ON A PROBLEM OF DANZER

R. P. Bambah and A. C. Woods

By a Danzer set S we shall mean a subset of the n-dimensional Euclidean space R_{n} which has the property that every closed convex body of volume one in R_{n} contains a point of S. L. Danzer has asked if for $n \geqq 2$ there exist such sets S with a finite density. The answer to this question is still unknown. In this note our object is to prove two theorems about Danzer sets.

If Λ is a n-dimensional lattice, any translate $\Gamma=\Lambda+p$ of Λ will be called a grid $\Gamma ; \Lambda$ will be called the lattice of Γ and the determinant $d(\Lambda)$ of Λ will be called the determinant of Γ and will be denoted by $d\left(\Gamma^{\prime}\right)$. In $\S 2$ we prove

Theorem 1. For $n \geqq 2$, a Danzer set cannot be the union of a finite number of grids.

Let S be a Danzer set and $X>0$ a positive real number. Let $N(S, X)$ be the number of points of S in the box $\max _{1 \leqq i \leqq n}\left|x_{i}\right| \leqq X$. Let $D(S, X)=N(S, X) /(2 X)^{n}$. In $\S 3$ we prove

Theorem 2. There exist Danzer sets S with $D(S, X)=$ $0^{\prime}\left((\log X)^{n^{n-1}}\right)$ as $X \rightarrow \infty$.

The case $n=2$ of the theorem is known, although no proof seems to have been published. The referee has pointed out that a lower bound of 2 can easily be established for the density of a Danzer set in $n=2$, but the authors are unaware of any further results in this direction.
2. Proof of Theorem 1. We shall assume throughout that $n \geqq 2$. It is obvious that if S is a Danzer set and T is a volume preserving affine transformation of R_{n} onto itself, then $T(S)$ is also a Danzer set.

Let S_{1}, S_{2}, \cdots be a sequence of sets in R_{n}. Let S be the set of points X such that there exists a subsequence $S_{i_{1}}, S_{i_{2}}, \cdots$ of $\left\{S_{r}\right\}$ and points $X_{i_{r}} \in S_{i_{r}}$, such that $X_{i_{r}} \rightarrow X$ as $r \rightarrow \infty$. We write

$$
S=\lim _{r \rightarrow \infty} S_{r}=\lim S_{r}
$$

Lemma 1. Let $\left\{S_{r}\right\}$ be a sequence of Danzer sets in R_{n}. Then $S=\lim S_{r}$ is also a Danzer set.

Proof. Let K be a closed convex body of Volume 1. Then for
each $r, K \cap S_{r} \neq \dot{\phi}$, so that for each r, there exists $X_{r} \in K \cap S_{r}$. Since K is compact, $\left\{X_{r}\right\}$ has a convergent subsequence $\left\{X_{i_{r}}\right\}$ converging to a point X in $K \cap S$.

Lemma 2. Let $S^{(j)}=\lim _{r \rightarrow \infty} S_{r}^{(j)}, j=1, \cdots, k$. Then

$$
\bigcup_{j=1}^{k} S^{(j)}=\lim _{r \rightarrow \infty}\left(\bigcup_{j=1}^{k} S_{r}^{(j)}\right)
$$

Proof. $X \in \cup S^{(j)} \Rightarrow X \in S^{(j)}$ for some j, say $j=j_{0} \Rightarrow$ there exist a subsequence $\left\{S_{i_{r}}^{\left(j_{0}\right)}\right\}$ of $\left\{S_{i_{r}}^{\left(j_{0}\right)}\right\}$ and points $X_{i_{r}} \in S_{i_{r}}^{\left(j_{r}\right)}$ such that $X_{i_{r}} \rightarrow$ $X \Rightarrow X_{i_{r}} \in \cup S_{i_{r}}$ and $X_{i_{r}} \rightarrow X \Rightarrow X \in \lim _{r \rightarrow \infty}\left(\bigcup_{j=1}^{k} S_{r}^{(j)}\right)$. Thus $\cup S^{(j)} \subset$ $\lim \left(\bigcup_{j=1}^{k} S_{r}^{(j)}\right)$. Let $X \in \lim \left(U_{j=1}^{k} S_{r}^{(i)}\right)$. Then there exists a sequence $\left\{i_{r}\right\}$ of natural numbers and $X_{i_{r}} \in \bigcup_{j=1}^{k} S_{i_{r}}^{(j)}$ such that $X_{i_{r}} \rightarrow X$. Since k is finite, there exists a $j=j_{0}$ say, and an infinite subsequence k_{r} of i_{r} such
 $\lim _{r \rightarrow \infty}\left(\bigcup_{j=1}^{k} S_{s}^{(j)}\right) \subset \cup S^{(j)}$.

This completes the proof of the lemma.
Lemma 3. Let $\Gamma_{1}, \Gamma_{2}, \cdots$ be a sequence of grids in R_{n} with equal determinants $d\left(\Gamma_{r}\right)=\Delta$. Then $\left\{\Gamma_{r}\right\}$ has a subsequence $\left\{\Gamma_{i_{r}}\right\}$, such that $\lim _{r \rightarrow \infty} \Gamma_{i_{r}}$ is either a grid or is contained in a hyperplane.

Proof. If $\lim _{r \rightarrow \infty} \Gamma_{r}=\phi$, there is nothing to prove. Assume, therefore, that $\Gamma=\lim _{r \rightarrow \infty} \Gamma_{r} \neq \phi$. Let $X \in \Gamma$. Then there exists a subsequence $\left\{i_{r}\right\}$ of natural numbers and points $X_{i_{r}} \in \Gamma_{i_{r}}$, such that $X_{i_{r}} \rightarrow X$. Then $\Lambda_{i_{r}}=\Gamma_{i_{r}}-X_{i_{r}}$ is a sequence of homogeneous lattices and $\lim \Gamma_{i_{r}}=X+\lim \Lambda_{i_{r}}$. Therefore, it is enough to prove the theorem for lattices.

Let $\left\{\Lambda_{r}\right\}$ be a sequence of lattices with determinants $d\left(\Lambda_{r}\right)=\Delta$, independent of r. Let $\mu_{1}\left(\Lambda_{r}\right), \cdots, \mu_{n}\left(\Lambda_{r}\right)$ be the successive minima of the Euclidean distance with respect to Λ_{r}, i.e., $\mu_{i}\left(\Lambda_{r}\right)=\inf \mu$: such that $|X|<\mu$ has i linearly independent points of Λ_{r}.

Suppose, first, that there exists $\delta>0$, such that $\mu_{1}\left(\Lambda_{r}\right) \geqq \delta$ for infinitely many r. Then a subsequence satisfies the conditions of Mahler's compactness theorem and has a subsequence convergent in the sense of Mahler (see, e.g., Cassels [2]). The last subsequence converges to the limiting lattice in our sense also.

We may, therefore, assume $\mu_{1}\left(\Lambda_{r}\right) \rightarrow 0$ as $r \rightarrow \infty$. Since

$$
\mu_{1}\left(\Lambda_{r}\right) \cdots \mu_{n}\left(\Lambda_{r}\right) \geqq \frac{2^{n}}{n!} \cdot \frac{1}{J_{n}}
$$

where J_{n} is the volume of the sphere $|X|<1$, (see, e.g., Cassels [2]),
and since $n \geqq 2$, it follows that $\mu_{n}\left(\Lambda_{r}\right) \rightarrow \infty$ as $r \rightarrow \infty$. For each r, let $P_{r_{1}}, \cdots, P_{r_{n}}$ be points such that $\left|P_{r_{i}}\right|=\mu_{i}\left(\Lambda_{r}\right)$. Let π_{r} be the plane through $0, p_{r_{1}}, \cdots, p_{r_{n-1}}$. It is easily seen that there exists a subsequence $\left\{\Lambda_{i_{r}}\right\}$ of $\left\{\Lambda_{r}\right\}$ such that the sequence $\left\{\pi_{i_{r}}\right\}$ converges to a plane π. We assert that $\lim _{r \rightarrow \infty}\left\{\Lambda_{i_{r}}\right\} \subset \pi$. For, let $X \in \lim _{r \rightarrow \infty} \Lambda_{i_{r}}$. Then $X=\lim X_{k_{r}}$, where k_{r} is a subsequence of i_{r} and $X_{k_{r},} \in \Lambda_{k_{r}}$. There exists M independent of k_{r}, such that $\left|X_{k_{r}}\right| \leqq M$ for all k_{r}. Also

$$
X_{k_{r}}=g_{r, 1} P_{k_{r}, 1}+\cdots+g_{r, n} P_{k_{r}, n}, g_{r, i} \text { real }
$$

and if $g_{r, n} \neq 0$ then $\left|X_{k_{r}}\right| \geqq \mu_{n}\left(\Lambda_{k_{r}}\right)$. Since $\mu_{n}\left(\Lambda_{k_{r}}\right) \rightarrow \infty$ as $r \rightarrow \infty$, $g_{r, n}=0$ for all large r and $X \in \pi$. This proves the lemma

Lemma 4. Let $\left\{\pi_{i}\right\}$ be a sequence of hyperplanes. Then $\left\{\pi_{i}\right\}$ has a subsequence $\left\{\pi_{i_{\mu}}\right\}$ whose limit lies in a hyperplane.

Proof. If $\pi=\lim _{i \rightarrow \infty} \pi_{i}=\dot{\phi}$ then there is nothing to prove. Assume, therefore, $X \in \pi$. Then there is a subsequence $\left\{k_{r}\right\}$ of natural numbers and points $X_{k_{r}} \in \pi_{k_{r}}$ such that $X_{k_{r}} \rightarrow X$. The planes $\hat{\pi}_{k_{r}}=$ $\pi_{k_{r}}-X_{k_{r}}$ pass through 0 and have a subsequence $\hat{\pi}_{i_{r}}$ which converges to a plane $\hat{\pi}$ say. Then $\lim _{r \rightarrow \infty} \pi_{i_{r}}=\hat{\pi}+X$. This proves the lemma.

Proof of Theorem 1. We shall prove more, namely, a Danzer set cannot be the union of a finite number of hyperplanes and a finite number of grids.

Let $S=\bigcup_{i=1}^{r} \pi_{i} \bigcup_{j=1}^{t} \Gamma_{j}$ be a Danzer set, such that π_{i} are hyperplanes and Γ_{j} are grids. Let $t \geqq 1$. Let $X \neq Y, X, Y \in \Gamma_{1}$. For each positive integer k, let T_{k} be a volume preserving affine transformation such that $T_{k}(X)=X$ and $\left|T_{k}(Y)-X\right|=k^{-1}|Y-X|$. Since $n \geqq 2$, such transformations exist. For each $k, T_{k}(S)$ is a Danzer set, and by Lemma 1, so is the limit of every subsequence of $\left\{T_{k}(S)\right\}$. By Lemmas 3 and 4 we can choose a subsequence $\left\{T_{k_{r}}\right\}$ of $\left\{T_{k}\right\}$ such that each $\lim _{t \rightarrow \infty} T_{k_{r}}\left(\pi_{i}\right)$ lies in a hyperplane, while each $\lim _{t \rightarrow \infty} T_{k_{r}}\left(\Gamma_{j}\right)$ is either a grid or lies in a hyperplane. Since

$$
\lim _{r \rightarrow \infty} T_{k_{r}}(S)=\bigcup_{i=1}^{t} \lim T_{k_{r}}\left(\pi_{i}\right) \bigcup_{j=1}^{t} \lim T_{k_{r}}\left(\Gamma_{j}\right)
$$

and $\lim T_{k_{r}}\left(\Gamma_{1}\right)$ is in a hyperplane, the Danzer set $\lim T_{k_{r}}(S)$ lies in the union of a finite number of hyperplanes and $t_{1}<t$ grids, so that we have (by increasing $T_{k_{r}}(S)$ if necessary) a Danzer set consisting of a finite number of hyperplanes and $t_{1}<t$ grids. Repeating this process a number of times we obtain a Danzer set that is the union of a finite number of hyperplanes. This can easily be seen to lead to a contradiction which proves the theorem.
3. Proof of Theorem 2. Let K be a closed convex body in R_{n}. The set $S \subset R_{n}$ is said to be a covering set for K if $R_{n} \subset \bigcup_{A \in S}(K+A)$. The set S contains a point of each translate of K if and only if S is a covering set for $-K$. Clearly a set S is a Danzer set if and only if it is a covering set for each closed convex body of volume one. Therefore, in order to prove a given set S is a Danzer set, it is enough to prove that for every closed convex body K of volume one, S contains a covering set for K.

If Γ is a grid with lattice Λ, then it is easy to see that Γ is a covering set for K if and only if Λ is.

Let π be a parallelepiped. Let A_{0} be one of its vertices and A_{1}, \cdots, A_{n} be the n vertices joined to A_{0} by edges of π. Let Λ be the lattice generated by $A_{1}-A_{0}, \cdots, A_{n}-A_{0}$. By the grid generated by π we shall mean the grid $\Lambda+A_{0}$. It is easily seen that if a closed convex body K contains a parallelepiped which generates a grid Γ, then Γ is a covering set for K.

A lattice Λ will be called rectangular if it consists of points $\left(\alpha_{1} u_{1}, \cdots, \alpha_{n} u_{n}\right)$, where α_{i} are fixed positive real numbers and u_{i} take integral values. A grid Γ will be called rectangular if its lattice is rectangular.

Let $\alpha_{1}, \cdots, \alpha_{n}$ be positive real numbers. Let Γ_{α} be the grid generated by the parallelepiped $\left|x_{i}\right| \leqq \alpha_{i}$. Let B be a box $\left|x_{i}\right| \leqq \beta_{i}$, where $\beta_{i} \geqq \alpha_{i}$ for $i=1, \cdots, n$. Then Γ_{α} is clearly a covering set for B.

Let K be a closed convex body of volume one. Let K_{1} be the steiner symmetrical of K with respect to the plane $x_{1}=0$. Let K_{2} be the steiner symmetrical of K_{1} with respect to $x_{2}=0$ and so on. Then K_{n} is symmetrical about all the coordinate planes and has volume one. We next have

Lemma 5. If a rectangular lattice Λ is a covering set for K_{n}, then it is a covering set for K also.
(The lemma and its proof are easy adaptions of Lemma 2 of Sawyer (3). For completeness, we give the proof below).

Proof. Let Λ be the rectangular lattice consisting of points $\left(\alpha_{1} u_{1}, \cdots, \alpha_{n} u_{n}\right), \alpha_{i}>0$ fixed real numbers and u_{i} running over the set of integers. It is enough to prove that if Λ is a covering set for K_{1}, then it is a covering set for K also.

Let $\Lambda_{1}=$ subset of Λ in the plane $x_{1}=0$. The sets $K_{1}+\Lambda$ cover R_{n}. We assert each line $x_{2}=a_{2}, \cdots, x_{n}=a_{n}$ meets $K_{1}+P$ is a segment of length at least α_{1} for some $P \in \Lambda_{1}$. Such a line meets only a finite number of translates $K_{1}+P_{s}, P_{s} \in \Lambda_{1}$, each of them in a seg-
ment $\left|x_{1}\right| \leqq b_{s}$ and hence meets $K_{1}+\Lambda_{1}$ in the segment $\left|x_{1}\right| \leqq b=$ $\max b_{s}$. If $b<\frac{1}{2} \alpha_{1}$, then $K_{1}+\Lambda$ meets the line in segments $\mid x_{1}-$ $m \alpha_{1} \left\lvert\, \leqq b<\frac{1}{2} \alpha_{1}\right.$, where m takes integral values. This leaves part of the line uncovered by sets $K_{1}+\Lambda$, contrary to the fact that Λ is a covering set for K_{1}. Thus $b \geqq \frac{1}{2} \alpha_{1}$, i.e., $b_{s} \geqq \frac{1}{2} \alpha_{1}$ for some s. Therefore, the line meets $K_{1}+P_{s}$ and hence $K+P_{s}$ in a segment of length at least α_{1}, and is therefore, covered by the sets $K+\Lambda$. Since this is true for all such lines, Λ is a covering set for K.

Corollary. A rectangular grid Γ which is a covering set for K_{n} is also a covering set for K.

Because of the corollary, in oder to prove that a given set S is a Danzer set, it is enough to prove that for every given closed convex body K of volume one, which is symmetrical about all the coordinate planes, S contains a rectangular grid Γ which is a covering set for K.

Let K be a closed convex body of volume one, which is symmetrical about the coordinate planes. Then K contains a point $\left(a_{1}, \cdots, a_{n}\right)$, $a_{i}>0$, such that $2^{n} a_{1} \cdots a_{n} \geqq n!/ n^{n}$. (See, e.g., Sawyer [3]). Then K contains a box $B_{\beta}:\left|x_{i}\right| \leqq \beta_{i}, \beta_{i} \leqq a_{i}$ with volume $2^{n} \beta_{1} \cdots \beta_{n}=n!/ n^{n}$. A covering rectangular grid of B_{β} is automatically a covering set for K. Therefore, S is a Danzer set if for all closed boxes B_{β} of volume $n!/ n^{n}, S$ contains a rectangular grid Γ_{α} generated by $\left|x_{i}\right| \leqq \alpha_{i}$ with $\alpha_{i} \leqq \beta_{i}$.

We now construct a set A of points $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \alpha_{i}>0$, such that for each set $\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{i}>0, \beta_{1} \cdots \beta_{n}=n!/(2 n)^{n}=k$, say, there exists an $\alpha \in A$, such that $\alpha_{i} \leqq \beta_{i}$. Then the grid Γ_{α} will provide a convering by B_{β} and the set $S=\bigcup_{\alpha \in A} \Gamma_{\alpha}$ will be a Danzer set.

Let H be the set of point x such that $x_{1} \cdots x_{n}=k, x_{i}>0$. Divide the part $x_{1}>0, \cdots, x_{n-1}>0$ of the plane $x_{n}=0$ into $n-1$ dimensional parallelepipeds $\pi_{k_{1}, \cdots, k_{n-1}}$ defined by

$$
e^{k_{i}} \leqq x_{i} \leqq e^{k_{i}+1}, i=1, \cdots, n-1,\left(k_{1}, \cdots, k_{n-1}\right) \in Z^{n-1}
$$

when Z is the set of rational integers. Let $H_{k_{1}, \cdots, k_{n-1}}=\{x: x \in H$ and $\left.\left(x_{1}, \cdots, x_{n-1}\right) \in \pi_{\left.k_{1}, \cdots, k_{n-1}\right)}\right\}$. Then $H=\bigcup_{\left(k_{1}, \cdots, k_{n-1}\right) \in S^{n-1}} H_{k_{1}, \cdots, k_{n-1}}$. If $X \in$ $H_{k_{1}, \cdots, k_{n-1}}$, then $x_{i} \geqq e^{k_{i}}, i=1, \cdots, n-1$ and

$$
x_{n}=\frac{k}{x_{1} \cdots x_{n-1}} \geqq \frac{k}{e^{k_{1}+\cdots+k_{n-1}^{++n-1}}}
$$

Let

$$
\alpha=\alpha_{k_{1}, \cdots, k_{n-1}}=\left(e^{k_{1}}, \cdots, e^{k_{n-1}}, \frac{k}{e^{k_{1}+\cdots+k_{n-1}+n-1}}\right)
$$

Then Γ_{α} is a grid of determinant $2^{n} k / e^{n-1}$. Let

$$
A=\left\{\alpha_{k_{1}, \cdots, k_{n-1}}:\left(k_{1}, \cdots, k_{n-1}\right) \in Z^{n-1}\right\} .
$$

For each $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \in H_{k_{1}, \cdots, k_{n-1}}, \alpha_{k_{1}, \cdot, k_{n-1}} \in A$ has the property that Γ_{α} is a covering set for B_{β}. Therefore $S=\mathbf{U}_{\alpha \in A} I_{\alpha}$ is a Danzer set. To prove Theorem 2, it will be enough to prove $D(S, X)=$ $O\left((\log X)^{n-1}\right)$, as $X \rightarrow \infty$.

Let $B(X)$ be the box $\left|x_{i}\right| \leqq X$. Since $N(S, X), N\left(\Gamma_{\alpha}, X\right)$ denote the number of points of S and Γ_{α}, respectively, in $B(X)$, it follows that
(*) $\quad N(S, X) \leqq \sum_{\alpha \in A} N\left(\Gamma_{\alpha}, X\right)$.
If $\alpha=\alpha_{k_{1}, \cdots, k_{n-1}} \in A$, then the points of Γ_{α} have coordinates

$$
\begin{aligned}
& \left(e^{k_{1}} u_{1}, e^{k_{2}} u_{2}, \cdots, e^{k_{n-1}} u_{n-1}, \frac{k}{e^{k_{1}+\cdots+k_{n-1}+n-1}} u_{n}\right. \\
= & \left(e^{k_{1}} u_{1}, e^{k_{2}} u_{2}, \cdots, e^{k_{n-1} u_{n-1}}, k e^{l} u_{n}\right),
\end{aligned}
$$

say, where u_{i} are odd integers. If $\Gamma_{\alpha} \cap B(X) \neq \phi$, then

$$
e^{k_{1}} \leqq X, \cdots, e^{k_{n-1}} \leqq X, k e^{l} \leqq X,
$$

so that for

$$
\begin{aligned}
i=1,2, \cdots, n-1, e^{k_{i}} & \geqq \frac{k}{e^{n-1}} \cdot \frac{e^{k_{i}}}{e^{k_{1}+\cdots+k_{n-1}}} \cdot \frac{1}{X} \\
& \geqq \frac{k}{e^{n-1}} \cdot \frac{1}{X^{n-1}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Gamma_{\alpha} \cap B(X) \neq \dot{\phi} & \Rightarrow \frac{k}{(e X)^{n-1}} \leqq e^{k_{i}} \leqq X, \text { for } i=1, \cdots, n-1 \\
& \Rightarrow \log k-(n-1)(1+\log X) \leqq k_{i} \leqq \log X \\
& \text { for } i=1, \cdots, n-1 .
\end{aligned}
$$

Therefore, the number $\nu(X)$ of α for which $\Gamma_{\alpha} \cap B(X) \neq \phi$, satisfies

$$
\begin{align*}
\nu(X) & \leqq(n(1+\log X)-\log k)^{n-1} \\
& =O(\log X)^{n-1} . \tag{**}
\end{align*}
$$

If $\Gamma_{\alpha} \cap B(X) \neq \dot{\phi}$, then the number $N\left(\Gamma_{\alpha}, X\right)$ of points of Γ_{α} in $B(X)$ is the number of points $\left(u_{1}, \cdots, u_{n}\right) \in Z^{n}, u_{i}$ odd, with

$$
-X \leqq u_{i} e^{k_{i}} \leqq X, i=1, \cdots, n-1
$$

and

$$
-X \leqq u_{n} \frac{k}{e^{k_{1}+\cdots+k_{n-1}+n-1}} \leqq X .
$$

Writing [ξ] for the largest integer $\leqq \xi$, we have

$$
\begin{aligned}
N\left(\Gamma_{\alpha}, X\right) & =\left(\prod_{\imath=1}^{n-1} 2\left[\frac{1}{2}\left(\frac{X}{e^{k_{i}}}+1\right)\right]\right) 2\left[\frac{1}{2}\left(\frac{X e^{k_{1}+\cdots+k_{n-1}+n-1}}{k}+1\right)\right] \\
& \leqq 2^{n}\left(\prod_{\imath=1}^{n-1} \frac{X}{e^{k_{i}}}\right) \frac{X e^{k_{1}+\cdots+k_{n-1}+n-1}}{k} \\
& =(2 X)^{n} e^{n-1} / k .
\end{aligned}
$$

Combining (*), (**) and (***), we get

$$
D(S, X)=N(S, X) /(2 X)^{n}=O\left((\log X)^{n-1}\right)
$$

Thus S is a Danzer set which provides an example for Theorem 2.

References

1. L. Danzer, Convexity, Proc. Coll., Copenhagen, (1965), 310.
2. J. W. S. Cassels, Introduction to the Geometry of Numbers, Springer-Verlag, 1959.
3. D. B, Sawyer, J. London Math. Soc., 41 (1966), 466-468.

Received July 29, 1970. Research partially supported by NSF Grant GP-9588.
The Ohio State University
AND
Panjab University, Chandigrah, India

