre distance between the spheroidal and Milky Way.) Simple calculation
based on our model will give,
 

x/R < [1+ (225 km s–1/σv)]–1 (21)
 

For Draco, with R ~ 70 kpc, σν ~ 100 km s–1, x is about 20 kpc. Within 20 kpc, Draco
will have a halo mass of 5 × 1010 Μ  and M/L ratio of about 104! If neutrinos
constitute the dark matter, then dwarf spheroidals are the most peculiar objects in this
universe.

In this picture, dwarf spheroidals of mass ~ 5 ×1010 Μ   is moving in the halo of
Milky Way galaxy. Dynamical friction will lead to an orbital relaxation timescale of the
order of, (Chandrasekhar 1942)
 

td  ∼ v3/G.2 Mρ = 6 × 1010 y (M/5 × 1010 M  )–1(v/200 km s–1)3 (ρ/10–26 g cm–3)–1.
(22) 

 

This estimate of td can easily change by a factor of 10 when finite size of haloes are taken
into account. Chandrasekhar’s original formula, for example has a coefficient, of the 
order of (8π)–1 on the right-hand side making matters worse. To save the situation it is 
necessary to assume that Milky Way halo density is considerably depleted at the 
vicinity of dwarf spheroidals. 

If all the above assumptions are granted, then 30 eV neutrinos may still be used to
model Milky Way and dwarf spheroidals, as far as kinematic features are concerned. We 
hope to discuss the dynamical features in a subsequent paper.
 

3.2 Cold Dark Matter 
 
The fact that cold dark matter candidates can easily account for dark matter in dwarf
spheroidals has been emphasized in literature repeatedly (Blumenthal et al. 1984;
Primack & Blumenthal 1983; Primack 1984). Since cold dark matter has significantly
lower velocity dispersion than neutrinos, they can cluster easily at 107 M   scales. As the
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mass of cold dark matter candidates are expected to be about > 1 keV, the phase space
constraint is easily satisfied. If the existence of stringent constraints is treated as a
negative aspect, then cold dark matter does better than neutrinos.
 
 

4. Discussion and conclusions
 
Contrary to claims often made in literature, the existence of dark matter in dwarfs does
not rule out the possibility of neutrino dominance. On the other hand, it does impose
stringent conditions on the distributional properties of dark matter. It is important to
see whether these constraints can be respected at the scales of groups and clusters of
galaxies. We intend to discuss this matter in detail in a subsequent paper; we shall
merely present an outline here.

To begin with, we expect the kinematic modelling of dark matter in the universe to
satisfy the following two criteria:
 

(i) There is only one kind of dark matter in the universe
This is probably most drastic of the simplifying assumptions we are making.

Unfortunately this assumption is required to obtain any reasonable constraint
whatsover. (With just two components for dark matter, it turns out that dark matter
parameters get completely out-of-hand.) Within the context of this paper, this
assumption implies that dark matter in dwarf spheroidals is of the same kind as dark
matter in our Galaxy. When larger structures are considered, this assumption works as
a powerful Occam’s razor. 
 

(ii) Dark matter clustering pattern is similar all over the universe.
As stated above, this assumption is (admittedly) vague. If the dark matter dominates 

the dynamics at all scales, we expect baryons to be secondary perturbations in the sea of
dark matter. Thus we expect dark matter to be distributed in a similar pattern all
throughout the universe. For example, the clustering scale of dark matter is expected to
be of the same order everywhere in the universe.

 

These two assumptions imply that dark matter is predominantly distributed around
the galaxies (and smaller dwarfs) as an extensive halo (~ 80 – 100 kpc). We take this
pattern to be the basic unit; even though halo of individual galaxies might overlap in
rich clusters if intergalactic spacing is less than about ~ 150 kpc. Consider a system of
Ν (gravitationally bound) galaxies, each with a visible matter radius rv (~ 10 kpc) and
dark matter halo extension of rh(~ 100 kpc), confined to a region of size R (‘cluster
size’). (The average intergalactic separation D(~ N–1/3 R) decides whether the haloes
overlap or not.) We can easily estimate the (M/L)c for the cluster from the (M/L)g for
individual galaxies evaluated at r = rv. The total mass in the cluster is,
 
 
 
 

(23)
 so that,
 (24)
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In other words cluster (M/L) ratios will be (rh/rv) times the galactic (M/L) ratios 
measured around the visible edges of galaxies. Since we expect (rh/rv) to be > 10, and
(M/L)gal ~ 10 – 20 (taking ellipticals also into account) we get (M/L)clusters ~ 100
– 200 which is not widely off the mark.

The intergalactic separation D in such a system will be of the order of (N–1/3 R).
If D > 2rh there is no significant merging of haloes and the dark matter resides around
each individual galaxy. On the other hand, if D < 2 rh (as it often happens), the halo 
material in the overlap region 1 = 2 rh – D will form a common background, of nearly 
uniform density. The mass in this background halo will be, 
 

(25)
 

so that,
 

(26) 
 

In the dense regions of the cluster, Mbg can be significant part of Mtotal. Such a common
halo, in our picture is dynamically generated. Galaxies are primary carriers of dark
matter.

The above discussion is intended to show that one may be able to describe (M/L)
observations at all scales without resorting to specific clustering at various scales.
 
 

Appendix 1
 

Criterion for Tidal Stability
 
We indicate below the derivation of Equation (11) in the text, based on Chandrasekhar
(1942).

Consider a coordinate system S(x, y, z) with origin at the centre of Milky Way galaxy
(MW). Let a dwarf spheroidal (DS) be going around MW in a circular orbit. Let the
distance to the centre of DS be R. We assume both MW and DS to be spherically
symmetric with relation to their respective centres, and that the linear extent of visible
matter in DS (~ 1 kpc) is much smaller than the distance R (~ 70 kpc). 

The gravitational potential felt by a star bound within the DS, is the sum of two terms
V(r) and U (r): V(r) is the potential due to all the matter bound to MW and is distributed 
in a spherically symmetric fashion about the origin (centre of MW). The background 
halo attached to MW, through which DS is moving, contributes to V(r). The U (r)
denotes the potential due to all matter bound to DS and is spherically symmetric about
the centre of DS. Since the DS is moving, U(r) has a complicated functional dependence
on the inertial coordinates. All the stars bound to the DS as well as any dark matter
bound to DS will contribute to U(r). In the rest frame of the DS, we shall take the shape
of DS to be a constant density sphere, with mean density, ρbound = (ρv + ρB) bound. 

Under these assumptions the tidal stability condition (Equation 5.613 of
Chandrasekhar 1942) becomes,
 

(A1.1)
 

using,
(A1.2)

 

– – –
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where ρbg(r) is the density of MW halo at r, and defining a ‘mean density’ by,
 

(A.13)
 
we can transform (A1.1) into a more useful expression. Simple algebra gives,
 
 
 

(A1.4)
 

so that (A1.l) becomes,
 

(A1.5)
 

This relation shows that: (i) a non-trivial criterion is esbalished only when ρbg(R) 
> ρbg(R). In particular, if MW halo was globally constant then ρbg = ρbg and (A1.5) 
is identically satisfied, (ii) the existence of ΜW halo matter in the vicinity of DS does 
help tidal stability (note the (– ρ bg (R)) term on the right hand side) but not completely.

We shall assume that density of matter bound to MW, ρ bg(r), has the following form:
 
 

(A1.6)
 
where rc is the core radius of MW with rc    8 kpc. Using (A1.6) in (A1.3) and (A1.5), we
get,
 

(A1.7) 
 

Neglecting rc(   8 kpc) compared to R (   70 kpc) we get Equation (11) of the text,
 

(A1.8)
 

ensuring tidal stability.
If (A1.8) is not satisfied, any normal astronomical system will get tidally disrupted.

Mathematically speaking, violation of (A1.8) will make all stellar orbits, except those
which satisfy very special initial conditions, to grow exponentially in time (see
Chandrasekhar 1942, op. cit. Equation 5.621).
 
 

Appendix 2
 

Dependence of the Results on the Ratio (ρvc/ρbc ) of Dwarf Spheroidals
 
In the text, we have assumed that the core densities of neutrinos and baryons are equal
in the dwarf spheroidals (see Equations 15 and 16). We shall here examine the sensitivity
of our results to this assumption. To do this, let us put, (in the text, we took α = 1)
 

(A2.1)
 

so that (16) is replaced by,
 

(A2.2)
 

It is straightforward to work out the α-dependence in various constraints. Equations

–

–

≲ 

≳≲ 
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(17), (18) and (19) are replaced by Equations (A2.3–5):
 

(A.2.3) 
 

(A2.4) 
 

(A2.5) 
 

The maximum distance up to which the DS-halo extends (due to tidal effect of our
Galaxy) is determined by Equations (20), (21) in the text. This equation (21) is modified
to, (vMW = 225 km s–1)
 

(A2.6)
 

Given some specific model for the formation of the DS and the haloes, α can be
estimated dynamically. Once α is estimated, the above equations present the
constraints. In the absence of such a clearcut model, we have two possible routes open
to us: (i) Use kinematic constraints to limit the range of α, and investigate results for
this particular range, (ii) Use qualitative, ‘guesstimates’ for α based on simplified
dynamics. We shall pursue both these routes here.

We know that ρb > ρv (at the core) for most astronomical systems. Thus we expect α
to be less than one. Observations on our Galaxy, for example, clearly indicate an
increase in (M/L) with radial distance. Dark matter is distributed smoothly and over a
larger scale, compared to visible matter, giving ρb > ρv at the core. Dynamically, we
expect ρb > ρv because of the following reason: In the standard big bang scenario,
baryons ‘fall into’ the potential well of neutrinos and quickly attain the same density
contrast as neutrinos (Sato 1981). Thus, just after formation, 
 

(A2.7)
 
So that in the beginning, (taking Ωb ~ 0.01 and Ωv ~ 1 where Ω =ρ /ρc)
 

(A2.8) 
 
Neutrinos, being dissipationless maintain their configuration (core radius, density etc.)
through violent relaxation and virialization. Baryons undergo dissipation and sink to
the centre increasing ρb. Since we see baryons to be lumped at scales ten times (or more)
smaller than the neutrino haloes, baryonic density would have enhanced by a factor of
about 103. In that case (ρv/ρb) today would be ~ 102 × 10–3· ~ 10–1, or α ~ 0.3. Note
that a contraction of baryonic matter by a factor ~ 102/3 ~5 is enough to produce an
α <1, starting from (A2.8).

These conclusions are reinforced by consideration of the maximum value allowed for
x in (A2.6). Demanding that xm < 20 kpc (i.e. DS halo does not extend for more than
20 kpc) with,
 

(A2.9)
 

it can be seen that α    1. On the other hand, too low a value of α will reduce the (M/L)
value of DS via (A2.5). References cited in the text suggests an (M/L) value for DS
galaxies to be greater than about 10.

With all these considerations in mind one may estimate the value of α to be in
the range of (0.01, 1.00). (It is known from (A2.8) that α = (ρv/ρb)1/2 is definitely less
 

–

≲ 
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than 10). For this range which varies by a factor of 100, αl/4 and α1/3 produce factors of
the order of 3–5. Since only these low powers of α appear in (A2.3)and (A2.4) our results
are not very sensitive to α. Note that as α varies from 10–2 to 1, the ratios of core
densities change from 10–4 to 1, which is sufficiently realistic range.

These arguments (partially at least) justify not including α in our discussion in the
text.
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