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ON A PROBLEM OF DANZER

R. P. BAMBAH AND A. C. WOODS

By a Danzer set S we shall mean a subset of the ^-dimen-
sional Euclidean space Rn which has the property that every
closed convex body of volume one in Rn contains a point of
S. L. Danzer has asked if for n ^ 2 there exist such sets S
with a finite density. The answer to this question is still
unknown. In this note our object is to prove two theorems
about Danzer sets.

If A is a w-dimensional lattice, any translate Γ = A + p
of A will be called a grid Γ; A will be called the lattice of Γ
and the determinant d(A) of A will be called the determinant
of Γ and will be denoted by d(Γ). In § 2 we prove

THEOREM 1. For n ^ 2, a Danzer set cannot be the union
of a finite number of grids.

Let S be a Danzer set and X > 0 a positive real num-
ber. Let N(S, X) be the number of points of S in the box

i\^X. Let D(S, X) = N(S, X)/(2X)\ In § 3 we

prove

THEOREM 2. There exist Danzer sets S with D(S, X) =
)--1) as X->oo.

The case n = 2 of the theorem is known, although no proof seems
to have been published. The referee has pointed out that a lower
bound of 2 can easily be established for the density of a Danzer
set in n = 2, but the authors are unaware of any further results in
this direction.

2* Proof of Theorem 1, We shall assume throughout that
n ^ 2. It is obvious that if S is a Danzer set and T is a volume
preserving afRne transformation of Rn onto itself, then T(S) is also
a Danzer set.

Let Sl9 S2, be a sequence of sets in Rn. Let S be the set of
points X such that there exists a subsequence S^, Si2, of {Sr} and
points Xir e Sir, such that Xir - > I a s r - ^ w . We write

S = lim S r = lim Sr .
r-*oo

LEMMA 1. Let {Sr} be a sequence of Danzer sets in Rn. Then

S — lim Sr is also a Danzer set.

Proof. Let if be a closed convex body of Volume 1. Then for
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each r, K Π Sr Φ φ, so that for each r, there exists Xre K f] Sr. Since
K is compact, {Xr} has a convergent subsequence {Xir} converging to
a point X in K f] S.

LEMMA 2. Let Sij) = lim^o SίΛ:/ = 1, •••,&. ΓΛβ^

U Sij) = lim I
r-»oo \ i =

Proo/. I G U S(i) => I G S{j) for some i, say j = io=> there exist
a subsequence {S-Jo)} of {S^o)} and points X ί r eS^ o ) such that X ί r -*
X=*Xirel)Sir and X ί r ->X — X e l i m r _ ( u i i S ^ ) . Thus U S ( i ) c
lim (UJU Sί.i}) Let X e lim ([7/=1 S?) Then there exists a sequence {i}
of natural numbers and Xir e Ui-i S^ such that X ί r —> X. Since & is
finite, there exists a i = i0 say, and an infinite subsequence kr of i r such
that XkreSljι\ Then X f e r->X and J e S ^ , so that Xe U S(io) and

This completes the proof of the lemma.

LEMMA 3. Let Γγ, Γ2, be a sequence of grids in Rn with equal
determinants d{Γr) = Δ. Then {Γr} has a subsequence {Γir}, such that

Γir is either a grid or is contained in a hyperplane.

Proof. If limr_>oo Γr — φ, there is nothing to prove. Assume,
therefore, that Γ — Y\mr^Γr Φ φ. Let XeΓ. Then there exists a
subsequence {%} of natural numbers and points Xiγ e Γir, such that
Xir —> X. Then Λir — Γίr — Xir is a sequence of homogeneous lattices
and lim Γir — X + Iimy4ίr. Therefore, it is enough to prove the the-
orem for lattices.

Let {Ar} be a sequence of lattices with determinants d(Λr) — Δ,
independent of r. Let /*i(A ), •• ff

Jίn(Λr) be the successive minima of
the Euclidean distance with respect to Λrf i.e., μ<(Λ(r) — inf μ: such
that |X | < μ has i linearly independent points of Λr.

Suppose, first, that there exists δ > 0, such that μ^Λ,.) Ξ> δ for
infinitely many r. Then a subsequence satisfies the conditions of
Mahler's compactness theorem and has a subsequence convergent in
the sense of Mahler (see, e.g., Cassels [2]). The last subsequence
converges to the limiting lattice in our sense also.

We may, therefore, assume μ1(Ar)-+0 as r—>oo. Since

μL(Ar) μMr) ^ -*L - i- •
nl Jn

where Jn is the volume of the sphere \X\ < 1, (see, e.g., Cassels [2]),
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and since n ^ 2, it follows that μn(Ar) ->co as r —• co. For each r,
let P r i , , Pr% be points such that \Pr.\ = μi(Λr). Let τrr be the plane
through 0, prι, , i>rn_L- It is easily seen that there exists a subse-
quence {Λir} of {Λr} such that the sequence {πir} converges to a plane
π. We assert that limr_oo {Λr} c π. For, let X Qlim^^ Λir. Then
X = l i m X f c r , where &r is a subsequence of i r and XkreAkr. There
exists M independent of kr, such that \Xkr\ Ŝ M for all kr. Also

-X*r = 0r,JPfcr,l + + 9r,nPkr,n, 9r,i Γβal ,

and if grr,Λ ^ 0 then \XK\ ^ μn(Akr). Since μn(Akr)-+oo as r->oo,
grrfW = 0 for all large r and Xeπ. This proves the lemma

LEMMA 4. Lei {TΓJ be a sequence of hyperplanes. Then {π{} has
a subsequence {πiμ} whose limit lies in a hyperplane.

Proof. lϊ π = lim^^ Ίzi = φ then there is nothing to prove. As-
sume, therefore, Xeπ. Then there is a subsequence {kr} of natural
numbers and points Xkr e πkr such that Xkr —> X. The planes πkr =
7^ — XΛr pass through 0 and have a subsequence πir which converges
to a plane π say. Then lim^c τrίr — π + X. This proves the lemma.

Proof of Theorem 1. We shall prove more, namely, α Danzer set
cannot be the union of a finite number of hyperplanes and a finite
number of grids.

Let S = UΓ=i πi Ui=i A be a Danzer set, such that π{ are hyper-
planes and Γj are grids. Let t ^ 1. Let X ^ F, X, F e A . For each
positive integer k, let Tk be a volume preserving affine transformation
such that Tk(X) = X and | Γ*( Y) - JSΓ| = A:"1! Y - X\. Since ^ ^ 2,
such transformations exist. For each k, Tk(S) is a Danzer set, and
by Lemma 1, so is the limit of every subsequence of {Tk(S)}. By
Lemmas 3 and 4 we can choose a subsequence {Tkr} of {Tk} such that
each lim^oo Tkr(πi) lies in a hyperplane, while each l i m ^ Tkr{Γά) is
either a grid or lies in a hyperplane. Since

lim Tkr(S) = U lim T^π,) (j lim Γfcr(Λ )

and lim Γfcr(A) is in a hyperplane, the Danzer set lim Tkr(S) lies in
the union of a finite number of hyperplanes and t1<t grids, so that
we have (by increasing Tkr(S) if necessary) a Danzer set consisting of
a finite number of hyperplanes and tL < t grids. Repeating this process
a number of times we obtain a Danzer set that is the union of a finite
number of hyperplanes. This can easily be seen to lead to a contra-
diction which proves the theorem.
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3* Proof of Theorem 2* Let K be a closed convex body in Rn.
The set S c R n is said to be a covering set for K if Rna\JA£S(K + A).
The set S contains a point of each translate of K if and only if S is a
covering set for — K. Clearly a set >S is a Danzer set if and only if it is
a covering set for each closed convex body of volume one. Therefore, in
order to prove a given set S is a Danzer set, it is enough to prove that
for every closed convex body K of volume one, S contains a covering
set for K.

If Γ is a grid with lattice A, then it is easy to see that Γ is a
covering set for K if and only if A is.

Let π be a parallelepiped. Let Ao be one of its vertices and
Alf •••, An be the n vertices joined to Ao by edges of π. Let A be
the lattice generated by A1 — Ao, , An — A*. By the grid generated
by 7Γ we shall mean the grid A + Ao. It is easily seen that if a closed
convex body K contains a parallelepiped which generates a grid Γ, then
Γ is a covering set for K.

A lattice A will be called rectangular if it consists of points
( α ^ , •• ,αΛtt»), where α^ are fixed positive real numbers and ut take
integral values. A grid Γ will be called rectangular if its lattice is
rectangular.

Let al9 •••,«» be positive real numbers. Let Γa be the grid
generated by the parallelepiped |#»| ίg a{. Let B be a box \xζ\ ̂  βif

where β{ Ξ> ̂  for i = 1, •••, n. Then / \ is clearly a covering set
for B.

Let if be a closed convex body of volume one. Let Kt be the
steiner symmetrical of K with respect to the plane xt — 0. Let K2

be the steiner symmetrical of Kγ with respect to x2 = 0 and so on.
Then ifw is symmetrical about all the coordinate planes and has volume
one. We next have

LEMMA 5. If a rectangular lattice A is a covering set for Kn1

then it is a covering set for K also.

(The lemma and its proof are easy adaptions of Lemma 2 of
Sawyer (3). For completeness, we give the proof below).

Proof. Let A be the rectangular lattice consisting of points
{oίyU^ , anun), di > 0 fixed real numbers and ^ running over the
set of integers. It is enough to prove that if A is a covering set
for Kί9 then it is a covering set for K also.

Let Aι = subset of A in the plane x1 = 0. The sets ifx + A cover
Rn. We assert each line x2 — α2, , xn — an meets Kx + P is a seg-
ment of length at least aλ for some PeAi9 Such a line meets only
a finite number of translates Kt + P g, P s e Λ, each of them in a seg-
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ment | x1 \ <^bs and hence meets Kι + Λ in the segment [ x, \ ̂  b =
maxί>s. If b < \a^ then Kγ + A meets the line in segments \xι —
maγ\ <: b < lalf where m takes integral values. This leaves part of
the line uncovered by sets Kx + A, contrary to the fact that A is a
covering set for Kλ. Thus b ^ ialf i.e., bs 7> \aγ for some s. There-
fore, the line meets Kγ + Ps and hence K + P s in a segment of length
at least α1? and is therefore, covered by the sets K + A. Since this
is true for all such lines, A is a covering set for K.

COROLLARY. A rectangular grid Γ which is a covering set for
Kn is also a covering set for K.

Because of the corollary, in oder to prove that a given set £ is a
Danzer set, it is enough to prove that for every given closed convex
body K of volume one, which is symmetrical about all the coordinate
planes, S contains a rectangular grid Γ which is a covering set for K.

Let K be a closed convex body of volume one, which is symmetrical
about the coordinate planes. Then K contains a point (au •• ,αTO),
a{ > 0, such that 2naι an ^ nl/nn. (See, e.g., Sawyer [3]). Then
K contains a box Bβ: | x{ \ ̂  βi9 /9* ̂  α* with volume 2nβ1 βn = nl/nn.
A covering rectangular grid of Bβ is automatically a covering set for
K. Therefore, S is a Danzer set if for all closed boxes Bβ of volume
nl/nn, S contains a rectangular grid Γa generated by \x{\ ^ a{ with

Oίi S βi

We now construct a set A of points a = (aίt , an), a{ > 0, such
that for each set (β19 , βn), βi > 0, ^ βn = nl/(2n)n = k, say, there
exists an aeA, such that at ^ β{. Then the grid Γa will provide a
convering by Bβ and the set S = \JaeAΓa will be a Danzer set.

Let H be the set of point x such that ^ xn — k, x{ > 0. Divide
the part xι > 0, , xn_γ > 0 of the plane xn = 0 into ^ — 1 dimensional
parallelepipeds πkv...yk%_ι defined by

β*< ̂  ^ ^ β**+1, i = 1, , n - 1, (ku , A:^) G Z - 1 ,

when Z is the set of rational integers. Let Hkv...)kn_1 = {xixeH and
(xl9 •• ,^-i)eττ, l,...,^_ l}. Then H= U ^ . ^ ^ e ^ - i ^ , . . . , / , ^ . If Xe
Hkv...tkn_ι, then ^̂  ^ efc% ΐ = 1, , n — 1 and

x,. =

Let

Then Γa is a grid of determinant 2nk/en~\ Let
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For each β = (ft, . . , ft,) e Hkv...ikn_v akv. .,kn^ e A has the property
that Γa is a covering set for Bβ. Therefore S = Uαe^Λ* is a Danzer
set. To prove Theorem 2, it will be enough to prove D(S, X) =

Let B(X) be the box \xt\ ^ X. Since iV(S, X), N(Fa, X) denote
the number of points of S and Γa, respectively, in B(X), it follows
that

( * ) N(S, X) <Z Σ ΛΓ(Γα, X) .
aeA

If α = α:^, ..,fcn_1 € A, then the points of Γa have coordinates

m ek*u ek^m

= (ekluίy ek'2u2i , ekn-ιun^u keιun) ,

say, where u{ are odd integers. If Γa Π B(X) Φ φ, then

so that for

h pki 1
i = 1,2,

Therefore,

Γa n S(X) ^ φ => —φ—r £ ek^ X, for i = 1, . . . , n - 1

(βX)w~

— log A; - (n - 1)(1 + log JC) ^ ft* ^ logX

for i = 1, •• , n — 1 .
Therefore, the number v{X) of a for which Γa Π 5(X) =̂ φ, satisfies

v(X) ^ (w(l + log X) - log k)n~ι

( **)
V ; = O ( l o g X ) - 1 .

If Γ α n B(X) Φ φ, then the number N(Γa, X) of points of Γa in
JB(X) is the number of points (uu -, un)eZn, u{ odd, with

~XS u^ ^ X, i = 1, . . . , w - 1

and
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Writing [ζ] for the largest integer <£f, we have

(***)

= (2X)nen~ι/k .

Combining (*), (**) and (***), we get

D(S, X) - N(S, X)I(2XY -

Thus >S is a Danzer set which provides an example for Theorem 2.
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