
AN OVERALL TEST FOR MULTIVARIATE NORMALITY 

C. RADHAKRISHNA RAO AND HYDAR ALI 

ABSTRACT. There are a number of methods in the statistical literature for testing 
whether observed data come from a multivariate normal (MVN) distribution with 
an unknown mean vector and covariance matrix. Let Xi,... ,Xn be an iid sample 
of size n from a ;>-variate normal distribution. Denote the sample mean and sample 
varianee-covariance matrix by ,Y and S respectively. Most of the tests of multi- 
variate normality arc based on the result that \\ = S~*(Xi — X), i = 1,... , n, 
are asymptotically iid iis ?>-variate normal with zero mean vector and identity co- 
variance matrix. Tests developed by Andrews et al., Mardia and others are direct 
functions of V;. We note that the N = up components of the K;'s put together can 
be considered as an asymptotically iid sample of size A^ from a univariate normal 
(UVN) distribution with zero mean and unit variance. We test this hypothesis using 
any well known test based on N independent observations for univariate normality. 
In particular we use univariate skewness and kurtosis tests, which are sensitive to 
deviations from normality. 

1. INTRODUCTION 

The assumption of multivariate normality (MVN) underlies many important tech- 

niques in multivariate analysis. When the sample size is large one can use test criteria 

based on (or optimal for) MVN but refer them to their asymptotic distributions which 

are independent of the underlying distribution of the observations. Thus if one com- 

putes Hotelling's T2 to test the equality of means of p variables in two populations, a 

constant times T2 can be considered as a chisquare on p degrees of freedom although 

the measurements are not MVN, provided the sample sizes for the two populations 

are large. In small samples such a procedure may give misleading results. However, 

simulation results show that the p-values based on the assumption of MVN may not 

be widely off if the underlying distribution is close to MVN. We suggest that in prac- 

tice a test for MVN of observed data should generally precede any inferential analysis 
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we wish to undertake; using MVN as the underlying stochastic model for the obser- 

vations. If non-normality is detected we may wish to see if a suitable transformation 

can restore multivariate normality or explore the possibility of using nonparametric 

procedures. 

There are numerous tests available in the statistical literature for testing MVN. 

For general surveys of these tests, the reader is referred to papers by Mardia (1980), 

Andrews, Gnanadesikan and Warner (1971), Cox and Small (1978), Baringhaus and 

Henze (1988), Ilenze and Wagner (1997) and books by Siotani, Hayakawa and Fu- 

jikoshi (1985), .lobson (1992) and others. There appears to be no single test which 

is more powerful than all the other proposed tests. The choice of a test will depend 

on what kind of departures from normality need to be examined in the context of a 

particular problem under investigation as noted by Cox and Small (1978). 

In this paper, we suggest an overall test which can be routinely implemented in 

the initial data analysis (or cross examination of data as discussed in Rao (1997)) 

for choosing a model for inferential data analysis on mean values, construction of 

discriminant functions and related problems. The proposed test appears to be more 

sensitive than some others in the data sets we have examined. 

2. THE PROPOSED TEST 

Let X\,... , Xn be an iid sample of size 7i from a p-variate population and denote 

the partitioned p x n matrix (X\ : • • • : Xn) by X. Then the sample mean and 

estimated variance-covariance matrix are 

X = n~lXl 

S = (n-\)~lX{I-n-lW)X' (2.1) 

where 1 is the 7?.-vector of unities. 

Consider the spectral decomposition of 5' 

S = X2PlP' + ...+ \\PVP' = PA2P' (2.2) 



AN OVERALL TEST FOR MULTIVARIATE NORMALITY 3 

where the A2's are the eigen values and the /Vs are the eigen vectors, P = (P\ : • • • : 

Pp) and A2 is a diagonal matrix with A2 as its t-th diagonal element. Then 

S-* = X-'P.P' + ... + \;lPpP; = PA'lP' (2.3) 

is a positive definite square root of S~l. Further let 

Yi=S-HXi-X), z = l,...,n. (2.4) 

Then under the assumption that the AYs are iid variables from Np(fi,H), i.e., a p- 

variate normal distribution with mean // and covariance matrix E, smooth functions 

of moments of Y, tend to have« the same distribution as the corresponding functions 

of Zi — S_^(A'j — ft) as ii —> oo. We consider 

Y'= (¥(:■■■: Vn') (2.5) 

as approximately distributed as Nnp(0,1), i.e., treat all the N — up components of Y 

as iid variables from A^O,1), and apply a test for univariate normality based on N 

observations. Thus assessing MVN is reduced to a test for UVN (univariate normal- 

ity). We believe such a test will be more sensitive as it is based on a large number 

of observations. Other authors cited in the introduction use different functions of 

Yi in constructing tests of MVN. Andrews et al. (1971) use V/VJ, i = 1,... ,n, as 

independent chisquares on p degrees of freedom. Mardia (1980) uses V/V} and Y/Yi 

in defining multivariate skewness and kurtosis and suggests tests based on them. The 

test proposed by Baringhaus and Henz (1988) is a function of ||Vi||2 and ||Vi — Vj||2. 

In this paper we consider tests of UVN based on \/b[ and 62. the measures of 

skewness and kurtosis computed from the N observations in (2.5). One could also 

use the Shapiro-Wilk test W by considering the normal approximation 

z = \(\ - W)* - ,i\/a (2.6) 

where A,/i and a can be obtained for given n from Table 2 of Royston (1982, p. 119) 

or the normal approximation by using the Johnson (1949) S'b family 

z = j + 6\og[(W - e)/(\ - W)\ 
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where 7, 8 and e are obtained from Table 1 of Shapiro and Wilk (1965) if 71 < 50. 

If n > 50, these estimates can be obtained using the results of Shapiro and Francia 

(1972) and Royston (1982). [See Srivastava and Hui (1987, p. 16)]. Another possible 

test for univariate normality is the one proposed by Epps and Pulley (1983). 

The tests based on skewness and kurtosis are described in D'Agostino et al. (1990). 

The computational steps are reproduced below. Denote the N = up observations in 

(2.5) by £/[,... , UN and denote by mr the ?'-th corrected moment 

where U is the average of U\,... , (/ N- 

For skewness test, compute, \fb[ — ?n.j 2) 

Y -- A '(N + \)(N + :i)] 
\   02 G[N - 2) 

W2 = -\ \- 2(/MA)~1) 

3{N2 + 277V - 70)(A/ + ]){N + 3) 

(N-2){N + r>)(N + 7){N + 9)  ' 

, 6 = (en\V)-i, «={2/(IVa-l)}5, 

Z{s/bx) = 6£n{Y/a + \{Y/cxf + 1]*} ~ 7V(0,1). (2.7) 

The test statistic for assessing skewness is (2.7), which can be referred to a normal 

table for obtaining the p-value. 

For kurtosis test compute, 62 = m^/rn^ 

N+l {N+l)2(N + 3){N + 5Y 

Jfo(M = 
6{N2 -5N + 2) 

x 

{N + 7)(N + 9) 

b2 - E{h)     . 8 

VW2) y/ßM 

6(N + 3){N + 5) 
N(N - 2){N - 3) 

2 

2 

Z(b2) = l~M]- 

Ä) 
1 - 2/A 

+    1 + 
A (62 

IsfifiÄ. (2.8) 
l+zy^/^-^, 

Test for kurtosis can be carried out by referring Zipi) to a normal table with mean 

zero and variance unity. 



AN OVERALL TEST FOR MULTIVAR1ATE NORMALITY 5 

A combined test for skewncss and kurtosis is to use 

K2 = Z2(y/b[) + Z2(b2) (2.9) 

as chisquare on two degrees of freedom. The tests based on the N observations (2.5) 

are denoted by 7\ in the Tables 1, 2 and 3 in Section 3 of the paper. 

3. OTHER TRANSFORMATIONS TO INDEPENDENT VARIABLES 

It is well known that if /i and E are known, the p-vector variable A' ~ ATp(//, E) 

can be transformed to Y — NP(Q, I) by an affine transformation 

Y = A(X-,i) (3.1) 

where A is any p x p matrix satisfying the condition AHA' = /. The choice of A is 

not unique. One choice we made in Section 2 of the paper is A = E-?, a symmetric 

inverse square root of E. Other choices can be made such as A = h~x P' where A and 

P are the matrices appearing in the spectral decomposition of E = PA2/". Since p, 

and E are not known, we estimate p and E by A and S from the sample and compute 

Yi = \-lP'{Xi-X) (3.2) 

where PA2/" is the spectral decomposition of S, using the same notation for sample 

estimates of P and A. (See Srivastava and Hui (1987)). We may then consider the 

N = np components of the vector 

y' = (Y{ : ■ ■ ■ ■■ K) (3-3) 

and apply the UVN test as indicated in Section 2. The test based on the N observa- 

tions (3.3) is denoted by T-z in Tables 1, 2 and 3. 

Table 1 gives the p-values for the tests based on 7\ and Tz on Fisher's data on Iris 

Setosa with p = 4 and n = 50. The tests were carried out on the original observations 

and also after transforming one of the measurements (petal width to logarithms). 

Table 2 gives the p-values for tests based on T\ and Tz on the angular data on 

English and Naqada skulls. Only two angles are considered to test for bivariate 

normality. Table 3 referes to haemotology data considered by Royston (1983) in his 

discussion on tests of normality. 
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TABLE 1. p-values for tests T\ and T% on Iris data 
to — ->u,   p A     \r 

1 V 
onn 

Original Me; isurements After Tn msformation 

T, T2 7\ T2 

Skewncss y^i" 0.0674 0.2471 0.9937 0.8681 

Kurtosis (ft2) 0.0311 0.0938 0.1453 0.1829 

Combined 0.0184 0.1258 0.3462 0.4062 

TABLE 2. /rvalues for tests 7\ and 7^ on skull measurements 
Aitchinson (1986, p.385) 71 = 51, p = 2, A = 102 

English data Naqada data 

T, T2 Tx T2 

Skewness \/h[ 0.8942 0.8077 0.1429 0.2124 

Kurtosis (b2) 0.4587 0.6751 0.5735 0.7863 

Combined 0.7532 0.8892 0.2917 0.4430 

TABLE 3. p-values for tests T\ and T2 on haemotology data 
Royston (1983), n = 103, p = 3, N = 309 

Measurements on Measurements on 
variables 1,2,5 variables 2, 3, 5 

T, T2 T, T2 

Skewness \fb"\ 0.0090 0.0087 0.0404 0.0636 

Kurtosis (62) 0.0632 0.0267 0.2773 0.3369 

Combined 0.0059 0.0027 0.0678 0.1129 

The test proposed in the paper, especially the one based on T\ is simple to apply 

and is likely to be more sensitive to departures from MVN. The test can be included 

in the software for multivariate methods as an initial test to assess the suitability of 

MVN as a stochastic model for inferential analysis on observed data. 

Studies on power comparison of T\ with other tests for MVN and some theoretical 

investigations on the convergence of the sequence of random variables VJ, i = 1,... , n, 

defined in (2.5) will be reported in a future communication. 
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